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Abstract: Internal combustion engines have been a major contributor to air pollution. Replacing these
engines with electric propulsion systems presents significant challenges due to different countries’
needs and limitations. An active, purely mechanical solution to the problem of irregular torque
production in an alternative internal combustion engine is proposed. This solution uses an actuator
built on a camshaft and a spring, which stores and returns energy during the engine operating
cycle, allowing torque production to be normalized, avoiding heavy flywheels. Designed for control
throughout the engine’s duty cycle, this system incorporates a cam profile and a spring mechanism.
The spring captures energy during the expansion stroke, which is then released to the engine during
the intake and compression strokes. Simple, lightweight, and efficient, this system ensures smoother
and more consistent engine operations. It presents a viable alternative to the heavy and problematic
dual-mass flywheels that were introduced in the 1980s and are still in use. This innovative approach
could significantly enhance the performance and reliability of alternative internal combustion engines
without notable energy losses.

Keywords: internal combustion engine; driving torque; resistive torque; mass inertia torque; torque
fluctuations; energy storage mechanism; camshaft; spring

1. Introduction
1.1. Background

The internal combustion engine (ICE) exhibits inherent characteristics of torque fluc-
tuations throughout its operational cycle. These fluctuations are a consequence of the
engine’s mechanism, where the energy from fuel is converted into mechanical energy by
discrete combustion events. Each combustion stroke generates a distinct torque impulse,
contributing to an uneven torque output over the engine cycle. This phenomenon impacts
the smoothness of engine operation and has broader implications for engine efficiency and
longevity [1–5].

Historically, the engine industry has continually evolved to address these torque
inconsistencies, driven by the pursuit of enhanced engine performance, smoothness, and
efficiency. The traditional approach to mitigating torque variations has largely centered on
passive mechanical solutions, such as the utilization of conventional flywheels and dual
mass flywheels (DMF) [6]. However, while effective in smoothing out rotational speeds,
the flywheel adds to the engine’s mass and is incapable of adjusting itself to the engine
operation variations. On the other hand, the mechanism proposed in this study seeks
to offer a relatively lightweight solution that harmonizes the produced torque without
affecting the engine’s capability for acceleration or deceleration. This initiative is part of
a broader research endeavor aimed at studying and developing a mechanism capable of
functioning across all engine speed ranges and under various loads. Currently, the focus is
on enhancing performance during idle and low-speed operations, where the demand for
such systems is most critical [2,7].
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Recent advancements employing mechanical, electromechanical, and control strategies
have significantly improved torque harmonization and reduced engine vibrations and
rotational speed variations. This serves as a clear indication of both the opportunity and the
need for further advancements in this domain, emphasizing the shift away from traditional,
bulkier, and less efficient solutions towards more accurate and responsive technologies.
Moreover, this transition facilitates the integration of engines into hybrid vehicles, range
extenders, and microcogeneration systems [8–13].

This study builds upon approaches introduced by Lin et al. [14] and Arake-
lian et al. [15]. Although the first study focuses on reducing torque variations in the
camshaft and the second emphasizes inertia effects in slider-crank mechanisms, both stud-
ies commonly utilize a cam to control the mitigating mechanism and a spring to act as
energy storage. Another approach, conducted by Cardoso and Fael [16], has demonstrated
the feasibility of using switched reluctance machines to replace traditional flywheels, offer-
ing a method to correct engine output torque and speed variations, albeit at the cost of a
complex system. Despite these advancements, a gap remains in seamlessly integrating these
technologies into existing engine designs without complex control systems or significant
modifications to the engine architecture. This research aims to fill this gap by developing
a mechanically focused solution that maintains engine performance, particularly at low
rotational speeds.

1.2. Problem Statement

A series of multifaceted challenges underscore the quest to enhance torque manage-
ment in internal combustion engines. At the core of these challenges lies the inherent
nature of alternative ICE operations, where the intermittent combustion process leads to
nonuniform torque output. This irregularity manifests as torque ripple or fluctuations,
which not only compromises the smoothness and responsiveness of the engine but also
adversely affects overall efficiency and increases vibrations and noise [17,18].

One of the primary issues in contemporary torque management is the limitation of
traditional mechanical solutions. While these methods, such as the utilization of flywheels,
have been fundamental in maintaining engine operation at low speeds, they fall short of
addressing the demands of modern engines. The added mass and inertia of traditional
solutions often impede the engine’s dynamic response, failing to align with the growing
emphasis on lightweight and compact engine designs. Moreover, these approaches do
not actively adapt to varying operational conditions, thus limiting their effectiveness in
dynamic and diverse operation scenarios [19–21].

