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Abstract: Total knee arthroplasty (TKA) stands out as one of the most widely employed surgical
procedures, establishing itself as the preferred method for addressing advanced osteoarthritis of the
knee. However, current knee prostheses require refined design solutions. This research work focuses
on a computational analysis of both the mechanical behavior of a knee joint implant and the bone
remodeling process in the tibia following implantation. This research study delves into how specific
design parameters, particularly the stem geometry, impact the prosthesis’s performance. Utilizing
a computed tomography scan of a tibia, various TKA configurations were simulated to conduct
analyses employing advanced discretization techniques, such as the finite element method (FEM) and
the radial point interpolation method (RPIM). The findings reveal that the introduction of the implant
leads to a marginal increase in the stress values within the tibia, accompanied by a reduction in the
displacement field values. The insertion of the longest tested implant increased the maximum stress
from 5.0705 MPa to 6.1584 MPa, leading to a displacement reduction from 0.016 mm to 0.0142 mm.
Finally, by combining the FEM with a bone remodeling algorithm, the bone remodeling process of
the tibia due to an implant insertion was simulated.

Keywords: total knee arthroplasty; tibia bone; finite element method; meshless methods; bone remodeling

1. Introduction

Total knee arthroplasty (TKA) stands as one of the frequently conducted surgical
interventions in the field of Orthopedics, offering the promise of enhancing functionality,
alleviating pain, and reinstating the quality of life for patients [1]. It is estimated that in the
USA, the growth in surgical requests from 2005 to 2030 will be around 673% (3.48 million) [1].
The main objective of a TKA is to reduce knee pain, based on the replacement of most of
the damaged components of the joint with an implant, and the success of the surgery is
estimated by the absence of pain and functional recovery of the knee in a short period [2].
TKA can encompass the surface of up to three bones: the femur, the patella, and the
tibia; however, the latter is the area where most injuries leading to this surgical procedure
occur [2]. In certain cases, for enhanced implant fixation and stability, a cylindrical extension
known as the tibial stem is incorporated at the distal end of the tibial metal component
whose primary function is to increase implant stability, particularly in challenging cases, by
minimizing micromovements at the bone–implant interface, thereby mitigating the risk of
aseptic loosening [3]. These tibial extensions come in various lengths and widths and can
be secured through different methods, including total cementation, proximal cementation
only, or a press-fit approach without the use of cement [3]. The existence and design of
the tibial extension, including its size and method of fixation, can induce a phenomenon
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referred to as stress shielding, resulting in bone loss in the regions most affected, which
may weaken the implant fixation, requiring the placement of a new prosthesis [4–7]. Stems
are fundamental in most TKAs in aiding the transfer of loads from the damaged articular
and metaphyseal bone to the tibial cortical limit and in distributing the increased stress of a
specific joint [8]. Stems, at the cost of stress shielding, improve mechanical stability through
shearing resistance, reduction in lift-off, and a decrease in micromovement [8]. In cases
where the available bone reserve is inadequate to sustain the prosthesis, the incorporation of
stems is generally advised [9]. When addressing substantial volume defects through bone
grafting, the use of a stem becomes essential to shield the graft from excessive loads, since
the knee joint bears loads several times the body weight and a failure in load transfer by the
stem can subject the remaining trabecular bone to a load surpassing its maximum strength,
resulting in a compromise in the fixation of the component [9]. While there is today a large
consensus about the necessity of a stem for enhancing both the initial mechanical stability
and the ultimate longevity of the component, the recommended lengths and diameters
and fixation methods continue to be subjects of controversy [8]. It is noteworthy that it is
highly unlikely that an ideal length, for example, will ever be determined, due to a huge
heterogeneity in the anatomical characteristics of patients [8,10].

In cemented arthroplasty, the oldest fixation method, the cement ensures the union
between the implant and the bone tissue, providing a uniform load distribution throughout
the extent of the bone–implant interface [11]. However, the cement, usually composed of
polymethyl methacrylate (PMMA), does not provide adhesive properties; it only fills the
gaps located between the bone and the prosthesis [11]. Many studies have indicated that
cemented fixation shows better short- and medium-term results, as it reduces patient pain
and increases mobility and, consequently, their quality of life [11]. This method is mainly
employed in cases of extensive bone damage and a significantly compromised internal
cortex, particularly observed in individuals diagnosed with advanced osteoporosis [8].
However, some incidents with the use of cement have also been reported, as it degrades
over time, causing the release of debris that leads to inflammation of the surrounding
bone [12]. Another point to consider is the surgical intervention of revision, recurrent in
younger patients, since the removal of the cement-fixed prosthesis is quite complicated,
and therefore, this technique is then recommended only for patients over 65 years of age or
patients with poor bone condition, in order to ensure a strong primary fixation [12,13]. The
adversities and complexity related to cemented arthroplasty have encouraged the search
for new fixation methodologies.

