
����������
�������

Citation: Song, Y.; Shateyi, S. Inverse

Multiquadric Function to Price

Financial Options under the

Fractional Black–Scholes Model.

Fractal Fract. 2022, 6, 599. https://

doi.org/10.3390/fractalfract6100599

Academic Editor: Tomasz Dłotko

Received: 10 September 2022

Accepted: 10 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Inverse Multiquadric Function to Price Financial Options under
the Fractional Black–Scholes Model
Yanlai Song 1,* and Stanford Shateyi 2,*

1 College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
2 Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences,

University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa
* Correspondence: 6392@zut.edu.cn (Y.S.); stanford.shateyi@univen.ac.za (S.S.)

Abstract: The inverse multiquadric radial basis function (RBF), which is one of the most important
functions in the theory of RBFs, is employed on an adaptive mesh of points for pricing a fractional
Black–Scholes partial differential equation (PDE) based on the modified RL derivative. To solve
this problem, discretization along space is carried out on a non-uniform grid in order to focus on
the hot area, at which the initial condition of the pricing model, i.e., the payoff, has discontinuity.
The L1 scheme having the convergence order 2− α is used along the time fractional variable. Then,
our proposed numerical method is built by matrices of differentiations to be as efficient as possible.
Computational pieces of evidence are brought forward to uphold the theoretical discussions and
show how the presented method is efficient in contrast to the exiting solvers.

Keywords: fractional Black–Scholes model; Caputo fractional derivative; radial basis function; memory;
option pricing
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1. Introductory Notes and Preliminaries

The most fundamental option pricing model is the Black–Scholes (BS) partial differen-
tial equation (PDE), while many works have been introduced to overcome its shortcomings
such as the Heston model with stochastic volatility, (see e.g., [1] and ([2] chapter 7)). Clearly,
by generalizing the model for option pricing more assumptions have been relaxed, which
has yielded more complicated forms of the model.

On the other hand, by increasing applications of fractional differential equations
(FDEs) and keeping the memory feature for modeling, Wyss, in [3], investigated a tempered-
fractional BS equation to evaluate European call options. The improved BS model with a
fractional derivative actually comes from the fractional Brownian motion (FBM) with the
real-valued Hurst exponent 0 < H < 1, which is an exponent describing the memory of
time series [4].

In fact, fractional stochastic differential equations (SDEs), as a generalization of Itô
SDEs, require a considerable load of analytical challenges to obtain a solution [5,6]. How-
ever, this should be pursued because the volatility of stock-exchange variations could
suitably be showed by a time variation of order (dt)H . In spite of having attractive prop-
erties of the fractional BS model for the stock price, dealing with the FBM and its option
pricing PDE formulation is challenging. In fact, there is some evidence that certain stock
returns may exhibit the phenomenon of long memory (slowly decreasing covariance be-
tween returns at different times) [7], though this seems to be fairly weak. It is also generally
accepted that stock returns display the phenomenon of clustering. None of these phe-
nomena appear in semi-martingale models, such as the classic BS model. They do appear,
however, if we consider the analogue of the BS model based on FBM with Hurst index H.
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This superiority of the improved model under the fractional sense made researchers focus
more on this model in practice.

Let v(St, t) be a contingent payoff’s price of v(ST , T) that is valid at the maturity T > 0.
Considering the rate of interest r to be deterministic and under a fundamental martingale
to produce an arbitrage-free option price [8], one is able to obtain the following forward in
time pricing formula [3,9]:

∂αv(s, τ)

∂τα
=

1
2

σ2s2 ∂2v(s, τ)

∂s2 + (r− q)s
∂v(s, τ)

∂s
− rv(s, τ), s ≥ 0, (1)

wherein τ = T − t is the time to maturity and the derivative is provided based on the
(right) modified Riemann–Liouville (RL) derivative for 0 < α ≤ 1. For α = 2H = 1, viz.,
H = 1/2, (1) reduces to the classical BS equation. Moreover, σ, s, r and q stand for the
volatility constant; the asset price; the riskless interest rate, which differs from country to
country; and the dividend yield, respectively. Here, the transformation τ = T − t comes
mainly from the fact the original financial PDE is backward in time after imposing the Itô
lemma on the fractional SDE problem. Then, to transform it in order to have a forward in
time PDE model, this transformation is employed.

