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Abstract: Obesity is increasingly becoming a prevalent health concern among adolescents, leading
to significant risks like cardiometabolic diseases (CMDs). The early discovery and diagnosis of
CMD is essential for better outcomes. This study aims to build a reliable artificial intelligence
model that can predict CMD using various machine learning techniques. Support vector machines
(SVMs), K-Nearest neighbor (KNN), Logistic Regression (LR), Random Forest (RF), and Gradient
Boosting are five robust classifiers that are compared in this study. A novel “risk level” feature,
derived through fuzzy logic applied to the Conicity Index, as a novel feature, which was previously
unused, is introduced to enhance the interpretability and discriminatory properties of the proposed
models. As the Conicity Index scores indicate CMD risk, two separate models are developed to
address each gender individually. The performance of the proposed models is assessed using two
datasets obtained from 295 records of undergraduate students in Saudi Arabia. The dataset comprises
121 male and 174 female students with diverse risk levels. Notably, Logistic Regression emerges as
the top performer among males, achieving an accuracy score of 91%, while Gradient Boosting lags
with a score of 72%. Among females, both Support Vector Machine and Logistic Regression lead with
an accuracy score of 87%, while Random Forest performs least optimally with a score of 80%.

Keywords: cardiometabolic disease; machine learning; CMD risk prediction

1. Introduction

Obesity denotes a pathological state distinguished by the excessive accrual of adipose
tissue in the body, which is attributed to inequity between energy consumption and ex-
penditure [1]. The World Health Organization (WHO) defines overweight and obesity as
the accumulation of an abnormal or excessive buildup of fat, which has the potential to
adversely impact health. Several studies have indicated that the accumulation of body fat
is associated with elevated morbidity and mortality in connection with cardiometabolic
diseases (CMDs). This association elevates the likelihood of developing various conditions,
including hypertension, stroke, and diabetes. Cardiometabolic disease refers to a group of
health conditions, including heart failure, heart attack, stroke, and various disorders that
affect the heart and blood vessels. CMDs present a considerable public health challenge
due to their pervasive prevalence. Numerous scoring systems are available for predicting
the probability of CMD development. Employing anthropometric indices for measurement
emerges as the most effective and appropriate approach to differentiate between individu-
als at low and high risk, highlighting the necessity for intensive control. Anthropometric
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measurements are pivotal tools for evaluating the propensity of adolescents to develop
overweight or obesity.

The body mass index (BMI) is a widely recognized metric employed to assess over-
weight and obesity. The BMI is calculated by dividing the body weight by the square of
body height. If the BMI value falls between 25 and 29.9, it categorizes the individual as
overweight, and a BMI exceeding 30 indicates obesity [1].

Another method for evaluating central obesity involves utilizing the Conicity Index
(C index). This approach is based on the concept that the amassed abdominal fat gives rise
to a silhouette resembling a double cone [2].

Adolescents are facing a significant health risk due to the increasing prevalence of
overweight and obesity. This is mainly due to their rapid growth and the accompanying
health problems, including CMDs [2]. According to the WHO report, the prevalence of
obesity has approximately tripled since 1975. The data show that 39% of individuals aged
18 and above are characterized as being overweight, with 13% classified as being obese.
The report also emphasizes that, in 2016, 41 million children under the age of 5 were
either classified as being obese or overweight, and the number rose to over 340 million
for individuals aged 5 to 19. Notably, there has been a significant rise in the obesity rate
for children and young people aged 5–19, climbing from 4% in 1975 to nearly 18% in 2016.
Obesity has experienced a concerning rise in Saudi Arabia in recent years, emerging as a
significant risk factor for various non-communicable diseases in the country.

A prior study conducted among students (aged 19–25 years) at the Faculty of Medicine,
Northern Border University, Saudi Arabia revealed that 10.6% were underweight, 58.3%
fell within the average weight range, and 31.1% were classified as being overweight or
obese [1].

The current study aims to build an artificial intelligence model for forecasting the like-
lihood of developing a cardiometabolic disease among university students in Saudi Arabia.

2. Literature Review

Many studies in the literature have utilized machine learning techniques for forecasting
the risk of obesity/overweight and the associated health conditions.

In a prior work, based on the number of easily accessible exposome factors, the
researchers presented a novel, fair machine learning approach for predicting the risk of
cardiovascular diseases (CVDs) and type 2 diabetes (T2DM) [3]. They assessed their model
using multi-center cohorts from internal and external validation groups. They found
5348 and 1534 individuals from the UK Biobank who, within 13 years of their initial visit,
had been given the diagnosis of T2DM and CVD, respectively. As the control group, a
comparable number of individuals who did not experience these medical conditions were
randomly chosen. From the individual’s baseline visit, 109 simple-to-access exposure
variables from six distinct groupings (physical measurements, environmental, lifestyle,
mental wellness events, sociodemographics, and early-life characteristics) were considered.
To predict those who were likely to contract the diseases, they used the XGBoost ensemble
model. The model was contrasted with a machine learning model that considered many
elements, such as biological, clinical, physical, and sociodemographic elements, and the
Framingham risk score for CVD. Additionally, they examined the suggested model for any
sex, racial, and age-related biases. Finally, they used SHAP, a cutting-edge explain-ability
method, to analyze the model’s outcomes. Despite only utilizing exposome data, the
proposed ML model has comparable results to the integrative ML model, obtaining ROC-
AUC values of 0.78 ± 0.01 and 0.77 ± 0.01 for CVD and T2DM, respectively. Furthermore,
the exposome-based approach outperforms the conventional Framingham risk score in
predicting CVD risk. Additionally, they discovered exposome characteristics such as
daytime naps, prior cigarette use, frequency of fatigue/lack of excitement, and other factors
that are crucial in identifying individuals who are at risk of developing CVD and T2DM.

Along the same line, a study used the retinal scans of 3000 residents of Qatar to build
deep learning models. The researchers examined certain factors, like age, sex, blood pres-
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sure, smoking habits, blood sugar levels, lipid levels, sex hormones, and body composition
measurements, to predict the risks related to CMDs by analyzing pictures of the back of the
eye [4]. They also investigated how age and sex influence the accuracy of predicting these
health risks using eye pictures. They used deep learning models based on the MobileNet-V2
architecture to combine information from images of both eyes’ optic discs and maculae
and make individual-level predictions. They could accurately predict age and sex with a
small error in age prediction (2.78 years) and high accuracy in sex prediction (area under
the curve: 0.97). On the other hand, the predictions of systolic blood pressure, diastolic
blood pressure, hemoglobin A1c, relative fat mass, and testosterone had acceptable levels of
accuracy (errors: 8.96mmHg, 6.84mmHg, 0.61%, 5.68 units, and 3.76 nmol/L, respectively).
The researchers concluded that age and sex can be accurately predicted from an eye picture
and that certain data related to blood pressure, hemoglobin A1c, and body fat composition
can be identified in the retina.

Electronic healthcare record (EHR) data of children up to the age of two years were
used to create seven machine learning models to predict pediatric obesity (2 to 7 years).
The Children’s Hospital of Philadelphia provided EHR information for 860,510 patients
with 11,194,579 clinical visits. After applying strict quality control measures to remove
unrealistic growth values and including only participants who had all recommended health
checkups by the age of seven years, 27,203 individuals (50.78% male) were chosen for
model development. The goal was to predict obesity based on the Centers for Disease
Control and Prevention’s definition, which considers a BMI greater than the 95th percentile,
adjusted for age and sex, as obese [5]. The performance of the seven machine learning
models was evaluated using various metrics commonly used for classifiers. The Cochran’s
Q test and post hoc pairwise testing were used to compare the performance of the different
models. The XGBoost model achieved the highest area under the curve (AUC) score of 0.81
(0.001), outperforming all of the other models. It also statistically outperformed all other
models in terms of precision (30.90%), F1-score (44.60%), accuracy (66.14%), and specificity
(63.27%) when the sensitivity was set at 80%.