Another critical aspect is the evolution of engine technology itself, with advancements
in engine design, including the trend towards more compact, lightweight engine designs,
different cylinder arrangements, unusual cylinder number engines (this can lead to extreme
torque production irregularities), cylinder deactivation technologies, and the advent of
hybrid and electric vehicles, highlighting the need for systems that offer greater precision
and adaptability [22–27].

1.3. Objectives

Study of Torque Decomposition in a Slider Crank Engine: The objective pretends to
study the decomposition of output torque in an alternative engine design. This involves
analyzing how different torque types (such as driving torque, resistive torque, and mass
inertia torque) contribute to the overall output torque in this kind of engine.

Development of a Camshaft: The main objective of this research is to design and
develop a camshaft, which is the main component of the actuator implemented to smooth
the torque output. The key challenge is in creating a cam profile that can precisely mimic
the torque output profile and can act on the spring, compressing it to store mechanical
energy during the expansion stroke and subsequently receiving energy from the spring to
return it to the engine during strokes when the engine is not producing positive work.
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Development of an Integrated Camshaft-Actuator System: With this objective, an inte-
grated system controlled by the developed cam is intended to be designed and developed.
In this process, some considerations must be taken, with some of the most important parts
to study and develop being the spring stiffness and preload. The spring needs to be studied
to store as much energy as possible without interfering with the engine’s natural movement
and performance.

Evaluation and Demonstration of System Adaptability and Performance: Lastly, the
evaluation of the performance of the developed system during idle operation is aimed at.

1.4. Study Contributions

The major contributions of this work are divided between the development of a
mechanical mechanism and advancements in the field of internal combustion engines. The
specific contributions of this study are outlined as follows:

Advanced Torque Decomposition Analysis: A comprehensive analysis of torque de-
composition in alternative engines is provided. This approach enhances understanding
of how different types of torque—driving, resistive, and mass inertia—interact and con-
tribute to overall engine performance. This insight is useful for future work, for example,
focusing on studying engine torque output smoothness and examining how geometric and
construction parameters influence torque production.

Camshaft Development Methodology: This work includes the design and develop-
ment of a camshaft that accurately replicates the engine’s torque output profile. The design
process encounters challenges due to the irregularities of the engine’s torque output and
the numerous parameters influencing the cam’s profile. This paper presents a methodology
for cam development.

Development of a Torque Mitigating Mechanism: This study introduces the develop-
ment of a fully mechanical torque mitigating mechanism. The mechanism is designed to
absorb excess energy from the engine system during periods of high output and strategi-
cally release it during phases where additional energy is required. This cyclic absorption
and redistribution are tailored to operate seamlessly across different periods of time and
varying operational conditions.

Integration of a Camshaft-Actuator with a single-cylinder engine: Beyond individual
components, this study focuses on integrating the developed mechanism, which includes a
camshaft for control and a spring for energy storage, with a single-cylinder engine. This
integration aims to enhance torque smoothness and ensure that speed variations during
the engine cycle remain closely aligned with the engine’s average rotational speed.

2. Engine Torque Analysis

In considering the output torque at the crankshaft of ICEs, as illustrated in Figure 1,
torque fluctuation arises mainly from three sources. Firstly, the driving torque generated
mostly during the expansion stroke in ICEs leads to irregular driving actuation. This
fluctuation is consistent across different crankshaft speeds, depending solely on crankshaft
angle (φ) and pressure force (Fpressure). Secondly, fluctuation occurs due to the inertia
force from the acceleration (α) of the imbalanced mass. This type of fluctuation is more
pronounced at higher speeds as it is proportional to the square of the engine’s angular
speed (ω). Lastly, fluctuating resistive loads, such as those in engine valve systems, impart
irregular torque to the camshaft, independent of engine angular speed and related to
crankshaft angle [14], [28,29].