The difference between call and put cases for vanilla options can be provided via their
following payoffs ([2] chapter 1), respectively,

v(s, 0) = max{0, s− E}, (2)

and
v(s, 0) = max{0, E− s}, (3)

wherein the strike price is E.
For the European call and put options, the boundary conditions are defined, respec-

tively, as follows [10]:

v(0, τ) = 0, lim
s→∞

v(s, τ) = smax exp (−qτ)− E exp (−rτ), (4)

v(0, τ) = E exp {−rτ}, lim
s→∞

v(s, τ) = 0. (5)

The introduction of the fractional derivative in (1) furnishes a long-memory feature
for the returns. In fact, Lo, in [11], indicated that long-memory components in asset returns
are crucial to many paradigms of modern financial economics.

It is necessary now to recall the definition of the modified RL derivative. Suppose
that f is a real-valued continuous function; then, the modified RL fractional derivative is
provided by [12]:

f (α)(τ) :=
dα f (τ)

dτα
=



1
Γ(−α)

∫ τ

0
(τ − ξ)−α−1( f (ξ)− f (0))dξ, α < 0,

1
Γ(1− α)

d
dτ

∫ τ

0
(τ − ξ)−α( f (ξ)− f (0))dξ, 0 < α < 1,

dl( f (α−l)(τ))

dτl , l ≤ α < l + 1,

(6)

wherein Γ(·) is the function of Gamma and l shows a positive integer. The case 0 < α < 1
in (6) is used in the model (1). Moreover, the Caputo fractional derivative is expressed
by [13]:

C
0 Dα

τ f (τ) = (Γ(1− α))−1
∫ τ

0
(τ − ξ)−α f ′(ξ)dξ, 0 < α < 1. (7)

Pseudospectral (PS) solvers can be seen as generalizations of the FD methods that can
result in higher accuracies using a lower number of discretization points. One such scheme
has recently been developed in [14] for pricing the multi-asset option pricing problem,
which is based on Chebyshev roots for discretization of the domain adaptively.
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However, next to the PS methods, there is a category of methods that are less sensitive
to the computational domain. In fact, radial basis function (RBF) methods are an important
portion part of meshless methods. Global and local meshless RBF methods, which lead to
full and sparse matrices, respectively, are two important divisions of such methods [15].
Another approach with good results that inherits both from FD and the RBF methods is the
localized RBF–FD method [16].

It is known that FD stencils obtain accuracy orders in proportion to their stencil
widths. Note that the existence, uniqueness, and convergence of the RBF approximations
were argued in detail at [17]. RBF–FD methods [16] are essentially a generalization of the
classic FD method, which has successfully been employed to numerically solve a variety of
PDE problems.

The inverse multi quadric (IMQ) RBF is defined by

φ(ri) =
1√

c2 + r2
i

, i = 1, 2, . . . , N, (8)

where the parameter of shape is c and ri = ‖s− si‖ shows the Euclidean distance. The
nonzero parameter c plays a key role in the accuracy of approximations ([15] Chapter 15.5).

The work [18] investigated the discretization of the time fractional variable of (1)
first, then employed a multi-quadric RBF to fully discretize the financial model, and then
obtained the accuracy of order 2− α in the case of smooth solutions. Another mesh-free
scheme based on the RBF pseudo-spectral (PS) approach was discussed to solve (1) in [19].