In a study conducted between 2017 and 2018, 284 male university students from Saudi
Arabia’s Eastern Province examined the relationship between cardiometabolic (CM) risk
factors and blood pressure. The objective was to investigate this relationship among young
Saudi males in a university setting [6]. Various measurements were taken, including the
waist-to-hip ratio, blood pressure, body mass index, body adiposity index, waist-to-height
ratio, body fat percentage, waist circumference, and basal metabolic rate. The United States
of America Sixth Joint National Committee guidelines were used to classify blood pressure.
The results indicated that blood pressure was significantly correlated with CM risk factors
among young Saudi males. The prevalence of prehypertension was 31.3%, and that of
hypertension was 16.2%. Furthermore, the study found that 28.5% of participants were
classified as being overweight, and 14.1% were classified as being obese. Additionally,
the study highlighted the strong association between a sedentary lifestyle, obesity, and
cardiovascular morbidity and mortality. Unfortunately, young students tend not to consider
the future risk of cardiovascular diseases associated with a sedentary lifestyle.

Waleed et al. (2021) conducted a study to assess the occurrence of adiposity and
evaluate the risk of CMD among university students in the Eastern Province of Saudi Arabia.
A total of 310 students (127 males and 183 females) were examined using standardized
instruments to measure various adiposity indicators, including Mass of Body Fat (MBF),
body fat percentage (BFP), BMI, visceral fat area (VFA), waist circumference (WC), waist-to-
hip ratio (WHR), Fat Mass Index (FMI), and A Body Shape Index (ABSI). Indicators of CMD
risk, such as the Conicity Index (C index), WC, and WHR, were also calculated. The results
showed that most students were either classified as being overweight or obese, with males
having higher levels of adiposity compared to females. Additionally, male students had
significantly higher percentages of CMD risk indicators than females. Positive correlations
were observed between the C index quartiles and BMI with other CMD risk indicators [2].
These findings highlight the need for the early prediction and prevention of adiposity-
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related health issues and for policymakers to raise awareness about healthy eating habits
and the link between physical inactivity and chronic diseases among university students.

Furthermore, a previous study was conducted to accurately identify different subtypes
of heart failure (HF), which could help with personalized treatment approaches. Although
machine learning has been utilized in previous research to investigate the subtypes of
HF, such approaches have been limited in their application to small datasets and have
not comprehensively addressed the diverse causes and presentations of HF. Furthermore,
validation through multiple machine learning methods and large, independent, population-
based datasets has yet to be conducted. To address these limitations, researchers have used
published libraries to identify and validate the HF subtypes. The researcher used four
unsupervised machine learning algorithms (clustering algorithms), and they compared
the results. The algorithms are K-means, hierarchical clustering, K-adenoids, and mixture
modeling algorithms [7]. However, the study did not focus on how the machine learning
algorithms are implemented but on the subtypes of heart failure itself and on discovering
any hidden relations among other diseases, including cardiometabolic diseases, besides
clinical diagnostics and laboratory tests. The researchers could identify five subtypes of
heart failure with high accuracy for distinguishing between them both within and across
datasets. These subtypes were also found to have good predictive accuracy for mortality
within one year.

The research article by O’Sullivan et al. (2020) included pediatric studies on the
relationships between whole-fat and reduced-fat dairy consumption and adiposity mea-
surements, as well as indicators of the risk of cardiometabolic illness. Most of the research,
which was primarily observational, revealed in the review that whole-fat dairy products
were not linked to higher levels of weight gain or adiposity. Also, there is insufficient
evidence supporting switching from whole-fat to reduced-fat dairy for better results for
specific risk factors. However, whole-fat dairy intake was typically not linked to an elevated
cardiometabolic risk. The analysis drew attention to the absence of randomized controlled
studies comparing the health effects of whole-fat dairy to reduced-fat dairy in children,
which would have produced more trustworthy data. The authors contend that obtaining
improved quality data in this area requires high-quality randomized controlled studies
among kids. Also, the authors emphasize the necessity to consider the type of dairy product
ingested, any production or processing processes, and any potential impact change due to a
person’s sex, stage of puberty, or level of body fat. Lastly, the authors stress the significance
of evidence-based dietary recommendations for a child’s dairy fat consumption to address
the rising public health issue of childhood obesity and lower the risk of developing chronic
illnesses [8].

Arisaka O. et al. (2020) published a study aiming to assess the latest research on the
association between rapid early growth and the subsequent risks of developing obesity
and conditions in the future. The research specifically draws attention to the varied degrees
of relevance associated with fast weight increase in the early childhood and infantile
stages. They assess infantile obesity, adiposity rebound, catch-up growth (CUG), sexual
dimorphism, the early prediction of future cardiometabolic risk, and the evaluation of rapid
weight gain and adiposity rebound, noting that both early and late rapid weight increase
throughout infancy and the early years of childhood may portend a future risk of obesity.
An infant’s weight often drops in the first 7 to 14 days after birth and then rapidly increases
in the next six months. The relevance of early infancy was noted as a potential predictor of
future obesity, particularly for people who were born underweight and experienced rapid
catch-up growth. Also, the rapid weight growth in toddlers throughout the first three years
is strongly linked to cardiometabolic risk [9].

Tsai T. et al. (2020) conducted a cross-sectional study aimed at clustering cardiometabolic
risk factors and sedentary behavior using a factor analysis. The study involved 210 adults
aged 20–65 years who were recruited from a community in South Korea. The researchers
collected data on the subjects’ anthropometric and biochemical measurements, sedentary
behavior, and physical activity. A factor analysis was used to identify the patterns of



Big Data Cogn. Comput. 2024, 8, 31 5 of 28

cardiometabolic risk factors and sedentary behavior. The study found that sedentary
behavior and cardiometabolic risk factors were positively correlated and that the cluster-
ing of these factors could be used to discover individuals who are at risk of developing
cardiometabolic diseases. The study highlights the importance of reducing sedentary
behavior and addressing multiple cardiometabolic risk factors to prevent cardiometabolic
diseases [10].

Berkowitz S. et al. (2019) [11] investigated the association between access to social
service resources and CMD risk factors using machine learning and multilevel modeling
analysis. 11,638 people from the American NHANES were included in the study. To
categorize individuals according to their access to resources for social services including
health insurance, housing help, and food assistance, the researchers employed machine
learning algorithms. The potential relationship between the availability of social service
resources and the prevalence of risk factors for cardiometabolic disorders, such as but
not limited to obesity, diabetes, and hypertension, was then examined using multilevel
modeling analysis. The research discovered a link between social service resources and a
reduced risk of obesity, diabetes, and high blood pressure. The researchers propose that
increasing access to social service resources might be a successful method for lowering
cardiometabolic risk variables in the populace.

Machine learning methods and a healthy diet score were used by Shang X. et al. (2020)
to examine the primary dietary determinants influencing changes in cardiometabolic risk
factors in children. 1550 youngsters between the ages of 5 and 12 participated in the study.
The researchers used machine learning to determine the main factors in our diet that affect
our risk of heart and metabolic problems over time. They also developed a score based
on healthy eating guidelines to see how diet quality affects these risk factors. The study
found that things like processed foods and sugary drinks greatly impact children’s risk
factors. The healthy diet score was also a good predictor of changes in these risk factors.
The researchers believe that if we help kids eat better can make a difference in reducing
their risk of heart and metabolic problems and improving their long-term health. This
study shows that machine learning and a healthy diet score can help us identify the most
important dietary factors that contribute to these health issues in children, which is crucial
for preventing heart and metabolic diseases [12].

Taghiyev A. et al. (2020) conducted a study that used machine learning techniques
to identify the causes of obesity. They developed a hybrid model in two separate stages:
the first stage includes feature selection, while the second stage includes classification.
They also compared the hybrid model with other classifiers, such as Decision Trees and
Logistic Regression. The hybrid model designed by the researchers gives a more accurate
classification of obese people as well as a valuable technique for measuring obesity-related
characteristics. They achieved 91.4% accuracy, 90.4% recall, and 92.9% specificity, which
turned out to be better than DT and LR [13].