To mitigate these fluctuations, passive and active techniques have been employed.
Flywheels, as referred to previously, for example, can store and release kinetic energy
to smooth out speed fluctuations but are less effective at low speeds due to their large
inertia. This affects the engine performance and its capacity to change the rotational speed
when solicited and the use of this represents an expressive mass increment. Torsional
vibration dampers offer a solution across various speeds, but this involves dissipation of
energy. Active control techniques, in contrast, counteract torque fluctuations by providing
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an opposing force, but at the cost of complex control techniques or input of external
energy [30,31].
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Figure 1. Representation of how the three types of torque mentioned above act on the crankshaft.

For a clearer understanding of the torque production cycle in internal combustion en-
gines, the analysis is often conducted using a single-cylinder engine model. This approach
effectively isolates three types of torque fluctuations, which are more difficult to discern in
multicylinder engines due to the overlapping of multiple-stroke events.

These events significantly contribute to torque fluctuations and can be categorized into
two groups: those that generate positive torque and those that produce negative torque.
Only the expansion that represents a quarter (on Otto) of the strokes and is part of the first
group is directly useful for the engine’s primary purpose. However, the magnitude of this
useful stroke at engine full load is about fifteen times greater than the average of the other
three strokes. However, despite their negative torque, strokes such as intake, compression,
and exhaust are essential for the engine’s cycle.

The torque generated by an engine is a composite of the three types of torque pre-
viously described, as outlined in Equation (1). The capability of alternative engines to
generate torque stems from the slider−crank mechanism, depicted in Figure 2. Through
dynamic analysis of this mechanism, both the inertia torque and driving torque of the
engine can be accurately determined.

Tt = Td + Ti − Tr (1)

Tt—total engine torque [Nm]
Td—driving torque [Nm]
Ti—mass inertia torque [Nm]
Tr—resistive torque [Nm]
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Figure 2. Slider−crank mechanism from a single-cylinder engine.

2.1. Driving Torque

ICEs are volumetric machines designed to convert the chemical energy in fuel into
mechanical energy, which is then transferred to the crankshaft. They utilize a slider−crank
mechanism to convert pressure variations from fuel combustion in the combustion chamber
into mechanical movement. This is due to the design of the alternative engine that only
allows the gases in the cylinder to expand in the piston direction.

The force resulting from these pressure variations can be expressed as the product
of the cylinder’s internal pressure by the piston area, as shown in Equation (2). This
equation clearly illustrates the generation of driving force in ICEs due to pressure variation,
calculated from Equation (3), determined using the first law of thermodynamics.

For a comparative analysis, Figure 3 demonstrates how the values of pressure exerted
in the piston can act in the piston when the engine is running at idle, i.e., when the engine
only produces the torque needed to keep it running and when the presence of the flywheel
is most necessary to store energy from the expansion stroke for the rest of the strokes. In
contrast, Figure 4, derived from an analysis based on Figure 2, culminating in Equation (4),
depicts the generation of driving torque throughout a 720◦ crankshaft rotation in an Otto
engine under identical operational conditions to those shown in Figure 3 [32].

Fpressure = (p cyl − patm)
π B2

2
(2)

pcyl =
2
(
δQ f − δQ − δQvap

)
+ pcylprev

(
γ+1
γ−1 Vcylprev − Vcyl

)
γ+1
γ−1 Vcyl − Vcylprev

(3)

Fpressure—pressure f orce acting on the piston [N]
B—bore [m]
pcyl—cylinder pressure [Pa]
patm—atmos f eric pressure [Pa]
δQ f —energy released by the f uel [J]
δQ—nenergy trans f erred in the f orm o f heat [J]
δQvap—aenergy released by the vaporization o f the f uel inside the cylinder [J]
pcylprev—pressure in the cylinder at the previous iteration [Pa]
γ—expansion coe f f icient
Vcylprev—volume in the cylinder at the previous iteration

[
m3]
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Vcyl—volume in the cylinder at the current iteration
[
m3]
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Td = Fpressuresinφ(1 +
rcrank
lrod

cos φ)− Tr + Ti (4)

Td—driving engine torque [Nm]
rcrank—crank radius [m]
lrod—connecting rod length [m]
φ—cranksha f t rotation angle [rad]