Here, it is necessary to note that in several works in the literature such as [20], first,
some logarithmic transformation is employed in the spatial domain of (1) to derive a
constant-coefficient version of (1) in order to then construct a method on it. This is not
pursued in this work since such transformations are mainly faced with the logarithm of
zero, which is not defined, and thus smaller truncated domains should be considered. The
authors of work [21] investigated how much the choice of the shape parameter can affect
the accuracy of the RBF meshless methods in solving the fractional Black–Scholes PDEs
and proposed a procedure to find a good shape parameter for such a purpose.

Motivated by the works [22,23], the goal of this paper is to price European op-
tions by providing advantages to solving (1) without imposing any logarithmic trans-
formation, as well as by transforming the whole continuous problem into a set of linear
algebraic equations.

The remaining parts are organized as follows. In Section 2, the discretzation along the
time-fractional derivative is provided, which works for both uniform and non-uniform
meshes. Then, in Section 3 the spatial discretization for the Black–Scholes model is provided
with an emphasis on the hot area at which the initial condition of the PDE problem has
discontinuity. In fact, the fractional PDE problem in this work has non-smoothness at s = E.
Next, in Section 4, the numerical treatment for pricing options under the time-fractional
Black–Scholes model is proposed in detail. It is attempted to propose the new scheme in
matrix environment to minimize the computational burdensome and increase the efficiency
of the proposed scheme. Thence, Section 5 is provided to discuss the applicability and
usefulness of the contributed formulas in practice. Several comparisons are worked out
along with numerical simulations. Finally, the conclusion is provided in Section 6.

2. Temporal Discretization

In this section, we provide a version of the L1 scheme for approximating the time-
fractional derivative. Now, assume that

0 = τ0 < τ1 < · · · < τn = T, (9)
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is a set of nodes in [0, T] with the uniform temporal step size ∆τ. Diethelm, in [24], proposed
the following L1 scheme to compute the RL fractional derivative when 0 < α < 1, with f
being a sufficiently smooth function:

R
0 Dα

τ( f (τn)) = ∆τ−α
n

∑
j=0

wj,n f (τn−j) +O(∆τ2−α), (10)

where

Γ(2− α)wj,n =


−j1−α + (j− 1)1−α, j = n,
(j + 1)1−α + (j− 1)1−α − 2j1−α, j = 1, 2, . . . , n− 1,
1, j = 0.

(11)

The following identity is mainly being used when solving time-fractional PDEs [25]:

R
0 Dα

τ( f (τ)− f (0)) = C
0 Dα

τ f (τ). (12)

On uniform meshes, the L1 scheme is provided in another version as follows :

C
0 Dα

τ(v(si, τk+1)) =
1

Γ[2− α]

k

∑
j=0

vi,j+1 − vi,j

∆τ

×
(
(k + 1− j)1−α∆τ1−α − (k + 1− j− 1)1−α∆τ1−α

)
,

=
1

Γ[2− α]

k

∑
j=0

vi,j+1 − vi,j

∆τ
∆τ1−α

(
(k + 1− j)1−α − (k− j)1−α

)
, (13)

=
∆τ−α

Γ[2− α]

k

∑
j=0

vi,j+1 − vi,j

∆τ

(
(j + 1)1−α − (j)1−α

)
.

This uses a nonuniform piecewise linear approximation to attain a (2− α) convergence
rate for the α-order fractional derivative.

3. The IMQ Function for Spatial Discretization

The truncated spatial domain for (1) is provided by Ω = [0, smax], where smax is
a positive parameter that is large enough to minimize the incorporation of boundary
conditions and the domain truncation. To furnish a mesh, some strategies have already
been provided in [26]. Similarly, assume that {si}m

i=1 is a partition for s ∈ [smin, smax]. Then,
we consider

si = Ψ(ϑi), 1 ≤ i ≤ m, (14)

where m� 1 and
ϑmax = ϑm > · · · > ϑ2 > ϑ1 = ϑmin, (15)

are m equally-spaced nodes having features as follows:

ϑmin = sinh−1
(

smin − sleft
d1

)
,

ϑint =
sright − sleft

d1
, (16)

ϑmax = ϑint + sinh−1
( smax − sright

d1

)
.
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We also take into account that smin = 0 and smax = 3E. The parameter d1 > 0 controls
the density of the nodes around s = E. In addition, one defines

Ψ(ϑ) =


sleft + d1 sinh(ϑ), ϑmin ≤ ϑ < 0,
sleft + d1ϑ, 0 ≤ ϑ ≤ ϑint,
sright + d1 sinh(ϑ− ϑint), ϑint < ϑ ≤ ϑmax.