Chatterjee Ayan. et al. (2020) published a paper about “Identification of Risk Factors
Associated with Obesity and Overweight”, in addition to an overview of the same topic.
The used dataset contains 500 records with four parameters: gender, height, weight, and
index. The index attribute includes five numbers, each indicating a different obesity
level. In the preprocessing phase, they added a new feature, “BMI” to the dataset. Due
to the high correlation, this feature was removed later in the model training. Moreover,
they developed five classifiers, Support Vector Machine, Naïve Bayes, Decision Tree, and
K-Nearest Neighbor. The result shows the Support Vector Machine (SVM) provided the
most optimal classification, with 95% accuracy [14].

Ferdowsy F. et al. (2021) worked on a machine learning model that predicts obesity
risk. The dataset used in this approach contains 1000 records that include both obesity and
non-obesity people of different ages. They used different classification algorithms such as
K-Nearest Neighbor (KNN), Logistic Regression, multilayer perceptron (MLP), SVM, Naïve
Bayes (NB), Adaptive Boosting (ADA Boosting), Decision Tree, and Gradient Boosting.
Moreover, they used the performance metrics to measure the performance of each classifier
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individually. The Logistic Regression classifier shows the best accuracy among all the other
classifiers, with 97.09%, while the Gradient Boosting classifier achieves the lowest accuracy,
64.08% [15].

Avery big study analyzed Magnetic resonance imaging (MRI) imaging data of
40,032 participants from the UK Biobank. The researchers used previously collected data
on three types of adipose tissue volume from up to 9041 participants to train convolu-
tional neural networks (CNNs) to calculate deviations in the adipose tissue depots of the
participants. These deviations were calculated independently of BMI and were used to
uncover relationships with cardiometabolic diseases. The study found that CNNs using
two-dimensional projected images were highly accurate in predicting the adipose tissue
volumes. However, there was significant heterogeneity in the associations between local
adiposity measures and cardiometabolic diseases. Therefore, it is found that using deep
learning models with MRI data could provide highly accurate results on adipose tissue
volumes and that local adiposity measures have varying associations with cardiometabolic
diseases at different BMIs [16].

Machine learning techniques have been used to predict obesity by analyzing publicly
available health data. In this regard, various classifiers, including LR, CART, and NB,
utilized the Synthetic Minority Oversampling Technique to account for data imbalance and
predict overweight status based on risk factors. The dataset included BMI as one of its main
features, and the researchers applied some preprocessing techniques, such as eliminating
missing values, before utilizing it. Their findings indicated that Logistic Regression was
the most effective classifier for predicting obesity with the highest performance [17]. On
the other hand, a systematic literature review of 93 papers was conducted to determine
the machine learning models suitable for detecting obesity. The review found that obesity
is closely linked to co-morbidities like CVD and chronic conditions, underscoring the
significance of using machine learning techniques for early detection. The researchers
noted that the most commonly used approach in the literature for detecting obesity is
Artificial Neural Networks (ANN) [18].

Kerkadi A. et al. (2020) conducted a study aimed to analyze several techniques
for measuring adiposity to identify persons from Qatar who were at risk of developing
CMDs. Five hundred fifty-eight healthy Qatari adults between the ages of 20 and 50
were randomly chosen from survey data from the Qatar Biobank. The researchers also
collected anthropometric information, such as height, along with information obtained from
dual-energy X-ray absorptiometry (DXA) and CMD risk markers. Researchers employed
three measurements to evaluate the accuracy of adiposity signs as predictors of CMD
risk factors: a Receiver Operating Characteristics (ROC) curve, an area under the curve
(AUC), and a Spearman partial correlation coefficient. The study discovered that DXA-
derived adiposity indicators were superior to conventional anthropometric indicators
as predictors of CMD risk. Particularly, CMD risk variables, including blood pressure,
fasting glucose, triglyceride, HDL cholesterol, and HbA1c levels, were strongly correlated
with DXA-derived markers like visceral adipose tissue, trunk fat, android fat, gynoid fat,
and total body fat mass. These findings have important implications for public health
interventions in Qatar. More than 70% of adults are overweight or obese. Identifying
individuals at higher risk of developing CMDs using more accurate adiposity assessment
methods like DXA scans rather than relying on traditional anthropometric measures alone
can help healthcare providers develop targeted interventions to prevent or manage these
diseases [19].

Research by Ashraf S. et al. (2021) sought to create an anthropometric prediction
equation for visceral adiposity in people with spinal cord damage (SCI). The study high-
lights the important physical and SCI-related elements that affect how visceral adipose
tissue (VAT) is distributed in people with SCI. The review looks at the variables that affect
visceral adiposity in people with SCI and suggests that WC can work as a stand-in marker
for central obesity, CMD, and associated illnesses. The study suggests that WC can be a
valuable tool for healthcare providers to identify those at risk of developing central obesity
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and associated health complications. Prior research relied on expensive imaging. Various
imaging methods, such as computed tomography (CT), MRI, DXA, and ultrasound scan-
ning, were utilized in the techniques employed in the study. Due to their high price and
restricted availability, these procedures are not usually practicable or feasible for frequent
clinical usage. The study shows that WC can be a helpful tool for healthcare providers
to identify those at risk of developing central obesity and related health complications,
even though there is currently no SCI-specific WC or AC cut-off value to predict VAT and
diagnose people at risk of central obesity, CMS, and cardiovascular disease after SCI [20].

Research was conducted in 2022 to evaluate the potential association between adult
persons’ body MRI-based measurements of adipose tissue distribution and brain ages.
The study used cross-sectional and longitudinal methodologies to investigate the relation-
ships between follow-up adipose measurements and brain age gap (BAG) measurements.
A subgroup of 286 people, aged between 19 and 86, who made up the study’s total of
790 participants, supplied cross-sectional body MRI data. The estimation of tissue-specific
brain aging at two time periods and research into the relationships between adipose mea-
surements and BAG were carried out using Bayesian multilevel modeling. The study
also examined the cross-sectional relationships among tissue-specific BAG, comprehen-
sive measurements of adipose tissue (body composition), and traditional anthropometric
measurements (BMI and WHR) that were applied in a previous investigation. The study’s
findings suggest that there is a relationship between adipose tissue distribution measure-
ments and brain aging. However, the study’s follow-up sample size was somewhat small,
which reduced the study’s statistical power. This must be taken into consideration. The
body MRI data were only collected at the follow-up examination, which further reduced
the statistical power of the inquiry. The subsequent loss of statistical power is demonstrated
by the posterior distributions for the breadth of the body MRI, which exhibit higher levels
of uncertainty than the BMI and WHR, both of which were available longitudinal measures
with larger sample sizes. In conclusion, this research sheds important light on the potential
relationship between adult individuals’ body MRI-determined adipose tissue distributions
and brain ages [21].

To improve prediction accuracy, a new study was conducted to evaluate the drawbacks
of the current risk prediction models (RPMs) for CVDs and suggested using alternative
machine learning-based RPMs. The research involved testing and comparing multiple
machine learning models to the traditional logistic regression analysis (LRA) model using
a dataset of 460 participants in Pakistan. In addition to identifying a significantly diverse
order of features, the results demonstrate that ML-based RPMs, such as artificial neural
networks and linear Support Vector Machines, beat LRA in terms of prediction accuracy
and discriminating capacities. The study concluded that nonlaboratory characteristics can
be good substitutes for low-cost RPMs in low–middle-income nations and that tailored
and localized RPMs should be favored for the exact assessment of CVD risk. However,
for a significant increase in performance matrices, bigger and more complex datasets are
required. The study’s findings generally imply that ML-based RPMs can enhance the
functionality of current models and uncover hidden feature behavior [22].

Another study by Guarneros-Nolasco LR. et al. (2021) explored the application of
machine learning algorithms to the detection and prognosis of CVDs. The study com-
pared ten distinct machine learning algorithms’ performance using two datasets for CVD
diagnosis and two for CVD prediction. Using the train–test split approach and k-fold
cross-validation, the study concentrated on the top two and top four attributes/features
of the datasets regarding five performance measures, including accuracy, precision, recall,
F1-score, and roc-auc. The findings demonstrate that MLAs function appropriately in terms
of classification and prediction, particularly when it comes to the top two features, which
indicate three key risk factors, such as arrhythmia and tachycardia, and that they may be
utilized to enhance existing CVD diagnostic efforts. The findings of the study reveal that
age, heart rate, and blood pressure are the most significant factors, while weight, cholesterol
levels, smoking status, serum creatinine levels, ejection fraction, type of chest discomfort,
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number of affected arteries, platelet count, and obesity are ranked as secondary and tertiary
factors in terms of their associations with the outcome of interest. According to the study,
the risk variables can be employed for follow-up in the early detection of CVDs, such as
arrhythmia or tachycardia, and for prompt and effective treatment when required. The
report suggests that other medical databases should be used to replicate the study and that
mobile applications for heart disease monitoring should be created utilizing the discovered
risk variables [23].