2.2. Mass Inertia Torque

Mass inertia torque, hereinafter referred to as inertia torque, arises from the moving
parts, particularly during changes in their speed. In the context of an ICE, this involves
components like the crankshaft, connecting rods, pistons, and other moving parts. The in-
ertia of these components plays a significant role in the engine’s responsiveness, vibrations,
and overall performance. Inertia torque is influenced by several factors, including the mass
and distribution of the engine’s moving parts and the speed. The faster the components
rotate, the more significant the inertia torque becomes, as it takes more force to change the
speed of these rapidly moving parts. This phenomenon is especially noticeable during
rapid acceleration or deceleration, where the inertia torque can have a substantial impact
on engine performance. The inertia forces can be broken down into components along
the piston’s movement line (x-axis), which induce forces on the crankshaft and thereby
contribute to its torque, presented in Equation (5), and forces acting perpendicularly to the
former (y-axis), which do not directly affect the torque generated by the engine, presented
in Equation (6). The mass responsible for inducing inertia forces includes the mass of the
piston group and the connecting rod. For simplification purposes, this mass is divided
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between two distinct points: point a, located on the crankshaft pin (as shown in Figure 2),
where, according to literature, we can consider as comprising 2/3 of the connecting rod
mass, and point b, located on the piston pin, where the piston group mass and 1/3 of the
connecting rod mass are assumed, as outlined in Equations (7) and (8) [33].

Fx
inertia = (ma + mb)rcrankω

2cos φ +

(
mb

rcrank
lrod

)
rcrankω

2cos 2φ (5)

Fy
inertia = marcrankω

2sin φ (6)

ma =
2
3

mcr (7)

mb =
1
3

mcr + mpg (8)

Fx
inertia—inertia f orces on x − axis [N]

ma—mass considered at point a, cranksha f t pin [kg]
mb—mass considered at point b, piston pin [kg]
ω—angular speed [rad/s]
Fy

inertia—inertia f orces on y − axis [N]
mpg—mass o f piston group [kg]
mcr—mass o f connecting rod [kg]

To calculate the torque induced by inertia forces on the crankshaft, as detailed in
Equation (9), consideration is given only to the masses previously divided and located at
point b. This approach is based on the premise that the crankshaft is properly balanced,
factoring in the masses on the crankshaft pin and the equivalent connecting rod mass at the
point a, ensuring that the rotational balance point of this mass aligns with the crankshaft’s
center of rotation.

Ti =
mb
2

rcrank
2ω2(

rcrank
2lrod

sin φ − sin 2φ − 3rcrank
2lrod

sin3φ) (9)

Ti—mass inertia torque [Nm]

Figure 5 represents the forces that lead to the torque profile obtained in Figure 6. For
clarity, green vertical lines indicate the top dead center and blue vertical lines denote the
bottom dead center. Figure 6 illustrates the magnitude of the inertia torque produced by
the movement of the internal components in a single-cylinder slider crank engine model at
800 RPM without charge, representing idling operation.
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Figure 6. Instantaneous inertia torque on the crankshaft from internal components in a single-cylinder
slider−crank engine.

2.3. Resistive Torque

The resistive torque comes essentially from camshafts, oil pumps, or other engine
auxiliary elements. This torque type is primarily due to resistive forces that the engine
components must overcome during operation. For the purposes of this work, only the
resistive torque from camshafts will be considered. In the context of camshafts, this type
of torque fluctuates based on the engine cycle, particularly in the valve operation phase,
where the opening and closing of valves require varying levels of force. In the camshaft
context, the resistive torque is a consequence of the need to compress (negative torque) and
then release (resulting in positive torque) the valve springs. The magnitude of this torque
fluctuation can vary significantly based on the springs’ stiffness and the valve mechanism’s
design. At lower to medium speeds, the resistive torque fluctuation tends to be more
substantial than the inertia torque fluctuation. To quantitatively analyze resistive torque
in ICEs, one must consider the spring stiffness, the preload force, the rocker mechanism,
and the displacement of valves (see Figures 7 and 8). The spring force from the valve
mechanism can be expressed by Equation (10) [34].

F = kδ + P (10)

k—spring sti f f ness [N/m]
δ—valve displacement [m]
P—preload o f the spring [N]
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raFc + rb(−Fn) = 0 (11)
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ra—distance f rom the push rod to the rocker centre [m]
rb—distance f rom the valve center to the rocker centre [m]
Fn— f orce f rom the rocker on the valve [N]
Fc— f orce f rom the cam on the rocker [N]

→
T c +

→
r c ×

(
−

→
F c

)
= 0 (12)

→
T c—torque on the camsha f t [Nm]
→
r c—vector f rom the center o f the cam to the contact point with the f ollower [m]
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Figure 8. Resistive torque from intake and exhaust valve mechanism.