Unlike cemented arthroplasty, which results from the mechanical fixation of the
cement, uncemented arthroplasty is based not only on mechanical fixation but also on
the biological junction of the implant to the bone tissue [14]. This new technique aims to
improve, in the long term, the success of implants in young patients, who demonstrate
good bone quality. The main drawback of this approach is the pain in the lower limbs,
which is a consequence of the poor fixation of the implant to the bone tissue [12].

Computational tools such as the FEM have been very useful for researchers in the
field of arthroplasty. Studies using these tools focus on the implant geometry and materials
as well as surgical techniques. With these studies, issues such as the minimization of
stress shielding or micromotions, which can heavily hinder the success of the treatment,
are dealt with. Completo et al. [15] conducted a study using the finite element method,
which evaluated the distribution of loads and stability at the cement-bone interface for two
fixation techniques, cemented and press-fit. The findings revealed that the load transmitted
from the cemented stem to the bone was fourfold higher [15]. Quevedo González et al. [16]
used a computational approach to study the effect on tibial stress of using a smaller tibial
baseplate in order to prevent excessive rotation, having concluded that the consequences of
this undersizing are minimal. Quevedo Gonzalez et al. [17] used a computational approach
to determine that adding an anterior spike to the tibial baseplate would help to decrease
the micromotions between the bone and the implant. Other approaches addressing implant
geometry include the work of Liu et al. [18], who used a topology-optimization approach
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to improve the design of the metal plate, through a porous design, used to treat defects
in the proximal tibia with TKA. Liu et al. [19] compared two techniques used in TKA,
namely, the cement screw and the metal block, and concluded that the use of a metal block
is more suitable for larger defects. Regarding the study of the most suitable materials,
studies such as those of Bhandarkar and Dhatrak [20] and Apostolopoulos et al. [21] deal
with the cushion material and tibial insert, respectively. In the first study, it is concluded
that using a UHMWPE cushion leads to lower stresses in the inserts, and in the second
work, an all-polyethylene TKA is compared to a metal-backed TKA and it is stated that the
all-polyethylene one is cheaper and yields similar results to the metal one, with the disad-
vantage of requiring cement and having less flexibility. Finally, some studies concerning
the arthroplasty of the ankle can also be mentioned, such as that of Jyoti and Ghosh [22]
concerning the optimal resection length, which concluded that stress shielding and micromo-
tion increase with resection depth, and thus, that this should be kept to a minimum; and
the work of Jyoti et al. [23] concerning the interface of the implant, in which it is proposed
that both the friction coefficient between the implant and the bone, and the implant design,
along with the bone quality, heavily influence micromotion, while stress distribution is less
influenced by the friction coefficient and more by the design of the implant and the quality
of the bone.

The present computational approach aims at complementing experimental studies
and international standards such as ISO DIS 22926 [24] and ISO/CD 5092:2023 [25]. Fur-
thermore, this research employs meshless methods to achieve higher accuracy in obtaining
solutions, thereby enhancing the quality of computational studies on implant biomechanics.
Moreover, it incorporates a bone remodeling approach to assess if the implant could cause
considerable bone loss as a result of stress shielding.

2. Numerical Formulation
2.1. Meshless Methods Formulation

Generally, in meshless methods the process initiates with the discretizaton of the
problem’s physical domain with a nodal distribution. Although, as in other discretiza-
tion techniques, regular nodal distributions allow more accurate and stable results to be
achieved, in meshless methods nodes can be irregularly distributed over the problem
domain. Geometry features such as cracks and holes can have a higher nodal density to
anticipate the stress concentration that may occur. Usually, a very dense nodal distribution
will lead to more accurate results, with the consequence of presenting a much higher
computational cost [26].

Next, to integrate the integro-differential equations governing the physical phe-
nomenon under study, it is necessary to create a background integration mesh. Commonly,
background integration cells are created and then filled with integration points representing
volume portions. Most meshless methods requiring integration apply the Gauss–Legendre
integration scheme to the integration cells [26].