Machine learning has been applied to predict the risk of heart disease using classifiers.
The Cleveland Heart dataset was utilized for training ten distinct ML classifiers from vari-
ous categories, and three attribute assessors were used to choose the most essential features.
A 10-fold cross-validation testing option was used to assess the classifiers’ performance,
and the hyperparameter “k” was tweaked to increase precision. Using the chi-squared
attribute evaluator, the SMO classifier had the greatest prediction performance with an
accuracy of 86.468%. The maximum ROC area of 0.91 was given by the meta-classifier
bagging with Logistic Regression. The study concluded that proper attribute selection and
hyperparameter tweaking may greatly enhance machine learning classifier performance
when predicting the risk of heart disease. However, because of the tiny dataset and few
feature selection techniques and machine learning algorithms’, the researchers are aware of
the study’s limitations. As a result, they recommend further study that integrates several
datasets to enhance the classifier’s prediction performance [24].

We reviewed previous related work and summarized their key points in Table 1.
Based on the existing literature, there is a need to explore the risk of obesity and

overweight among adolescents in Saudi Arabia to achieve high accuracy.
None of the current studies have explored the use of the C index to predict the risk

factors for CMD that contribute to the probability of developing overweight and obesity.
Integrating the fuzzy logic approach is crucial for predicting the “risk level”, as it

possesses the ability to handle uncertainty in a manner closely resembling human reasoning.
This integration offers a natural way to express the risk level, thereby improving the
interpretability and applicability of the model in practical scenarios.

Therefore, in the current study, we aimed to build an artificial intelligence model
to predict the likelihood of CMD among university students in Saudi Arabia who are
overweight or obese based on various obesity indicators. The dataset used to train the
model will be sourced and will consist of information pertaining to participants who are
also enrolled as students at the university. The aim of the model was to identify the most
significant obesity indicators and CMD risk factors that contribute to the likelihood of
overweight and obesity and to develop a predictive model that could be used to screen
university students for these health conditions. The model could also be used to create
personalized intervention plans for university students in Saudi Arabia who have a high
risk of being overweight and obese to promote healthy lifestyles and physical activity.
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Table 1. Summary of literature review on utilizing machine learning approaches for cardiometabolic disease.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[18] Safaei, M. et al.
(2021)

Reviewing ML techniques
used for obesity

prediction; one study
conducted for early
childhood obesity

Random Forest, ID3,
Naïve Bayes, Random
Tree, J48, Bayes trained

A pediatric clinical
decision support

system called CHICA

Contributes to a
concerning topic

The accuracy score was
not that great

compared to that of
other papers reviewed

in the same paper

85% accuracy and 89%
sensitivity

[16] Agrawal, S. et al.
(2021)

Exploring the clinical
implications of how fat is
distributed in the body

CNNs
MRI imaging data of
40,032 UK Biobank

participants

Accuracy was near
perfect

Does not mention the
exact percentage of

accuracy

Near perfection (number not
mentioned)

[17] Thamrin, S.A. et al.
(2021)

Utilizing machine
learning methods to

predict obesity in adults

Logistic Regression,
Classification and
Regression Trees

(CARTs), and Naïve
Bayes

634,709 respondents;
was requested at the

Institute of Health
Research and

Development of the
Indonesian Ministry of

Health

Used a novel approach
with sophisticated ML
techniques instead of

using traditional
prediction models

N/A Accuracy of 0.798

[7] Banerjee, A. et al.
(2022)

Identifying subtypes of
heart failure with
machine learning

Unsupervised ML
methods (Kmeans,

hierarchical,
K-Medoids, and
mixture model

clustering)

320,863 Clinical
Practice Research

Datalink, CPRD, and
the Health

Improvement Network

Large dataset size

The accuracy score, F1
score, and precision

score were not
mentioned

Good predictive accuracy, as
authors claim

[10] Tsai, T.-Y. et al.
(2020)

Exploring the clustering
pattern of CVD risk

factors using exploratory
factor analysis to

investigate the underlying
relationships between

various CVD risk factors

N/A
5606 from Taipei
Veterans General

Hospital Institutional

Reducing sedentary
behavior and

addressing multiple
cardiometabolic risk

factors to prevent
cardiometabolic

diseases

N/A N/A
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Table 1. Cont.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[11] Berkowitz, S.A.
et al. (2019)

Determining association
between access to social

service resources and
cardiometabolic

risk factors

Random Forest with
multilevel modeling

method

123,355 participants
from the National

Health and Nutrition
Examination Survey

(NHANES) in the
United States

Used multilevel
modeling analysis to

examine the
association between

access to social service
resources and

cardiometabolic risk
factors, such as obesity,

diabetes, and high
blood pressure

Restricted access to
social service resources N/A

[12] Shang, X. et al.
(2020)

Urgently identifying
leading dietary

determinants for
cardiometabolic risk

(CMR) factors to
prioritize interventions in

children

Random Forest,
gradient boost

machine, and multiple
linear regression model

5676 children aged
6–13 years

Used multiple linear
regression model

Machine learning
methodology was not
very precise or clear

N/A

[13] Taghiyev, A. et al.
(2020)

Using a machine learning
model to identify the

causes of obesity

Hybrid model, DT, and
LR

56 attributes and
500 instances

Compared the hybrid
model with other

classification models,
such as DT and LR

N/A
Hybrid model achieved

91.4% accuracy, 90.4% recall,
and 92.9% specificity

[15] Ferdowsy, F. et al.
(2021)

Using a machine learning
model to predict obesity

risks

KNN, LR, MLP, SVM,
NB, ADA Boosting, DT,
and Gradient Boosting

1000 records High accuracy
Small dataset

compared to other
papers

LR achieved 97.09%
accuracy

[14] Chatterjee, A. et al.
(2020)

Using a machine learning
approach to identify
obesity risk factors in

addition to presenting an
overview

SVM, NB, DT, RF, and
KNN 500 records High accuracy

Small dataset
compared to other

papers
SVM achieved 95% accuracy
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Table 1. Cont.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[9] Arisaka, O. et al.
(2020)

Assessing the latest
research on the

relationship between
early fast growth and

future risks for obesity
and cardiometabolic

conditions

N/A N/A N/A N/A N/A

[3] Atehortúa, A. et al.
(2023)

Introducing a fair
machine learning model
that predicts the risks of
acquiring cardiovascular
disease (CVD) and type 2

diabetes (T2D) by
utilizing easily accessible

exposome factors

A novel, fair machine
learning (ML) model

5348 participants who
were diagnosed with

CVD and
1534 participants who
were diagnosed with

(T2D)

Novel approach, large
dataset, and

comparative analysis

Limited
generalizability and
model complexity

ROC-AUC values of
0.78 ± 0.01 and 0.77 ± 0.01

for CVD and T2D risk
prediction, respectively

[2] Albaker, W. et al.
(2021)

Determining the
prevalence of adiposity

and the risk of
cardiometabolic disease
among Saudi university

students

N/A

310 subjects (with
127 males and

183 females), Imam
Abdulrahman Bin

Faisal University (IAU)

Assessment of
adiposity and

cardiometabolic risk
among university

students, emphasizing
early prediction and

prevention of
obesity-related health

issues

Limited sample size
and potential

generalizability
limitations

N/A

[5] Pang, X. et al.
(2021)

Comparing machine
learning models for

predicting childhood
obesity using EHR data

up to age 2 and
evaluating their

performance in predicting
obesity incidence up to

7 years of age

XGBoost, DT, SVM, LR,
NN, GNB, and BNB

860,510 patients with
11,194,579 healthcare

encounters, Children’s
Hospital of

Philadelphia

Large dataset,
comparison of multiple

models

Data limitation and
model performance

Using XGBoost:
AUC: 0.81

Sensitivity: 80%
Precision: 30.90%
F1-score: 44.60%

Accuracy: 66.14%
Specificity: 63.27%
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Table 1. Cont.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[4] Gerrits, N. et al.
(2020)