3. Design of the Torque Correction Mechanism
3.1. Design Concept

To enhance the output torque’s smoothness, a specifically engineered mechanism is
proposed to create a counteracting torque. This design pretends to minimize fluctuations
in the engine’s output torque. Key components of this system include a spring for energy
storage and a cam tailored to align with the engine’s output torque characteristics. A CAD
model of this mechanism is shown in Figure 9. The mechanism is structured to generate a
counteracting torque at any rotation angle θ, matching the output torque in magnitude but
opposite in direction.
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Figure 9. CAD model from the mechanism, with the cam designed to mimic the profile torque desire,
the roller follower, and the spring responsible for storing the energy.

To achieve the desired mechanism response, the specially designed cam must replicate
the engine’s opposing torque. It can be installed on the camshaft or with a 2:1 transmis-
sion ratio, similar to the engine’s distribution system, which may increase friction and
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consequently, resistive torque, leading to a more complex system. This is due to the torque
contributing events being dispersed over the 720◦ crankshaft rotation in a 4-stroke cycle.
The direct integration of this mechanism into the crankshaft would simplify implementa-
tion but is impractical for addressing resistive and driving torque irregularities, though
it would be effective for inertia torque, as shown in Figure 6 with its 360◦ periodicity.
Figures 10–12 illustrate a potential implementation in a single-cylinder engine using the ex-
isting distribution system and camshaft to simplify the system and minimize friction. This
implementation assumes available space on the camshaft for the cam and that the camshaft
shaft and transmission ratio can support the counteracting torque with these premises
being valid for a demonstrative implementation in this specific engine construction.
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Figure 12. Perspective views—right side—of the CAD model from the (a) mechanism integrated on
the single-cylinder engine, in image (b), the camshaft gear was removed to show the positioning of
the balancing cam.

3.2. Determination of the Balancing Cam Profile

The cam’s profile is essential for controlling the actuator in response to the engine’s
needs. This cam was developed by considering the torque acting upon it, which is then
transformed and stored in the spring. To design the cam profile, it is required to determine
the cam radius in the function of the crankshaft rotation angle φ, for a previously defined
torque profile. Figure 13 is a diagram of the forces acting on the cam [14,33,34].
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Figure 13. Diagram of the mechanism used to deduce the equations that allow the balancing cam to
be obtained that mimics the desired torque profile.

The torque on the mechanism camshaft Tcam as the product of the tangential force Ft
by cam radius:

Tcam = Ftrcami (13)

Tcam—torque on mechanism camsha f t [Nm]
rcami —cam radius [m]
Ft—tangential f orce [N]

From Figure 13 Ft is the product from the Fs by the tanθ as presented in Equation (14),
and Ft can be directly substituted into Equation (13), which gives the torque as a function of
Fs as presented in Equation (15), Fs depends on the spring conditions and the displacement
induced by the cam on the spring, as shown by Equation (16).

Ft = Fstanθ (14)

Fs—spring f orce [N]
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Tcam = Fstanθ rcam (15)

Fs = k(rcam − rinitial) + P (16)

rinitial—cam initial radius [m]

Based on the defined torque for the cam Tcam , tanθ can be determined using
Equation (17). Then, following Equation (18), which arises from the analysis of the
diagram in Figure 13, the radius of the cam can be calculated as a function of the
crankshaft angle.

tanθ =
Tcam

rcami (k(rcami − rinitial) + P)
(17)

rcami = rcami−1 +

(
∆φ

2

)(
rcami−1 tanθ

)
(18)

To convert the previously obtained polar coordinates into cartesian coordinates for
better visualization and plotting of the cam, Equations (19) and (20) are used.

x = rcamcos
( φ

2

)
(19)

y = rcamsin
( φ

2

)
(20)

Finally, when integrating a roller follower, including the roller’s radius in the cam
profile calculation is necessary. This is done using Equations (21) and (22), ensuring
the cam profile meets all specified conditions for the roller follower. This crucial step
guarantees that the cam design is effectively customized for the specific follower type in
the engine mechanism.

xr = x − rrollercos(
( φ

2

)
− θ) (21)

yr = y − rrollersin
(( φ

2

)
− θ

)
(22)

rroller—roller radius [m]

4. Modelling of Torque Correction Mechanism
4.1. Engine Modelling and Simulation

The development of the engine simulation, performed using MATLAB® R2024a (Math-
Works, Natick, MA, USA), is based on a modeling approach that analyzes the engine’s
instantaneous torque for each degree of crankshaft rotation. It was specifically constructed
to dissect engine torque into three distinct components.