The previous stage is followed by the imposition of nodal connectivity through influ-
ence domains. Thus, each integration point searches for a certain number of nodes within
its vicinity (generally, following a radial search). The nodes within its vicinity form the
influence-domain of the integration point. The literature shows that the size of the influence
domain significantly affects the performance of the method.

Then, using the nodes forming the corresponding influence domain, the shape func-
tions (and their partial derivatives) of a given integration point are built, and matrix B,
from Equation (18), can be established.

Taking the example of the displacement field u, the displacement at an integration
point xI can be interpolated using the displacement values of the nodes within the influence
domain of xI ,

u(xI) =
nd

∑
i=1

φi(xI)u(xi) (1)
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where the number of nodes inside the influence domain of xI is represented as nd, the
displacement values of each node i belonging to the influence domain of xI is indicated as
u(xi), and φi(xI) is the value on node i of the shape functions of xI .

For each integration point xI , a local stiffness matrix is established, KI , Equation (22).
Then, all local stiffness matrices are assembled into a global stiffness matrix, allowing the
final discrete system of equations Ku = F to be obtained, which can be solved to obtain the
displacement field u = K−1F.

2.1.1. Influence Domains

The RPIM uses the concept of influence domains, which is shown schematically in
Figure 1. The influence domain consists of the set of nodes in the vicinity of the interest
point. The nodes within the spatial vicinity of integration point xI constitute the influence
domain of xI . Influence domains can all have the same number of nodes or instead present
different sizes and different numbers of nodes. Moreover, the shape of the influence domain
can be any. In Figure 1a, the influence domains present the same size (r1 = r2), which leads
to a different number of nodes in each influence domain, while in Figure 1b the number of
nodes inside each influence domain is the same due to their different sizes: (r1 ̸= r2).

x1

nd = 10

r1

x2
nd = 13

r2

(a)

x1

nd = 13

r1

x2
nd = 13

r2

(b)
Figure 1. Influence domains: (a) fixed size; (b) variable size.

2.1.2. Shape Functions

Consider the integration point xI ∈ R3 and its influence domain: XI = {x1, x2, . . . xn} ∈ R3,
with n being the total number of nodes within the influence domain of xI . The shape
function of xI is calculated using only the n nodes belonging to its influence domain. Thus,
the variable field u(xI) can be interpolated at xI using

u(xI) = r(xI)
Ta(xI) + p(xI)

Tb(xI) = {r(xI)
T p(xI)

T}
{

a(xI)
b(xI)

}
(2)

where a(xI) and b(xI) are non-constant coefficients of the radial basis function (RBF), r(xI),
and of the polynomial basis function (PBF), p(xI), respectively. Although the literature
describes several distinct RBFs [27], generally, radial point interpolation techniques apply
the multi-quadrics RBF (MQ-RBF) [28]:

ri(xI) = (d2
iI + (γdc)

2)p (3)

The parameter dc is the size coefficient, directly correlated with the numerical weight
wI of the integration point xI , and the parameter diI is the Euclidean distance between the
integration point xI and the node xi inside the influence domain of xI . The parameters p
and γ are shape parameters and, according to [27], these should present values so that γda
is almost null and p is almost unity, which maximizes the method’s performance.
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The PBF possesses m terms (the monomials), which can be established using Pascal’s triangle.

p(xI) = {p1(xI) p2(xI) · · · pm(xI)}T (4)

In radial point interpolation formulations, the constant PBF p(x) = {1} or the linear
PBF p(x) = {1 x y z}T is generally used.

The number of unknowns in the system Ra(xI) + Pb(xI) = us is n + m. Therefore, to
build a system of equations it is necessary to include a new set of equations. The literature
shows that it is necessary to impose PTa(xI) = 0 to achieve a unique solution [27]. This
leads to the following system of equations:[

R P
PT 0

]{
a(xI)
b(xI)

}
= MT

{
a(xI)
b(xI)

}
=

{
us
0

}
⇒

{
a(xI)
b(xI)

}
= M−1

T

{
us
0

}
(5)

where R [n × n] is the radial moment matrix (Equation (6)), P [n × m] is the polynomial
moment matrix, (Equation (7)), and us is a vector with the field function nodal parameters
[n × 1].