(17)

A common choice for the free parameter in (16) is d1 = E
10 , while sleft = max{0.5,

e−0.0025T} × E, sright = E, and [sleft, sright] ⊂ [0, smax]. Here, d1 = E
10 .

Now, consider a mesh of interior nodes with m scattered nodes s1, s2, . . . , sm, and a
differential operator L[·]. For the grid point s = sj, now the goal is to approximate Lv(sj)
with a linear combination of the values of v at the m nodes to obtain the following:

L[v(sj)] '
m

∑
i=1

αiv(si), (18)

where αi are the weighting coefficients [27].
For the 1st derivative, we consider a mesh of three non-uniform points as [si− h, si, si +

κh], (κ > 0, h > 0). Now, one can write that

v′(si) ' Ξ1v(si−1) + Ξ2v(si) + Ξ3v(si+1). (19)

Using the RBFs in (19) centered at si−1 = si − h, si, and si+1 = si + κh, yields the
coefficients when c� h as follows [27]:

Ξ1 = −
κ
(
4c2 + h2(5κ + 1)

)
4c2h(κ + 1)

,

Ξ2 =
(κ − 1)

(
4c2 + 5h2κ

)
4c2hκ

, (20)

Ξ3 =
4c2 + h2κ(κ + 5)

4c2hκ(κ + 1)
.

For computing the weights for the function’s 2nd derivative, one can write

v′′(si) ' Θ1v(si−1) + Θ2v(si) + Θ3v(si+1). (21)

As long as h� c, it is possible to find the following weights:

Θ1 =
4c2 + h2(κ(13− 5κ) + 1)

2c2h2(κ + 1)
,

Θ2 =
h2(κ(5κ − 19) + 5)− 4c2

2c2h2κ
, (22)

Θ3 =
4c2 + h2(κ(κ + 13)− 5)

2c2h2κ(κ + 1)
.

4. Numerical Implementation

Up to now, we have obtained a strategy for discretization along a time-fractional
derivative in Section 2 and designed new weights for applying the RBF–FD methodology
in order to solve the PDE model along space in Section 3.

Again, by denoting
vi,j ' v(si, τj), (23)

we are now able to write down the whole discretization procedure of (1) in the European
case, as follows:
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Dα
τv(si, τj+1) +O(∆τ2−α

max ) =
1
2

σ2s2
i [Θi−1,jvi−1,j + Θi,jvi,j + Θi+1,jvi+1,j] +O(hmax)

+ (r− q)si[Ξi−1,jvi−1,j + Ξi,jvi,j + Ξi+1,jvi+1,j] +O(h2
max)

− rvi,j,

(24)

wherein ∆τmax and hmax are the maximum of the step sizes along space and time; further-
more, we have

Dα
τv(si, τj+1) =

1
Γ[2− α]

j

∑
g=0

vi,g+1 − vi,g

∆τg+1

(
(τj+1 − τg)

1−α − (τj+1 − τg+1)
1−α
)

. (25)

We re-write our proposed procedure scheme in matrix notations. Let us first define
two differentiation matrices having the weights for the IMQ RBF–FD procedure described
in Section 3 in what follows:

Ds =

{
Ξi,j using (20) |j− i| ≤ 1,
0 otherwise,

(26)

and

Dss =

{
Θi,j using (22) |j− i| ≤ 1,
0 otherwise.