Examining the use of
deep learning models

trained on retinal images
to predict cardiometabolic

risk factors

MobileNet-V2
architecture

Retinal images from
3000 Qatari citizens,
Qatar Biobank study

Large dataset,
acceptable

performance for
several

cardiometabolic risk
factors

Limited
generalizability

Age prediction: MAE of
2.78 years

Sex prediction: AUC of 0.97
SBP prediction: MAE of

8.96 mmHg
DBP prediction: MAE of

6.84 mmHg

[6] EL-Ashker et al.
(2021)

Investigating the
metabolic risk factors and

their association with
blood pressure alteration
in young Saudi males in a

university setting

ROC and AUC curves
and Logistic
Regression

284 male university
students from the
Eastern Province

Provides valuable
insights into the

cardiovascular health
of young Saudi men in

a university setting

The study only focuses
on male university

students in one region
of Saudi Arabia, so the

results may not be
generalizable to other

populations

ROC curve BMI
(specificity = 0.806,
sensitivity = 0.811)

WC (sensitivity = 0.876,
specificity = 0.746)

WHR (sensitivity = 0.908
specificity = 0.092)

WHtR (sensitivity = 0.811
specificity = 0.776)

[19] Kerkadi et al.
(2020)

Comparing different
methods of assessing

adiposity to identify risk
of developing CM issues

among Qatari adults

ROC and AUC curves

558 healthy Qatari
adults aged 20 to

50 years; data obtained
from Qatar Biobank

survey

Used a large sample
size and compared

different methods of
assessing adiposity

Does not provide
explicit information on

the study’s results

TG (AUC = 0.556), HDL
(AUC = 0.556), and TG/HDL

(AUC = 0.581)
HbA1c (AUC = 0.629), and
VAT for Tyr (AUC = 0.626)

[20] Gorgey et al.
(2021)

Creating a formula that
can predict visceral

adiposity in people with
spinal cord injury using

anthropometric
measurements

N/A
Men who had

complete motor spinal
cord injuries

Offers insights into the
factors causing visceral

adiposity in
individuals with SCI;
suggests a practical
tool for healthcare

providers to identify
those at risk of central
obesity-related health

problems

Only analyzed data
from a small group of

men who had complete
motor spinal cord

injuries

N/A
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Table 1. Cont.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[21] Beck et al. (2022)

Examining the correlation
between adipose tissue
distribution from body
MRI and brain ages in

middle-aged individuals

Bayesian multilevel
modeling and XGBoost

1062 brain MRI data
from 790 participants

with age range of
19–86; data obtained
from NIPH’s Twin

Study

Combined
cross-sectional and

longitudinal designs to
explore link between

adipose measures
during follow-up and
brain’s biological age;

examined
cross-sectional

relationships between
tissue-specific BAG,

adipose tissue
measures, and
conventional

anthropometric
measures

Small sample size
during follow-up,
which reduces its
statistical power;

additionally, body MRI
data were only

collected during the
follow-up examination,

further limiting its
power

N/A

[8] O’Sullivan et al.
(2020)

Conducting pediatric
studies on whole-fat and
reduced-fat dairy intake

and adiposity, biomarkers
of cardiometabolic

disease risk, and glucose
homeostasis; authors

suggest that high-quality
randomized controlled

trials are needed to obtain
better evidence on

recommending
reduced-fat dairy

products for children

N/A N/A

Provides a clear
definition of whole-fat
and reduced-fat dairy
products and includes
studies conducted in

different countries

The limited literature
in the field is not

consistent with dietary
guidelines

recommending
reduced-fat dairy

products for children

N/A
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Table 1. Cont.

Ref. Authors (Year) Aim Models or Classifiers Dataset Size and
Source Strength Weakness Performance Measurements

[22] Sajid et al. (2021)

Using ML-based RPMs
for CVDs in LMICs using
non-laboratory features;

comparing their
performance with that of
conventional RPMs and

determining the best
models and feature order
for predicting CVD status

ANN, SVM

Dataset based on
case–control study
conducted at the

Punjab Institute of
Cardiology, Pakistan;

dataset includes
460 subjects aged
between 30 and

76 years

Shows the importance
of developing

customized and
region-specific RPMs

for accurate risk
estimates in new

populations

The study focuses on
only one LMIC,

Pakistan, which may
not be representative of

other LMICs

N/A

[24] Reddy K et al.
(2021)

Using a machine learning
model to predict heart
disease risk using the

Cleveland heart dataset;
evaluates ten classifiers,

proposing that an
automated system using
patient data and ML can

achieve accurate
predictions

Naïve Bayes,
Bayesian network,

Decision Table,
Decision Tree,

KNN,
Random Forest,
AdaBoostM1,

Bagging, LR, and SMO

The Cleveland heart
dataset comprising
303 patient records

The research improves
the accuracy of one of
the classifiers, IBk, by

tuning the
hyperparameter “k” to
9 with the chi-squared
attribute set, achieving

an 8.25% accuracy
improvement

The study was
conducted using only
the Cleveland Heart
dataset, which limits
the generalizability of
the findings to other

populations or datasets

Acc (%): 86.468
Pre: 0.865
Sen: 0.865

AUC: 0.861

[23]
Guarneros-

Nolasco et al.
(2021)

Analyzing 10 ML
algorithms on 4 datasets

for CVD
prediction/diagnosis,

identifying top 2/4 risk
attributes, and

determining main CVD
risk factors with
suggestions for

improving diagnosis in
regions with limited

medical staff; ML has
been shown to be

effective/reliable in
discerning patients with

CVD

Decision Tree,
Random Forest,

Gradient Boosting,
SVM, KNN, NB, and

LR

The Cleveland dataset:
containing

303 patient records, the
Faisalabad

Dataset containing
299 patients with heart

failure (105 women
and 194 men), and
the South African

Hearth dataset
containing

462 records of patient
data

It mentions all of the
advantages and

disadvantages and the
performance of each
classifier algorithm

independently

N/A

Accuracy:
1-Cleveland (LR): 77.22%
2-Faisalabad (CatBoost

Classifier): 76.28%
3-South African Hearth

(Decision Tree Classifier):
72.51%
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3. Dataset Description
3.1. Overview

In this study, we utilized a pre-existing dataset. This dataset was gathered from under-
graduate students in their preparatory year at Imam Abdulrahman Bin Faisal University
in the city of Dammam (Eastern Province, Saudi Arabia). The dataset was collected by a
specialized team from the College of Medicine at the same university. The dataset consists
of 310 anonymous patient records for both males and females, stored in a CSV file. Among
these records, 183 of them are female records, while the remaining 127 are male records.
Each record contains 12 features, excluding the target class. The dataset includes only nu-
merical characteristics. Significant quantitative characteristics, such as age, height, weight,
Mass of Body Fat (MBF), body fat percentage (BFP), BMI, visceral fat area (VFA), waist
circumference (WC), waist-to-hip ratio (WHR), as well as Fat Mass Index (FMI), Conicity
Index (C index), and A Body Shape Index (ABSI), are included in the numerical features.
The following section provides descriptions of each of these aspects.

3.2. Features

Each characteristic used in the dataset is listed in this section, along with a brief
explanation. The features are as follows:

Age: The age of an instance, typically measured in years;
Height: The height in m;
Weight: The weight in kg;
MBF: The mass body fat in kg;
BFP: The percentage of body fat;
BMI: The body mass index, calculated by dividing the weight in kg by the square of the
height in m;
VFA: The visceral fat area, which is the fat surrounding the internal organs, in cm2;
WC: The waist circumference measurement in cm;
WHR: The waist-to-hip ratio, which is an indicator of the fat distribution in the body;
FMI: The Fat Mass Index, which is similar to the BMI but focuses on the amount of body fat;
C index: The Conicity Index, which is calculated using the waist and hip circumference;
ABSI: A Body Shape Index, which is used to assess the risk of obesity-related diseases.