R =


(d2

11 + (γdc)2)p (d2
12 + (γdc)2)p · · · (d2

1n + (γdc)2)p

(d2
21 + (γdc)2)p (d2

22 + (γdc)2)p · · · (d2
2n + (γdc)2)p

...
...

. . .
...

(d2
n1 + (γdc)2)p (d2

n2 + (γdc)2)p · · · (d2
nn + (γdc)2)p

 (6)

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

 (7)

By back-substitution in Equation (2), it is possible to obtain

uh = {r(xI)
T p(xI)

T}M−1
T

{
us
0

}
= {φ(xI)

T ψ(xI)
T}

{
us
0

}
(8)

In which ϕ(xI)
T represents the RPI shape function vector, and ψ(xI)

T is a neglectable
vector, a by-product of the additional set of equations: PTa(xI) = 0.

φ(xI) =
{

φ1(xI) φ2(xI) · · · φn(xI)
}

(9)

Finally, the RPI shape functions verify the Kronecker delta property, which allows for
the direct imposition of boundary conditions, as they pass through all the nodes in the
influence domain:

φi
(
xj
)
= δij

{
1 (i = j)
0 (i ̸= j)

(10)

as well as satisfying the partition of unity:

n

∑
i=1

φi(xi) = 1 (11)

2.2. Weak Form and Discrete System of Equations

Assuming well-known essential boundaries and the initial and final time conditions
(i.e., the compatibility conditions), the energy principle dictates that out of all possible
displacement configurations satisfying such compatibility conditions, the unique final solu-
tion is the one minimizing the Lagrangian functional. The minimization of the Lagrangian
functional for a solid with domain Ω and boundary Γ can be represented as

δ
∫ t2

t1

[
1
2

∫
Ω

ρu̇Tu̇dΩ − 1
2

∫
Ω

εTσdΩ +
∫

Ω
uTbdΩ +

∫
Γt

uTtdΓ
]
= 0 (12)
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where ρ is the solid-mass density, u̇ is the velocity, ε is the strain tensor, σ is the stress tensor,
u is the displacement vector, b are the body forces, and t are the traction forces applied to
the boundary Γ ∈ Ω. The first term of (12) refers to the kinetic energy and is, therefore,
discarded in static problems. The second term is referent to the strain energy and the last
two terms are referent to the work produced by the external forces. The variational operand
can be moved inside the integral and the second integral in (12) is rearranged. Thus, for
Equation (12) to be valid for the compatibility conditions, its integrand must be equal to
zero. Such an equality results in the Galerkin weak form.∫

Ω
δεTσdΩ =

∫
Ω

δuTbdΩ +
∫

Γt
δuTtdΓ (13)

where δε is the virtual strain tensor and δu is the virtual displacement.
The principle of virtual work states that if a solid body is in equilibrium, the virtual

work produced by the inner stresses and the body applied external forces are null when
the body experiments a virtual displacement.

The energy conservation principle states that if the work produced by the inner
stresses is equal to the work produced by the applied external forces, then the body is
in equilibrium. If the work produced by the applied external forces is calculated with a
virtual displacement field and the work produced by the inner stresses is calculated using
a virtual strain field resultant from the same virtual displacement field, then the principle
of virtual work is obtained. Thus, knowing that stresses and strains are related through the
generalized Hooke’s law equation, Equation (14),

σ = Dε (14)

and strains are linearly related to displacements, Equation (15),

ε = Lu (15)

the weak form Equation (13) can be re-written in terms of displacement as follows:∫
Ω

δuTBTDBudΩ =
∫

Ω
δuTHbdΩ +

∫
Γ

δuTHtdΓ (16)

Inverting the material compliance matrix C, it is possible to obtain the constitutive
material matrix D = C−1. Assuming the Voigt notation, the material compliance matrix C
can be presented as

C =



c1 c3 c3 0 0 0
c3 c1 c3 0 0 0
c3 c3 c1 0 0 0
0 0 0 c2 0 0
0 0 0 0 c2 0
0 0 0 0 0 c2

 (17)

where c1 = 1/E and c3 = −ν/E, being that E and ν are the Young’s modulus and the
Poisson ratio of the material, respectively. In Equation (16), B is the deformation matrix:

B(xI) =
n

∑
i=1

Lφi(xI) =



∂ϕi
∂x 0 0
0 ∂ϕi

∂y 0

0 0 ∂ϕi
∂z

∂ϕi
∂y

∂ϕi
∂x 0

0 ∂ϕi
∂y

∂ϕi
∂z

∂ϕi
∂z 0 ∂ϕi

∂x


(18)

so that the strain and displacement relation is
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ε(xI) = B(xI)u (19)

for any integration point xI . H is a diagonal matrix containing the shape functions φ(xI).
The virtual displacement can be removed from (16),∫

Ω
BTDBdΩu =

∫
Ω

HbdΩ +
∫

Γ
HtdΓ (20)

obtaining the discrete system of equations. Equation (20) can be written in the matrix
form as

Keue = Fe (21)

where the elemental stiffness matrix Ke is

Ke =
∫

Ω
BTDBdΩ (22)

and the force vector Fe is given by

Fe =
∫

Ω
HbdΩ +

∫
Γ

HtdΓ (23)

Finally, the global system of equations is assembled from the element matrices so that
the displacement field can be solved.

2.3. Bone Tissue Remodeling Algorithm

Bone remodeling is a vital process for bone health and maintenance, allowing bones
to develop, repair, and renew throughout life. This process is complex and highly coor-
dinated, involving the removal and replacement of deteriorated bone tissue through the
activity of various cellular components. These components ensure mineral homeostasis
and structural integrity [29]. The cellular groups that sequentially carry out the process
of bone resorption and formation compose the bone remodeling unit, which has been
termed the basic multicellular unit (BMU) [30]. Initially, a BMU is formed by osteoclasts
responsible for bone resorption. Subsequently, the bone surface is covered by reversal
cells and prepared for bone replacement. In the next step, osteoblasts release and deposit
osteoid, the unmineralized bone matrix [29].

The bone remodeling cycle includes five sequential phases: activation, resorption,
reversal, formation, and termination [29].

Several studies [31–34] affirm the correlation between the mechanical properties of
bones and their apparent density. Additionally, various bone tissue models [35–38] in the
literature delineate the evolution of trabecular architecture based on mechanical stimuli,
employing diverse formulations and assumptions.

The apparent density of bone is given by

ρapp =
wsample

Vsample
(24)

where ρapp corresponds to the apparent density, wsample represents the wet mineralized
mass of a given sample, and Vsample represents the volume of the same sample. Alternatively,
it is also possible to represent this property as a function of its porosity p:

ρapp = ρ0(1 − p) (25)

where ρ0 corresponds to the density of compact bone, approximately 2.1 g/cm3, and
porosity p is calculated from Vholes/Vsample, where Vholes is the total volume of holes.

The apparent density holds significance in its connection to the mechanical attributes
of bone tissue, specifically the elasticity modulus and ultimate stress. Belinha [26] employed
polynomial laws to establish a relationship between the mechanical properties of bone
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tissue and apparent density, incorporating a transition density of 1.3 g/cm3 to differentiate
between trabecular and cortical bone.

Thus, in this work the following phenomenological law was considered [26]:

Ebone
cortical [MPa] = 68,357.14ρ3

app − 276,771.43ρ2
app + 386,136.43ρapp − 177,644.29 (26)

Ebone
trabecular[MPa] = 805.86ρ2

app + 721.61ρapp (27)

σbone
c [MPa] = 20.3508ρ3

app + 26.7984ρ2
app (28)

In Equations (26) to (28), Ebone
cortical corresponds to the elastic modulus of cortical bone,

Ebone
trabecular corresponds to the elastic modulus of trabecular bone, and σbone

c corresponds to
the ultimate compressive stress.

In the bone remodeling process, there is strong evidence of the correlation between the
loads (stress or strain) that the area is subject to, and the shape that the bone takes. This has led
to the requirement to develop some semi-empirical laws in order to model how the bone will
functionally adapt to the load case it is subject to. These laws are the basis for computational tools
which aim at predicting bone adaptation under stress or strain states or changes in stiffness [26].
The model employed in this study [39–43] assumes that, regardless of the material law applied,
the induced stress serves as an optimization tool. It aims to maximize structural integrity while
minimizing mass. This perspective is analogous to viewing induced stress as an optimization
tool, where the objective function is minimized, as discussed by Belinha [26].