(27)

For the discretization nodes located on the boundaries, we point out that the rela-
tions (20) and (22) are useful for the rows 2 to m − 1, while for the first and last rows
of the derivative matrices (26) and (27), the weighting coefficients might not be useful
on boundaries and thus sided estimations must be imposed. This is the procedure for
constructing the weights possessing the second order (three nodes for approximating the
1st derivative {s1, s2, s3}):

f ′(s1) = f [s1, s2] + f [s1, s3]− f [s3, s2] +O
(
(s1 − s2)

2
)

, (28)

and

f ′(sm) = − f [sm−1, sm−2] + f [sm−2, sm] + f [sm−1, sm] +O
(
(sm − sm−1)

2
)

, (29)

where f [y, o] = ( f (y) − f (o))/(y − o). In a similar way, we can write the nonuniform
second-order approximations for the second derivative on the boundary nodes. However,
the weights obtained for such nodes do not affect the final results since, after the incorpora-
tion of the boundary conditions, these weights are replaced by boundary conditions.

Let us denote Dτ as the matrix of differentiation along time, while ⊗ denotes the
Kronecker product. To construct our final localized method for fractional European options,
we proceed by the following system matrix Υ:

Υ =
1
2

σ2S2(Dss ⊗ Iτ) + (r− q)S(Ds ⊗ Iτ)− rIN , (30)

wherein
IN = Is ⊗ Iτ , (31)

is an N × N unit matrix, with Is and Iτ being m × m and n × n unit matrices, respec-
tively. The matrix Υ has a block tri-diagonal structure. Here, the diagonal matrix S is also
provided below:

S = diag(s1, s2, · · · , sm)⊗ Iτ . (32)
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Therefore, the fractional BS model (24) under 0 < α < 1 can be fully discretized
as follows:

(Is ⊗Dτ)V = ΥV, (33)

where V = (v1,1, v1,2, . . . , vm,n)∗. On the other hand, by considering

A = (Is ⊗Dτ)− Υ, (34)

we obtain AV = 0, and now by imposing the initial and boundary conditions, we have the
following set of linear algebraic equations of size N × N:

ĀV = b̄, (35)

where Ā and b̄ are, respectively, the system matrix and system vector, after imposing the
boundaries and the initial conditions. Here, Ā is a non-zero, real, un-symmetric, and
sparse system matrix. The set of Equation (35) is well-posed, i.e., there exists a unique
solution since Ā is an invertible matrix, and therefore the constructed difference scheme
has a unique solution.

Combining what we obtained with the nonuniform approximation of the fractional
derivative and the use of Kronecker product to achieve sparse matrices results in an efficient
solution for pricing (1).

We remark that although in this work we have focused on solving the financial
model (1), the weights and procedure proposed can be used and extended in a similar
manner for other types of financial PDEs in option pricing.

Theorem 1. Let σ, r > 0, q ≥ 0, c� h and smax be an enough large scalar to truncate the spatial
domain. If the spatial discretization is uniform, then the proposed RBF–FD scheme with a uniform
mesh for solving the financial model (1) is unconditionally time-stable.

Proof. To prove this, let us first write the first temporal step that we employ to proceed
after imposing all the necessary initial and boundary conditions as follows:

(Dτ [[2, 2]]Is − A)payoff[2] = payoff[1]. (36)

Since all of the eigenvalues of A are negative-definite and subsequently the eigenvalues
of−A are positive definite, we obtain that no eigenvalues of (Dτ [[2, 2]]Is− A) are vanishing
(after imposing the boundaries). Note that here by using the Mathematica notations,
payoff[i], i = 1, 2, . . . , n stands for the solutions as vectors per time step, i.e., payoff[1] is the
initial condition, and after that we obtain the solution vectors and put them in payoff[i].

Now, we have Dτ [[2, 2]] > 0 and thus Det (Dτ [[2, 2]]Is − A) 6= 0, whose states are
invertible, and there is a unique solution at this step . By mathematical induction and
the structure of the proposed method, this can be deduced for the whole solution method
regardless of ∆τmax.