The simulation inputs geometric parameters to model the slider−crank mechanism,
iterating through one-degree increments of crankshaft rotation. It spans 720 degrees of
rotation to simulate, among other things, torque values and speed variations at each degree,
covering a full cycle of the 4-stroke engine under study.

As shown in Section 2 through various graphs, this modeling framework successfully
segments engine torque into three main components: the inertia torque driven by mass
acceleration, as specified in Equation (9); torque due to pressure differences within the
engine cylinder, detailed in Equation (3); and the resistive torque produced by the valve
mechanism, outlined in Equation (12).

The engine parameters are outlined in Table 1. The simulation framework is organized
around valve timing, divided into four segments that correspond to each stroke of the Otto
cycle, thereby covering all necessary conditions to derive operational parameters at each
crankshaft angle, as will be analyzed in Section 4.3.
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Table 1. Engine parameters used to perform the simulation used to present the idle torque profile.

Slider−Crank Valve Train

r = 0.022 m k = 588, 000 N/m
l = 0.073 m P = 47 N
B = 0.06 m ra = 0.022 m

mpg = 0.144 kg rb = 0.022 m
mcr = 0.123 kg IVO = 0◦

ω = 83.8 rad/s
IVC = 220◦

EVO = 470◦

EVC = 720◦

This simulation incorporates elements that yield instantaneous torque curves closely
resembling those obtained through experimental means. Figure 14 showcases the results
from prior experimental work conducted to validate the curves derived from the imple-
mented methodology [3].
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Figure 14. Experimental output torque from the single-cylinder engine at idle, 800 RPM.

4.2. Balancing Cam Mechanism Modelling

For the torque correction mechanism’s development, a torque profile established from
the process described earlier is used. The mechanism and cam, crafted based on equations
detailed in Section 3.2, aim to correct the torque profile illustrated in Figure 15, which
represents an engine idle at 800 RPM. In defining the cam profile, in addition to the torque
profile, the input parameters are the spring’s stiffness k, spring preload P, initial cam
radius rinitial, and if the mechanism uses a roller follower like the one shown in the CAD
representations of the mechanism rroller; These parameters are outlined in Table 2.
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Figure 15. Output torque from single-cylinder engine during idle at 800 RPM, used to design the
cam profile.
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Table 2. Balancing mechanism parameters.

Cam Spring

rinitial = 0.05 m k = 100, 000 N/m
rroller = 0.08 m P = 100 N

Based on the torque profile outlined, the cam shown in Figure 15 was developed
through an iterative process involving the parameters in Table 2 and the torque profile in
Figure 15, which shows two cam profiles, one for a follower with and one without a roller.
The desired cam profile aimed to maintain a radius not exceeding 50 mm for integration
purposes in the specified engine. In Figure 16, the cam analysis shows three distinct zones.
Section 1, in the first quadrant, shows the beginning of a cam profile depression, signifying
energy release from the spring to the crankshaft, countering the resistive torque during
valve opening, and the driving torque of the air-fuel mixture intake. Section 2 highlights a
marked decrease in cam radius, associated with compensating the compression process of
the air−fuel mixture, with a sharp radius increase towards the end of compression and the
start of the expansion. This radius increase continues during the third quadrant, storing
energy in the spring from the expansion to utilize during the other strokes. Section 3,
located in the fourth quadrant, mirrors the analysis of Section 1, about the exhaust process.
Additionally, in Figure 16, a perfect circumference is depicted by a red dotted line, allowing
for a comparison between the cam profile variations and a perfect circle profile.
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Building upon the previously described cam and maintaining the parameters used for
its design, the torque returned by the mechanism to the engine is illustrated in Figure 17.
Figure 18 shows the torque delivered from the mechanism into the crankshaft.
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Figure 17. Esquematization of the determined CAM profile, considering the torque profile
presented previously.
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Figure 18. Torque delivered from the mechanism into the crankshaft.