Figure 2 summarizes the bone remodeling iterative algorithm.

for each load case i

Linear elastic analysis

Weighted critical
variable field

Point subject
to remodeling?

yes

Update density of point xi using
the material law

for all interest points

ρavg =
∑Q

i=1 ρ
app
i

Q

ρavg = control
ρ or ∆ρ

∆t

yes

no

Stop remodeling

it
er

at
io

n
=

it
er

at
io

n
+1

Figure 2. Flowchart for the bone remodeling algorithm.
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The bone remodeling nonlinear equation is presented as a differential Equation (29) in
which a temporal–spatial based functional, ρapp(x, t), is minimized with respect to time,
and where ρapp(x, t) : R(d+1) 7→ R is defined for the one temporal dimension and the d
spatial dimensions.

∂ρapp(x, t)
∂t

∼=
∆ρapp(x, t)

∆t
=

(
ρmodel

app

)
tj
−

(
ρmodel

app

)
tj+1

= 0 (29)

It is assumed that the d-dimensional domain is discretized in N nodes, X = {x1, x2, . . . xN}
∈ Ω, leading to Q integration points, where Q = {x1, x2, . . . xQ} ∈ Ω, being that xi ∈ Rd.
The temporal domain is discretized in iterative fictitious time steps tj ∈ R, where j ∈ N.
Within the same iterative time step tj, the average apparent density of the iteration point xI
is defined by ρI = g(σI):

ρmodel
app = Q−1

Q

∑
i=1

(
ρapp

)
I (30)

Then, g(σI) : R3 7→ R is defined as in (31).

g(σI) = max
(
{σ−1

1 (ρI) σ−1
2 (ρI) σ−1

3 (ρI)}
)

(31)

Here, σj are the principal stresses obtained for integration point xI and σ−1
j (ρI) are the

inverse functions of σj(ρI), defined with the material law.
The inverse equation of stress as a function of apparent density (28) is then applied

to the integration points with von Mises stress values inside the following interval, where
σVM

m = min(σVM) and σVM
M = max(σVM):

σVM(xI) ∈
[
σVM

m , σVM
m + α · ∆σVM

[
∪
]
σVM

M − β · ∆σVM, σVM
M

]
(32)

The parameters α and β define the growth rate and the decay rate of the apparent
density. The remodeling equilibrium is achieved when Equation (33) is verified, where α, β
and ρcontrol

app depend on the analyzed problem.

∆ρ

∆t
= 0 ∧

(
ρmodel

app

)
tj
= ρcontrol

app (33)

In summary, at each iteration the linear elastic analysis is run on the model. The
elastic properties of the bone material are obtained from the density at each point using
(26) and (27). With the obtained variable fields, the critical values for the variables are
determined. The points with higher values of stress will have their density increased and
the points with lower stress will have their density decreased, being that the new density
value is determined through (28).

3. Tibia and Implant Numerical Models

In this section, the construction of 3D models for the numerical applications analyzed
in this study is presented. Note that all the calculations were performed using an original
code developed by the authors using the Matlab© (Natick, MA, USA: The MathWorks Inc.)
environment. All the routines and images produced were programmed by the authors
without using any toolbox of Matlab©. Nevertheless, the 3D models were created in
Autodesk Fusion© (San Francisco, CA, USA: Autodesk) and the 3D discretizatons were
produced with ABAQUS© (Johnston, RI, USA: Dassault Systemes Simulia Corp).

The stress and displacement analysis of the proximal tibia was run in three-dimensional
models discretized into 4-node tetrahedral elements. The analysis of osteointegration to
the implant was run on a two-dimensional model in order to allow for a finer mesh and,
consequently, a finer trabecular arrangement. The two-dimensional model was discretized
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into 3-node plane-stress elements. Table 1 summarizes the number of nodes and elements
used for each model.

Table 1. Mesh information for each model.

Implant Length Element Type Nodes Elements

0 4-node tetrahedral 2083 9522
12 mm 4-node tetrahedral 5273 1171
30 mm 4-node tetrahedral 6908 1487
40 mm 3-node plane stress 1901 3630
40 mm 4-node tetrahedral 6299 1360

The knee joint is subjected to loads that vary significantly with the activity the indi-
vidual performs. The loads applied in the model took into account another study, which
analyzed the gait of an individual, where it was concluded that the average peak force was
1645 N [18]. According to the literature, the axial force is considered the primary point
of evaluation of the model’s response, since it was previously determined as an indicator
of injury risk. Thus, it was found that the axial load was 987 N and 658 N for the medial
and lateral platforms of the tibia, respectively, since the load ratio between the medial
and lateral platforms is 60%:40% [18,44]. It is important to note that the applied loads do
not take into account the forces of the ligaments, muscles, and tendons. The tibia is kept
in balance by the surrounding tissues and other bones of the lower limbs. The difficulty
in representing this system in a finite element model leads to simplifications in terms of
boundary conditions. Therefore, the nodes located at the most distal part of the model
were fixed, effectively constraining any rigid-body movement.