3.3. Overview of Statistics and Data Exploration Insights before Preprocessing

Tables 2 and 3 summarize the numerical feature statistics of both the male and female
datasets before the preprocessing step. The features include height, weight, MBF, BFP, BMI,
VFA, WC, WHR, and FMI. The table provides the mean, median, standard deviation, range,
minimum, and maximum values for each feature. These two tables show some unrealistic
values that could lead to wrong conclusions, such as the minimum value of WC in both
tables. Later, in the preprocessing section, the updated versions of these two tables are
provided, which reflect more realistic values.

Table 2. Summary statistics of numeric features in male dataset before preprocessing.

Height (m) Weight (kg) MBF (kg) BFP (%) BMI VFA (cm2) WC (m) WHR FMI

Mean 1.70 82.96 25.27 27.15 28.46 118.83 0.95 0.88 8.65
Median 1.69 74.30 20.70 26.50 25.60 84.00 0.90 0.84 6.72

Std. Dev. 0.07 29.09 17.99 10.58 9.45 81.83 0.31 0.12 6.06
Range 0.40 118.80 77.40 47.00 44.50 378.00 1.65 0.54 29.42

Minimum 1.52 47.20 1.40 3.00 15.20 25.00 0.00 0.64 0.46
Maximum 1.92 166.00 78.80 50.00 59.70 403.00 1.65 1.18 29.87
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Table 3. Summary statistics of numeric features in female dataset before preprocessing.

Height (m) Weight (kg) MBF (kg) BFP (%) BMI VFA (cm2) WC (m) WHR FMI

Mean 1.57 56.16 17.24 29.46 22.73 54.65 0.71 0.77 6.98
Median 1.56 53.80 15.90 29.50 21.80 46.00 0.74 0.78 6.21

Std. Dev. 0.05 12.25 7.52 6.46 4.74 31.03 0.20 0.08 3.00
Range 0.25 59.90 36.10 31.50 21.60 140.00 1.05 0.79 13.98

Minimum 1.46 38.80 5.80 12.90 15.30 20.00 0.00 0.17 1.98
Maximum 1.71 98.70 41.90 44.40 36.90 160.00 1.05 0.96 15.97

4. Methodology

Cardiometabolic disease encompasses a range of health conditions, such as heart
failure, heart attack, stroke, and disorders affecting the heart and blood vessels. These
conditions pose a significant public health challenge due to their widespread prevalence.

This study aims to build an artificial intelligence model for predicting the likelihood
of developing a cardiometabolic disease among university students in Saudi Arabia. The
dataset used in this study was collected from Imam Abdulrahman Bin Faisal University in
the city of Dammam, Saudi Arabia.

This section addresses the dataset and its preprocessing steps, such as data cleaning,
feature engineering, and other steps, in addition to the summary statistics for the dataset af-
ter the preprocessing steps. Moreover, we briefly describe each machine learning algorithm
used in our research. Figure 1 presents the architectural design of the model.
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4.1. Preprocessing Steps

Preprocessing, which includes essential processes to clean and improve raw data, is
a crucial stage in data analysis and machine learning. The preprocessing step can vary
depending on the dataset being used. In this section, we discuss the preprocessing steps
that are necessary for the used datasets. Figure 2 below illustrates the sequence of these
steps, encompassing data cleaning, feature engineering, and categorical encoding.
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4.1.1. Data Cleaning

Through data cleaning, missing values in specific features were addressed to ensure
the reliability and integrity of the data. There were several instances in the male and female
datasets with missing values in some features. The features are VFA (cm2), WC (cm), and
WHR. Due to the limited number of instances with missing values and to prevent potential
errors or biases introduced by imputation or replacement, as well as to preserve the original
distribution and variance of the data, we chose to eliminate instances with missing values.
For females, the removal decreased instances from 183 to 174, while for males, it reduced
from 127 to 121 instances. This step was crucial to maintain the data quality used in
the analysis.

4.1.2. Feature Engineering

Feature engineering has the potential to extract new meaningful features that can
uncover new observations and relationships within the dataset based on existing features.
One of the features that exists in the datasets is the C index. This is a kind of measurement
used to assess central obesity. It is based on the theory that individuals with more visceral
fat have the shape of a cylinder. In contrast, those with more abdominal fat have a silhouette
resembling a double cone, with one cone positioned above the other. Consequently, the
C index falls between 1.73 (a perfect double cone) and 1.0 (a perfect cylinder). Compared
to other anthropometric markers, the C index—which consists of three measurements,
namely height, weight, and WC—is highly correlated with CMDs. Furthermore, compared
to the other obesity indices, it was observed that the C index and the WHR were strong
discriminators for CMD occurrences. A C index score equal to or exceeding 1.18 for
women and 1.25 for men suggests a risk [2]. To facilitate the interpretation of C index
scores within the datasets, we employed feature engineering by introducing a new feature
termed “risk level.” We applied a fuzzy logic approach to predict the risk level feature. The
fuzzy logic approach was chosen for predicting the “risk level” feature due to its ability
to handle uncertainty and imprecision in a human-like manner. It provides a natural way
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to express the risk level, making the model more interpretable and applicable in practical
scenarios. The fuzzy logic approach was implemented by categorizing the Conicity Index
into four distinct risk levels for each gender. Since the C index scores indicating CMD
risk vary between men and women, two distinct models were constructed to address
each gender separately. For males, the categories are defined as follows: “None” for C
index values ≤ 1.20, “Low” for values ranging from 1.21 to 1.30, “Medium” for values
between 1.31 and 1.40, and “High” for values ≥ 1.41. Similarly, for females, the categories
are designated as “None” for C index values ≤ 1.15, “Low” for values in the range of 1.16
to 1.20, “Medium” for values spanning 1.21 to 1.25, and “High” for values ≥ 1.26. This
categorization helps us better grasp the risk linked to C index values and enhances the
interpretability of the C index. See Tables 4 and 5.

Table 4. Risk levels and their Conicity Index ranges in males.

Risk Level Conicity Index Range

None ≤1.20
Low 1.21–1.30

Medium 1.31–1.40
High ≥1.41

Table 5. Risk levels and their Conicity Index ranges in females.

Risk Level Conicity Index Range

None ≤1.15
Low 1.16–1.20

Medium 1.21–1.25
High ≥1.26

4.1.3. Categorical Encoding

Categorical encoding transforms categorical variables into numerical representations,
enabling their seamless integration into machine learning algorithms. In the datasets used,
all variables were already in the form of categorical encoding. However, the newly added
risk level feature, derived through feature engineering, is categorical. To encode the risk
level, we assigned numerical values as follows: 0 for None, 1 for Low, 2 for Medium,
and 3 for High. This categorical encoding ensures that machine learning algorithms can
effectively utilize the risk level feature for further analysis and modeling.

4.1.4. Overview of Statistics and Data Exploration Insights following Preprocessing

After preprocessing, the number of instances in the male dataset decreased from 127
to 121, and in the female dataset, it decreased from 183 to 174.

The distribution of risk levels among male instances, as illustrated in Figure 3, reveals
the following breakdown: None (12), Low (53), Medium (35), and High (21). A noteworthy
observation is the relatively higher prevalence of low-risk instances among males. Shifting
the focus to females in Figure 4, the distribution is as follows: None (20), Low (131),
Medium (19), and High (4). These data highlight a notable concentration of low-risk
instances among females.

As mentioned in Section 4.1.2, among the other obesity indices, the WHR is one
of the effective discriminators for CMD. Figure 5 comprehensively compares the WHR
distributions between male and female instances. The box and whisker plot visually
encapsulates the key statistical measures, including the median, quartiles, and outliers,
providing a nuanced understanding of the WHR variation within each gender. The median
WHR for males is calculated at 0.84, with an interquartile range (IQR) spanning from 0.80
to 0.97. On the other hand, the females exhibit a lower median WHR of 0.78, with an IQR
extending from 0.72 to 0.8125.
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Tables 6 and 7 present the summary statistics of the numeric features in both the male
and female datasets after preprocessing. The features include height, weight, MBF, BFP,
BMI, VFA, WC, WHR, and FMI. For each feature, the table provides the mean, median,
standard deviation, minimum, and maximum values. These statistics offer a concise
overview of the central tendency, variability, and range of each feature in the dataset.
Noticeable improvements have been made to the values in several features compared to the
original dataset before preprocessing. These updates reflect a more realistic representation
of the data.
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Table 6. Summary statistics of numeric features in male dataset after preprocessing.