Now, to show the unconditional stability and by a similar spirit of logic, it is enough
to state that all eigenvalues of (Dτ [[2, 2]]Is − A)−1 have a modulus less than or equal to
one. This is always valid since the following inequality holds:

|(Dτ [[2, 2]]− λi)| ≥ 1, i = 1, 2, . . . , m, (37)

where λi are the eigenvalues of A. For the general case again by way of mathematical
induction, it is enough to state that

ρ((dj,j Is − A)−1) ≤ 1, (38)

which is true since λmin
(
dj,j Is − A

)
= 1. The proof ends now.
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The convergence of the mesh-free method is independent of the convergence order of
the L1 scheme along the time variable.

5. Computational Aspects

This section concerns illustrations of the existing solver and the new efficient method
for pricing financial options . The compared methods on the same uniform temporal
meshes are

• The FD method proposed in [28] denoted by FD2.
• The proposed method described in Section 4 denoted by PM based on an adaptive

mesh in Section 3.

We do not compare our results with other numerical methods in the literature since
in most of them a source function was added to the PDE model (1) in order to furnish
a theoretical solution for the model. This action is meaningless in terms of mathemati-
cal finance. All computations and programs were written in the programming package
Mathematica 12.0.

All the compared methods here are written in the programming package Mathematica
12.0 [29]. The CPU time is reported in seconds denoted TMethod.

The absolute error is computed by

ε =
∣∣vapprox(s, τ)− vref(s, τ)

∣∣, (39)

wherein vref and vapprox are the referenced and numerical solutions, respectively.
We also check the computational order of convergence (COC) of various methods

by employing the fact that if vapprox = vexact +O(∆τp), then one can approximate the
exponent p, i.e., COC, as follows [30]:

p ≈
∣∣∣∣log2

vapprox(4n + 1)− vapprox(2n + 1)
vapprox(2n + 1)− vapprox(n + 1)

∣∣∣∣, (40)

where vapprox(2n + 1) means the obtained approximated solution with 2n + 1 nodes along
time, and similarly for the others.

An efficient way can be employed here for the selection of the shape parameter in
experiments, as follows:

c = 4 max{∆si}, 1 ≤ i ≤ m− 1, (41)

where ∆si are the increments along s variable mesh. This is mainly based on the existing
discussion provided in [27]. In this way, the parameter of shape is chosen adaptively based
on the size of the mesh and its step size.

Example 1. A European call case is compared by having the settings below:

r = 5%, T = 1 year, q = 0, E = 100$, σ = 40%, α = 0.8. (42)

The reference solution is v(E, T) ' 18.1883.

The simulation results for this experiment are shown in Table 1. The numerical
solutions based on FD2 and PM are portrayed in Figures 1 and 2.

To re-check the numerical rate of convergence, here we use (40) and report the COCs
in Table 2 when m = 40 is fixed and the number of temporal discretization nodes gets
doubled each time. The results agree with the theoretical discussions.
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Table 1. Numerical results of fractional European call option pricing under Test Problem 1.

m,n vFD2 εFD2 TFD2 vPM εPM TPM

10 16.070 2.11× 100 0.01 17.378 8.10× 10−1 0.01
20 17.889 2.98× 10−1 0.02 17.694 4.94× 10−1 0.02
40 17.913 2.75× 10−1 0.16 18.003 1.85× 10−1 0.18
80 18.039 1.48× 10−1 3.96 18.213 2.46× 10−2 3.84
120 18.055 1.33× 10−1 20.02 18.190 1.64× 10−3 20.96

Table 2. Temporal COCs for different schemes under Test Problem 1.