Figure 3a shows the boundary conditions applied to the three-dimensional model
without the implant. Equivalent boundary conditions were applied to the implant model
as well. The loads labeled as F1 and F2 were distributed among the nodes in the vicinity
of the positions indicated in Figure 3a, with moduli of 658 N and 987 N, respectively. For
the remodeling analysis, the same two forces were considered. However, in order to more
accurately emulate the shear loading which occurs during locomotion, these two loads
were applied considering a 10º angle, as shown in Figure 3b.

(a) (b)

Figure 3. Schematic representation of the essential and natural boundary conditions applied to (a) the
three-dimensional model and (b) the two-dimensional implant model.
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Concerning the models featuring an implant, these were developed by converting
the mesh model into a spline model, enabling the precise modeling of the implant’s shape.
When the implant comprised three components, as depicted in Figure 4a, the model was
transformed into a spline model as illustrated in Figure 4b. This simplification resulted in a
unified structure with distinct material properties assigned to the bone and implant areas,
as visible in Figure 4c.

Figure 4. Implant model. (a) 1—tibial plate, 2—cement, 3—tibia; (b) simplified assembled model;
(c) simplified model representation showing the implant and surrounding bone.

Healthy cortical bone has an elastic modulus of 17 GPa; however, in this study, this
property was varied (Table 2) in order to check the impact of this change on the distribution
of the effective von Mises stress, as well as on the displacement field. The implant was
considered to be Ti-6Al-4V.

The initial implant model shown in Figure 4a was modeled based on the the commer-
cial implant by DePuy Synthes®.

Table 2. Mechanical properties of the implant material and cortical bone.

Young’s Modulus [GPa] Poisson’s Ratio

Implant—Ti-6Al-4V 110 0.34
Low-stiffness bone 5 0.33

Healthy cortical bone 17 0.33
High-stiffness bone 25 0.33

4. Results and Discussion
4.1. Structural Analysis of the Proximal Tibia

The Von Mises stress does not depend on the Young’s modulus of the material but it
will differ between numerical methods. Thus, Figure 5 shows a set of points to evaluate the
von Mises stress and the respective results.

The displacements, however, will depend on the mechanical properties. Figure 6
shows the displacement field results for the three conditions and both methods. Because
the results for both methods are very similar, only one of them is shown.

Additionally, the displacement was analyzed at two points in the proximal part of the
tibia, labeled in Figure 5a as point A and B. For the three materials and both methods, the
displacement values are shown in Table 3.
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Figure 5. Von Mises stress results: (a) selected points in the model (A and B are two representative
points of load application and, therefore, are used to evaluate the displacement and points 1 to 9 are
the points selected to evaluate stress since each point is further from the fixed ending); (b) von Mises
stress at each point calculated with the FEM and the RPIM.

Figure 6. Displacement field for each material, where the maximum displacements |u|max are 0.050,
0.016, and 0.010 for model 1, model 2, and model 3, respectively.

Table 3. Displacement at two points calculated with the FEM and RPIM for all tested materials.

Method Young’s
Modulus

Point ux [mm] uy [mm] uz [mm] |u| [mm]

FEM

5 GPa A −0.0281 −0.0158 −0.0451 0.0555
B −0.0241 −0.0193 −0.0035 0.031

17 GPa A −0.0082 −0.0046 −0.0132 0.0163
B −0.007 −0.0056 −0.001 0.0091

25 GPa A −0.0056 −0.0031 −0.009 0.0111
B −0.0048 −0.0038 −0.0007 0.0062

RPIM

5 GPa A −0.0286 −0.0161 −0.0471 0.0575
B −0.0246 −0.0203 −0.004 0.0322

17 GPa A −0.0084 −0.0047 −0.0138 0.0169
B −0.0072 −0.0059 −0.0011 0.0094

25 GPa A −0.0057 −0.0032 −0.0094 0.0115
B −0.0049 −0.004 −0.0008 0.0064
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4.2. Structural Analysis of the Implant and Influence of Implant Length

The Von Mises stress fields for all the implant lengths considering healthy bone only
are shown in Figure 7.