4.3. Balancing Cam Mechanism Integration with the Engine

The integration of the balancing cam mechanism with the engine simulation, as es-
tablished in Sections 4.1 and 4.2, is detailed in the processes outlined in Figure 19, the
flowchart representing the simulation steps. The simulation begins by setting the engine’s
geometric parameters, initial conditions, and the cam profile for the balancing cam mecha-
nism. The flowchart in Figure 19 tracks the engine cycle through each crank angle φ from 0
to 720 degrees, covering one complete cycle of a four-stroke engine. This encompasses
all phases of engine operation: intake, compression, combustion, expansion, and exhaust.
During each phase, the simulation calculates various parameters, such as temperatures
and pressures within each stroke. These values are crucial for determining the torque and
angular speed in each phase. The torque and angular speed calculated by the simulation
are then refined by the balancing cam mechanism. This mechanism uses a predefined
cam profile and spring parameters to compute the output torque from the mechanism and
adjust the engine’s simulated torque based on the established initial conditions.
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The corrections made to the engine torque and angular speed by this integration
represent the outputs the simulation aims to achieve. The simulation cycle is documented
until the crank angle φ reaches 720 degrees, marking the end of one full engine cycle.
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4.4. Simulation Results

The simulations were performed to analyze and determine the distinct characteris-
tics of driving torque, resistive torque, and inertia torque within an internal combustion
engine. These types of torque, which have been previously discussed individually, are
now collectively examined in Figure 20. This Figure illustrates the engine’s output torque
profile under the simultaneous influence of driving, resistive, and inertia torque. This
comprehensive analysis is crucial as it reveals how the combined effects of these different
torques impact the overall performance of the engine. Particularly noteworthy in this
idle scenario is that the three types, the torque resulting from the valve mechanism, the
inertia of the engine’s internal components, and driving torque during intake and exhaust,
contribute to the same magnitude for the final engine torque. The variations in engine
torque in these conditions are observed during the moments when the piston reaches its
extreme positions—the bottom dead center and the top dead center. At these junctures, the
piston experiences significant accelerations and decelerations, which in turn influence the
directional reversal of its motion. Other variations outcomes from the operation of opening
and closing the intake valve approximability from 0 to 180◦ and the exhaust valve from
540 to 720◦, the most pronounced fluctuations from to 180 540◦ come from the compression
and expansion process.

Designs 2024, 8, x FOR PEER REVIEW 17 of 21 

4.4. Simulation Results 
The simulations were performed to analyze and determine the distinct characteristics 

of driving torque, resistive torque, and inertia torque within an internal combustion en-
gine. These types of torque, which have been previously discussed individually, are now 
collectively examined in Figure 20. This Figure illustrates the engine’s output torque pro-
file under the simultaneous influence of driving, resistive, and inertia torque. This com-
prehensive analysis is crucial as it reveals how the combined effects of these different tor-
ques impact the overall performance of the engine. Particularly noteworthy in this idle 
scenario is that the three types, the torque resulting from the valve mechanism, the inertia 
of the engine’s internal components, and driving torque during intake and exhaust, con-
tribute to the same magnitude for the final engine torque. The variations in engine torque 
in these conditions are observed during the moments when the piston reaches its extreme 
positions—the boĴom dead center and the top dead center. At these junctures, the piston 
experiences significant accelerations and decelerations, which in turn influence the direc-
tional reversal of its motion. Other variations outcomes from the operation of opening and 
closing the intake valve approximability from 0 to 180° and the exhaust valve from 540 to 
720°, the most pronounced fluctuations from to 180 540° come from the compression and 
expansion process. 

In Figure 20, it is possible to observe the overlay of two torque profiles—one from the 
engine and the other from the mechanism. The computational results assume a loss-free 
system, indicating that the torque resulting from the system implementation is a con-
sistent profile. This supports the thesis presented, validating the effectiveness of the im-
plemented system in maintaining a stable torque during idle operation. 

Figure 20. Profile of the engine output torque with the mechanism in red and without the mecha-
nism in black. 

Torque variations result in corresponding changes in engine speed, which are more 
noticeable in idle regimes due to the lack of load masking these variations. Figure 21 
demonstrates the engine speed variations over a cycle, consistent with the previously an-
alyzed torque variations. As the mechanism suppresses torque fluctuations, it directly im-
pacts reducing speed variations, consequently decreasing vibrations and noise.  

-10

0

10

20

30

40

50

0 90 180 270 360 450 540 630 720

En
gi

ne
 In

st
an

ta
ne

ou
s  

To
rq

ue
 

[N
.m

]

Cranck Angle [°]

Engine Torque Corrected Torque

Figure 20. Profile of the engine output torque with the mechanism in red and without the mechanism
in black.