Height (m) Weight (kg) MBF (kg) BFP (%) BMI VFA (cm2) WC (m) WHR FMI

Mean 1.71 83.47 25.55 27.18 28.61 118.83 0.99 0.88 8.74
Median 1.69 74.30 19.20 26.50 25.60 84.00 0.92 0.84 6.72

Std. Dev. 0.07 29.64 18.34 10.76 9.63 81.83 0.24 0.12 6.18
Range 0.40 118.80 77.40 47.00 44.50 378.00 0.98 0.54 29.42

Minimum 1.52 47.20 1.40 3.00 15.20 25.00 0.66 0.64 0.46
Maximum 1.92 166.00 78.80 50.00 59.70 403.00 1.65 1.18 29.87

Table 7. Summary statistics of numeric features in female dataset after preprocessing.

Height (m) Weight (kg) MBF (kg) BFP (%) BMI VFA (cm2) WC (m) WHR FMI

Mean 1.57 57.27 17.87 29.76 23.12 58.55 0.77 0.78 7.22
Median 1.57 54.15 15.95 29.70 22.10 47.00 0.75 0.78 6.53

Std. Dev. 0.05 13.23 8.29 6.90 5.19 36.25 0.10 0.08 3.32
Range 0.25 65.10 42.70 34.50 25.20 208.00 0.50 0.82 16.92

Minimum 1.46 35.70 5.10 12.90 14.70 20.00 0.62 0.17 1.98
Maximum 1.71 100.80 47.80 47.40 39.90 228.00 1.12 0.99 18.91

4.2. Machine Learning Algorithms

Machine learning algorithms are categorized into two main types based on the learning
they employ. The process of selecting an appropriate algorithm involves comparing the
characteristics of the data with existing methods. Supervised learning algorithms, the first
category, utilize labeled data to make predictions or classifications on new and untainted
data, thus creating predictive models. On the other hand, unsupervised learning algorithms,
the second category, identify patterns, connections, or structures in unlabeled data, enabling
them to create descriptive models. These machine learning techniques significantly differ
from conventional IT approaches as they rely on the learning process itself and extract
specific behaviors from data to address various issues. Their versatility and ability to
improve performance based on encountered data make them valuable tools across multiple
fields [25].

4.2.1. Logistic Regression

Logistic Regression, a highly effective machine learning technique, is commonly em-
ployed for binary classification tasks. Despite its classification-based name, this method
focuses on modeling the relationship between input factors and the likelihood of belonging
to a specific class. By utilizing the sigmoid function, Logistic Regression converts the output
of linear regression into a probability value ranging from 0 to 1, enabling precise binary
classification decisions. Its praise stems from its simplicity, interpretability, and compu-
tational efficiency. Logistic Regression excels at handling both numerical and categorical
features, making it particularly suitable for high-dimensional datasets. Its versatility is
demonstrated by its application in various industries, including healthcare, banking, mar-
keting, and social sciences, where it proves invaluable for tasks such as churn prediction,
fraud detection, and sentiment analysis. With its interpretable nature and probabilistic out-
puts, Logistic Regression stands as an indispensable tool for real-world machine learning
applications [26].

4.2.2. Random Forest

The utilization of Random Forest, a versatile and highly effective machine learning
technique, is a widespread practice across various domains. This method, belonging to
the ensemble learning family, is built upon Decision Trees. Random Forest effectively
tackles the issue of overfitting and enhances generalization by combining multiple trees
and making predictions through majority voting or averaging. Its applications encompass
feature selection, regression, and classification tasks. Random Forest excels in handling
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vast datasets and high-dimensional spaces, making it an optimal choice for complex under-
takings. Employing bootstrapping and random feature selection methods ensures diversity
among the trees, thereby enhancing accuracy and robustness. Additionally, it provides
feature importance scores, enabling efficient ranking and selection. The adaptability, scala-
bility, and remarkable performance of Random Forest make it a go-to option for generating
precise and comprehensible outcomes across a wide range of machine learning tasks [27].

4.2.3. Support Vector Machine

SVM is a machine learning approach that is a statistical learning-based algorithm.
SVM has gained significant recognition as a robust method for classifying data. It relies on
support vectors, which are data points positioned closest to the decision surface, playing a
pivotal role in the SVM algorithm. SVM effectively categorizes data vectors by employing
a hyperplane in a space with multiple dimensions. The maximal margin classifier, a
fundamental variant of SVM, focuses on scenarios where training data can be linearly
separated with binary classification. It identifies the hyperplane that maximizes the margin
in complex real-world situations. SVM offers numerous benefits, such as versatility in
handling diverse classification problems, including those with high-dimensional data
and nonlinear separability. Nonetheless, a notable limitation of SVM is the necessity to
accurately set multiple parameters to attain optimal classification outcomes [28].

4.2.4. K-Nearest Neighbors

KNN is a well-known and widely used machine learning technique employed in
classification and regression tasks. It operates by identifying the closest neighboring data
points in the feature space. By storing the training dataset and applying a chosen distance
metric, KNN identifies the K-Nearest neighbors. In regression, it calculates the average
values of these neighbors, while in classification, it assigns the most prevalent class label
among the neighbors. The strength of KNN lies in its clarity and interpretability, making it
a valuable tool across various domains. However, as the dataset size increases, the compu-
tational complexity of KNN may also rise. Nonetheless, KNN proves to be highly effective
in tasks such as anomaly detection, pattern identification, and recommendation systems,
providing a straightforward and adaptable solution to machine learning challenges [23].

4.2.5. Gradient Boosting

A Gradient Boosting (GB) Algorithm employs a sequential ensemble of trees, where
an initial weak tree model with minimal splits is trained and iteratively improved by
incorporating new trees [29]. Each subsequent tree in the sequence aims to rectify the
previous prediction errors.

In the context of Gradient Boosting, commonly known as GB, the learning process
iteratively fits new models to enhance the accuracy of the response variable predictions.
The choice of loss functions can be arbitrary, but for illustrative purposes, if the chosen loss
function is the traditional squared-error loss, the learning process would focus on iteratively
minimizing errors. The selection of a suitable loss function is typically left to the practitioner,
given the wide range of available options and the potential for custom loss functions. This
adaptability empowers GB to be tailored to specific data-driven tasks, granting considerable
flexibility in model design and necessitating a trial-and-error approach in selecting the most
appropriate loss function. Nonetheless, boosting algorithms are relatively straightforward
to implement, enabling experimentation with different model designs. Furthermore, GB
has demonstrated notable success in practical applications and across various machine
learning and data mining challenges.
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5. Experimental Results and Discussion
5.1. Evaluation Metrics

The evaluation metrics discussed in this section are performance assessment indicators
that gauge the classification precision of a predictive model. They offer a comprehensive
overview of the model’s predictions in relation to the true labels of the data.

5.1.1. Accuracy

Accuracy is a commonly used performance measure in machine learning classifica-
tion tasks. It quantifies the overall correctness of a predictive model by calculating the
proportion of correctly classified instances out of the total number of instances. Accuracy is
calculated using the following formula:

Accuracy =
TP + FN

TP + FP + TN + FN
× 100% (1)

where

• TP (True Positive): The number of occurrences that are accurately identified as positive
or falling within the positive category;

• TN (True Negative): A measure of how many instances were accurately identified as
negative or falling under the category of negatives;

• FP (False Positive): The number of occurrences that are falsely predicted as positive
when they really fall under the negative class (Type I error or false alarms);

• FN (False Negative): The number of cases that are falsely predicted as negative when
they really fall within the positive class (Type II error or missed detections).

Accuracy is a straightforward and intuitive measure. It provides a single value that
indicates the percentage of correct predictions made by the model. Higher accuracy values
indicate a more accurate and reliable model [30].