Concerning the stress analysis of the model without the implant, the FEM analysis
concluded that the highest stress value occurs for point 2 while the RPIM analysis concluded
that the highest stress value occurs for point 3. This phenomenon is due to the fact that the
stress field is a field that has been extrapolated to the nodes, which means that the stress
value is being smoothed at the nodes. By increasing the number of nodes in the mesh, this
effect starts to diminish, and the maximum stress begins to approach the base of the fixture.

The maximum stress values verified after the insertion of the implant, between 5.0568
and 5.9497 MPa for the FEM and between 4.4690 and 6.1584 for the RPIM, are similar to
the values verified at the unimplanted model of 5.0705 MPa for the FEM and 4.7880 MPa
for the RPIM model, which indicate that stress shielding would not occur. The maximum
stress values occur at similar locations for the implanted and unimplanted models.

Figure 7. Von Mises stress field at the nodes for the tested implants.
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Stress is an important measure to evaluate the occurrence of stress shielding (SS) as it
indicates whether adequate loading is being applied to the bone. It can be quantified as the
stress change before and after implant insertion [45] (34):

SS =
σbone − σimplanted−bone

σbone
(34)

where σbone and σimplantedbone denote the Von Mises stress of the bone without and with
the implant, respectively. Considering the maximum Von Mises stress verified at all stem
lengths, the occurrence of SS can be discarded since the stress value increases after insertion.

The displacement fields for all implant lengths are shown in Figure 8.

Figure 8. Displacement field at the nodes for the tested implants.

The maximum displacement, which occurs at the medial side, is similar with and
without the implant. The unimplanted model, taking into consideration the healthy bone,
is 0.016 mm, while for the FEM this value ranges between 0.0142 and 0.0151 mm and
0.0156 and 0.0171 mm for the RPIM. It should be noted that the mesh model for the tibia
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varies with each implant length, which could account for some of the discrepancies ob-
served between the two methods as the essential and natural boundary conditions were not
being applied to the exact same nodal coordinates. Thus, excluding the RPIM analysis of the
30 mm length implant, the stress verified at the tibia would increase with implant length.

The greater the stiffness of the implant, the less load will be transferred to the bone
from the deformation suffered by the stem [45]. The evaluation of displacements suffered
by the implant is, therefore, an important measure of stress shielding. Since it was verified
that the implant displacements are in the range of the displacements of the intact bone,
similar stiffness values were achieved.

The measured displacements with the RPIM are higher than the FEM while the stress
values are lower. It is expected that the results obtained through RPIM will be closer to the
actual results, after conducting a convergence study (which helps to ensure that the results
are more accurate), or if a denser mesh is generated, as was the case in the study developed
by Marques et al. [46].

In conclusion, the tested stem sizes for an implant in the selected material are not likely
to induce stress shielding. Nevertheless, this study does not consider bone heterogeneities,
which alter the mechanical properties and consequently the structural response.

4.3. Bone Remodeling Analysis

Regarding the osteointegration evaluation, two analyses were considered. First, the
medial and lateral forces were considered as two separate forces acting at two different
moments, and for the second case, those forces acted simultaneously. Figure 9a shows the
apparent density maps for the two tested load combinations. Only a finite element analysis
was considered for this stage.

Concerning the bone remodeling analysis, there is no significant difference between the
imposition of the medial and lateral loads simultaneously or as different loads. Regarding
the trabecular arrangement, there are three major bone resorption areas, as indicated by
the numbers in Figure 9b. Additionally the main trabecula formed by the algorithm is
aligned with the load angle as expected, since the algorithm states that higher stress areas
are subject to having their density increased and lower stress areas are subject to having
their density decreased, leading to alignment of the density map with the stress map.

Figure 9. (a) Evaluation of osteointegration using the FEM along the iterations; (b) indication of the
main resorption (indicated by numbers 1 to 3) and growth areas after implant insertion.
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5. Conclusions

Utilizing computational approaches enhances the study of implant design and surgical
techniques alongside clinical and experimental research. In summary, longer stem lengths,
such as 40 mm, result in higher maximum stress in the proximal tibia but lead to lower
displacements compared to shorter lengths. However, the 30 mm model stood out as
an outlier in the maximum displacement due to the use of different models for testing
each length. Additionally, bone remodeling analysis confirmed the expected anatomical
structures, including areas of bone resorption and the diaphysis, through the observed
density distribution.
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