In Figure 20, it is possible to observe the overlay of two torque profiles—one from the
engine and the other from the mechanism. The computational results assume a loss-free
system, indicating that the torque resulting from the system implementation is a consistent
profile. This supports the thesis presented, validating the effectiveness of the implemented
system in maintaining a stable torque during idle operation.

Torque variations result in corresponding changes in engine speed, which are more
noticeable in idle regimes due to the lack of load masking these variations. Figure 21
demonstrates the engine speed variations over a cycle, consistent with the previously
analyzed torque variations. As the mechanism suppresses torque fluctuations, it directly
impacts reducing speed variations, consequently decreasing vibrations and noise.
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4.5. Limitations and Future Work

The need for an energy storage system in ICEs, such as the traditionally used flywheel
or the system presented in this work, is more pronounced during low-speed operations
or idling. The system developed and designed in this research is specifically tailored to
function when the engine is idling. However, as the load imposed on the engine or its rota-
tional speed increases, the influence of this mechanism is lower. To address this limitation,
ongoing research efforts are focused on designing a system that can adapt the mechanism
to the engine by varying the spring preload based on the engine load and rotation. This
adaptation aims to make the system more influential in smoothing the engine’s output
torque. The development of this system faces several challenges. One significant challenge
is that as the engine’s rotation speed or load increases, variations primarily occur in the
driving torque and inertia torque; consequently, increasing the spring’s preload to accom-
modate these changes can inadvertently amplify the resistive torque correction component
from the mechanism, which does not vary under the conditions. This increase in resistive
torque, due to the higher preload of the spring, may introduce irregularities in the engine’s
output torque. Future work will focus on overcoming these challenges by refining the
developed cam and the mechanism to balance the varying torque components effectively.

5. Conclusions

This paper introduced a balancing mechanism designed to smooth the output torque
of the engine. The torque model proposed for the engine revealed that output torque
fluctuations result from a combination of multiple factors, each contributing differently
to the final torque produced by the engine. By employing a balancing mechanism with a
specifically designed cam profile, the engine operation can be smoothed during idle periods
without relying on traditional and heavy flywheels.

The simulations conducted in Section 4 allowed us to study the influence of various
factors on engine torque and their actual impact on engine torque. Variations in torque
production reflect speed changes throughout the engine cycle, which are responsible for
generating vibrations. By developing a system capable of addressing these vibrations,
engine operation cannot only be stabilized but also reduce engine mass and the need for
energy absorbing dampers.

Although this system does not significantly influence high-speed engine operation,
it does not introduce irregularities in the engine’s normal functioning. It proves to be an
effective solution for correcting engine operation during idling and opens opportunities for
developing a system capable of adapting to different engine operating regimes.

Evaluating the performance of our novel mechanism alongside traditional systems
like heavy flywheels, we observed notable differences. While flywheels serve well in
specific conditions, they do not offer the necessary adaptability and tend to increase the
overall weight of the engine system, and inclusively change the engine behavior. On the
other hand, our mechanism has the potential to adjust dynamically to meet operational
demands and efficiently smooth torque fluctuations with much less impact on engine
weight and behavior.

The preliminary results obtained align with those presented in similar studies, albeit
for different purposes, such as those by Lin et al. [14] and Arakelian et al. [15], which
employ the use of cam-based mechanisms for torque correction. These findings reinforce
the validity of our approach and highlight the versatility of cam mechanisms in various
engineering applications beyond their traditional uses. By leveraging cam-based designs,
we can achieve a consistent correction of torque fluctuations, which is critical for enhancing
the operational stability and efficiency of internal combustion engines; this convergence of
results across different studies underscores the potential of our proposed mechanism.

This study introduces a unique mechanism for torque harmonization that meets the
current and emerging needs of modern engines, emphasizing efficiency and adaptability.
Such advancements are instrumental in the development of new technologies, includ-
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ing range extenders, microcogeneration systems, and innovative engine configurations,
representing a substantial progression in engine technology.

6. Patents

This and subsequent works resulted in a patent application submitted to the Por-
tuguese Institute of Industrial Property (INPI) under application number 119346, with
the title “Método Implementado por Computador para a Conceção de um Atuador de
Equilíbrio para um Motor, Atuador de Equilíbrio, Programa de Computador e Meio de
Leitura Associados”.
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