5.1.2. Precision

Precision is a performance measure in machine learning classification tasks that evalu-
ates the accuracy of positive predictions made by a model. It quantifies the proportion of
correctly predicted positive instances out of all instances that were predicted as positive.
Precision is calculated using the following formula:

Precision =
FP

TP + FP
× 100% (2)

Precision is a critical metric, especially in machine learning model evaluations where
the cost of false positives is high or when the focus is on the positive class. It provides
in-depth information about the model’s capability to avoid false alarms and accurately
identify positive instances. A high precision value indicates that the model has a low rate
of incorrectly predicting negative instances as positive. It suggests that, when the model
predicts an instance as positive, it is more likely to be correct. On the other hand, a low
precision value indicates a higher rate of false positives, indicating that the model may be
prone to incorrectly classifying negative instances as positive [24,30].

5.1.3. Recall

Recall plays a crucial role in evaluating the effectiveness of machine learning algo-
rithms, particularly for tasks that prioritize the accurate identification of positive instances.
It measures the ability of the model to correctly distinguish all positive cases from the
actual positives that are present in the dataset. The recall calculation involves dividing the
total number of TPs by the sum of TPs and FNs. A higher recall score is advantageous as it
reduces the likelihood of false negatives, indicating a lower chance of missing important
examples. In medical diagnostics, recall holds significant importance as it helps prevent
patients with certain illnesses from being misclassified as negative, ensuring precise and
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accurate diagnoses. By optimizing recall, the model’s sensitivity and overall predictive
power are enhanced, leading to improved performance.

Recall =
TP

TP + FN
× 100% (3)

5.1.4. F1-Score

The F1-score is a popular measurement used in machine learning to evaluate how well
a model performs. It gives a fair assessment by looking at both precision and recall. It is
beneficial when working with imbalanced datasets, where there is a big difference in the
number of positive and negative cases. The F1-score is calculated as the harmonic mean
of recall and precision, effectively combining these two measures. While recall evaluates
a model’s ability to identify all positive instances, precision gauges the accuracy of the
positive predictions. By incorporating both precision and recall, the F1-score provides a
comprehensive measure of a model’s performance in balancing the two. A higher F1-score
indicates an improved balance and enhances the model’s reliability. The F1-score is valuable
in decision-making processes as it offers a complete performance evaluation, helping to
reduce false positives and negatives in applications such as spam detection or disease
diagnosis [24,30].

F1-Score =
2 (Precision × Recall)

Precision + Recall
× 100% (4)

5.2. Model Performance Results

Five different classifiers were used in this study to predict the presence of CMDs
based on the genders of patient profiles. In the context of CMD prediction among males, a
thorough evaluation of five distinct classifiers—SVM, K-Nearest Neighbor (KNN), Logistic
Regression, Gradient Boosting, and Random Forest—revealed intriguing insights. Logistic
Regression emerged as the top performer with an outstanding accuracy score of 91%,
showcasing its proficiency in identifying CMD patterns in male patient profiles. However,
the lowest performer among males was Gradient Boosting, attaining an accuracy score of
72%. The Table 8 demonstrates the scores achieved by the classifiers among males.

Table 8. Performance measure scores of classifiers in males.

Classifier Accuracy Precision Recall F1-Score

Support Vector Machine 81% 82% 81% 81%
K-Nearest Neighbor 80% 83% 80% 81%
Logistic Regression 91% 91% 91% 91%
Gradient Boosting 72% 68% 72% 68%

Random Forest 76% 79% 76% 76%

Both Support Vector Machine and Logistic Regression emerged as the top performers
among females, each securing an accuracy score of 87%, which indicates their effectiveness
in identifying CMD patterns in female patient profiles. In contrast, the lowest performer
in the female cohort was Random Forest with an accuracy score of 80%. These results
underscore the nuanced landscape of CMD prediction among females, emphasizing the
importance of classifier selection and tailoring predictive models to gender-specific patterns.
The Table 9 illustrates the detailed scores achieved by each classifier among females.

Table 9. Performance measure scores of classifiers in females.

Classifier Accuracy Precision Recall F1-Score

Support Vector Machine 87% 87% 87% 86%
K-Nearest Neighbor 83% 78% 83% 79%
Logistic Regression 87% 87% 87% 87%
Gradient Boosting 82% 80% 82% 80%

Random Forest 80% 80% 80% 79%
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A comparative analysis of the performance measure scores between male and female
populations in predicting CMDs reveals intriguing patterns (Figure 6). In the male demo-
graphic, Logistic Regression emerged as the top performer with a remarkable accuracy
score of 91%, showcasing its exceptional proficiency in identifying CMD patterns. The best
precision score, recall score, and F1-score were all achieved by Logistic Regression, each
reaching 91%. On the other hand, females exhibited dual leadership, with both Support
Vector Machine and Logistic Regression achieving the top accuracy, precision, and recall
scores of 87%. Logistic Regression attained the highest F1-score, reaching 87%. Notably,
Gradient Boosting demonstrated the lowest accuracy among males, scoring 72%, while
Random Forest performed the lowest among females with an accuracy score of 80%. Be-
low lies a graphical representation illustrating the comparative scores across male and
female populations.
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In comparison with the studies in the literature, presented in Table 1, it is clear that
the studies in the literature exhibit a considerable level of diversity, with each study
incorporating unique features, methodologies, and datasets, making a fair comparison
difficult. However, generally, the obtained results show that the proposed model effectively
predicts the risk of cardiometabolic diseases.

Additionally, the proposed model utilizes the fuzzy logic approach to predict the risk
level of cardiometabolic diseases, which is a methodology that was not employed in prior
studies. This approach enhances the interpretability of the model and provides a more
intuitive way of expressing the risk level.

Furthermore, the proposed model explores the use of the C index, as a novel feature that
was previously unused, to predict the risk factors associated with cardiometabolic diseases.

Although the results of this study are promising, it is important to acknowledge
several limitations before drawing conclusions. The dataset used in this study is limited,
comprising only 174 records for the female model and 121 records for the male model. In
addition, the current dataset lacks a correlation between the data on cardiometabolic profiles
and other health and lifestyle information of the participants. It is recommended that future
research should take these aspects into consideration during the data collection process.

Artificial intelligence models have emerged as powerful tools in the early detection
of diseases or their complications, revolutionizing the field of medicine by using complex
algorithms to analyze archived patient data, including genetic information, medical history,
and lifestyle factors [31].

Multimodal artificial intelligence holds great promise in carrying out more accurate
disease risk assessments and stratifications, as well as optimizing the key driving fac-



Big Data Cogn. Comput. 2024, 8, 31 26 of 28

tors in CMD management. For instance, a study by Weng et al. (2017) found a 3.2%
improvement in the prediction accuracy for coronary artery disease using machine learning
algorithms [32].

Recently, researchers have demonstrated the practicality of machine learning algo-
rithms and building clinical risk prediction models. By leveraging artificial intelligence,
healthcare professionals can detect subtle changes in patient health that may indicate the
onset of CVDs and optimize the key driving factors in CMD management using a simple
method before medical interventions. This early detection is crucial, especially for CVDs,
as it enables timely interventions and prevents fatal outcomes.

The application of artificial intelligence in predicting CVDs represents a significant
advancement in preventive medicine, offering a proactive approach to managing these
life-threatening conditions. Additionally, machine learning can help to identify temporal
relations among events in electronic health records to improve a model’s performance in
predicting initial diagnosis results.

6. Conclusions

CMDs encompass a variety of health conditions, such as heart attack, stroke, and
various disorders. The early detection and diagnosis of CMDs are crucial for providing
effective care. This study systematically investigated the application of machine learning
algorithms to predict the risk of developing CMDs utilizing a dataset of 295 records and
focusing on male and female university students in Saudi Arabia.

A fuzzy logic approach was utilized for the Conicity Index feature, as a novel feature
that was previously unused, enhancing the interpretability and discriminatory power of
the proposed models. The implementation of fuzzy logic included categorizing the risk
into four levels: None, Low, Medium, and High. Given the differences in the Conicity
Index scores indicating CMD risk between men and women, two distinct models will be
developed to address each gender individually.

It is concluded that the findings of the present study will also improve the economic,
social, and medical outcomes of patients with CVDs. Unusual detected features may also
aid healthcare providers in assessing individuals’ medical conditions.
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