Scheme ↓, n
→ 5 + 1 10 + 1 20 + 1 40 + 1 80 + 1 160 + 1 Mean ↓

FD2 (Price) 17.346 17.664 17.830 17.915 17.958 17.981
εFD2 8.4× 10−1 5.2× 10−1 3.5× 10−1 2.7× 10−1 2.3× 10−1 2.0× 10−1

FD2 (COC) - - 0.94 0.96 0.97 0.97 0.9

PM (Price) 17.298 17.526 17.890 18.021 18.107 18.134
εPM 8.9× 10−1 6.6× 10−1 2.2× 10−1 1.6× 10−2 8.1× 10−2 5.4× 10−2

PM (COC) - - 0.83 0.97 1.07 1.11 1.0
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Figure 1. Numerical results in Test Problem 1 for FD. (Top Left) The sparsity pattern of the coefficient
matrix in (35) based on m = n = 21. (Top Right) Time fractional option pricing curve. (Bottom Left)
The sparsity pattern of the coefficient matrix in (35) based on m = n = 101. (Bottom Right) Time
fractional option pricing curve.
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Figure 2. Numerical results in Test Problem 1 for PM. (Top Left) The sparsity pattern of the coefficient
matrix in (35) based on m = n = 21. (Top Right) Time fractional option pricing curve. (Bottom Left)
The sparsity pattern of the coefficient matrix in (35) based on m = n = 101. (Bottom Right) Time
fractional option pricing curve.

Example 2. A European put case with the following settings is evaluated and compared:

E = 100$, r = 5%, T = 2 year, q = 20%, σ = 30%, α = 0.7. (43)

The reference solution is v(E, T) ' 24.6299. The results of comparisons for this case are
provided in Table 3, which shows the fast convergence as well as the stable behavior of PM
in contrast to the fundamental method FD2. The numerical rates of convergence are also
reported in this case, showing this rate for the whole numerical procedure. Additionally,
to check the behavior of the numerical solutions by varying the time-fractional derivative,
Figure 3 is provided to re-illustrate this.

In fact, we have taken the fractional parameter as 0.8 in Example 1 and 0.7 in Example 2,
to reveal when α approaches 1; then, the fractional PDE’s solution approaches the classical
integer order case.

Table 3. Computational reports of fractional European put option pricing under Test Problem 2.

m,n vFD2 εFD2 TFD2 pFD2 vPM εPM TPM pPM

11 23.914 7.1× 10−1 0.01 - 23.631 9.9× 10−1 0.03 -
21 24.316 3.1× 10−1 0.03 - 24.117 5.1× 10−1 0.05 -
41 24.466 1.6× 10−1 0.15 1.42 24.356 2.7× 10−1 0.21 1.21
81 24.545 8.4× 10−2 4.14 0.92 24.565 6.4× 10−2 4.69 1.30

161 24.580 4.9× 10−2 63.97 1.17 24.636 6.1× 10−3 64.01 1.31
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Figure 3. Numerical results in Test Problem 2 for PM based on m = n = 21. (Left) The sparsity
pattern of the coefficient matrix in (35). (Right) Time fractional option pricing curve.

6. Concluding Summary

It is well-known that the BS PDE could not be employed in some circumstances due to
several restrictions. On the other hand, the most important merit in employing fractional
derivatives in PDE models lies in their nonlocal property since integer-order differential
operators are local operators. This feature can be employed in order to obtain better
predictions for option prices.

Accordingly, in this work we concentrated on the time-fractional BS PDE with non-
constant coefficients under the non-smooth initial conditions and contributed a scheme
for solving this PDE efficiently. Toward this purpose, a procedure based on nonuniform
discretization along space was presented. The concentration of the graded meshes for this
aim is to focus near zero along time and on the strike price along space. The application of
non-uniform meshes along the asset price for the time-fractional BS model was carried out
in this work for the first time. Then, the RBF–FD scheme based on the IMQ was studied and
its weights were introduced. The continuous time-fractional problem was transformed into
solving a set of linear algebraic equations. The convergence of the scheme was discussed
as well. Numerical experiments were provided to support the theoretical discussions and
confirm that the new method is efficient for option pricing under the fractional BS model.
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