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Abstract: The paleontological analysis of the fauna of ammonites collected in the marl–limestone
series of the Pliensbachian and The Toarcian of the Es-Saffeh Mountains (Tiaret, western Algeria)
brings new data to the Oceanic Anoxic Event of the lower Toarcian (T-OAE). During this time interval,
hypoxia is characterized by a significant disturbance of the global carbon cycle marked by a negative
excursion of the isotope δ13C, δ18O and an increase in organic carbon content (TOC). Benthic life
almost completely disappears, and microfauna (foraminifera) is absent. It should, however, be
pointed out that the few specimens of a small size (swarf forms) collected in the marly levels and the
well-identified specimens (ammonites) were attributed to the microshell forms.
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1. Introduction

The Early Toarcian Oceanic Anoxic Event (T-OAE) is recognized as one of the most
important environmental perturbations during the Mesozoic Era, with a dramatic impact
on marine biota revealed by a significant mass extinction event (MEE) in the benthic and
pelagic groups ([1–9]). It has been recognized for many principal groups of fossil organisms:
ostracods, foraminifers, bivalves, brachiopods, and ammonoids ([3,4,7,10–21]).

The sedimentary record of the T-OAE is characterized by organic-rich sediments “black
shales” associated with a distinctive negative excursion in the δ 13C recorded in organic
matter, biomarkers, marine carbonates, and fossil wood from marine and continental
sections (e.g., [6,8,22–49]).

The aim of this research is to analyze the ammonite’s assemblages of the Pliensbachian–
Toarcian limit of the Benia section (north western Algeria). The study of the ammonite’s
assemblages made it possible to analyze the morphological responses of adopted am-
monites to paleoenvironmental changes.

2. Location and Geological Setting

The study region is located at the Es Seffah Mountain (Figure 1), part of the Nador
Mountains; it is located approximately 45 km SE of Tiaret city. The Nador Mountains are
part of the pre-Atlas domain, which is bordered to the north by the external zone of the
Tellian Domain, to the south east by the Atlas Domain, to the south by the Oran High
Plains, and to the west by the Tlemcenian Domain.
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The Nador Chain is organized into three topographic units arranged from north to 
south as follows: 
- The Nador Zérange: It corresponds to an anticline with a liasic core spilled towards 

the north west; the southern flank is clearly less disturbed and shows good devel-
opment of the Jurassic series [50,51]. 

- The Faîdja Valley: It is occupied by marls from the Upper Jurassic period (Oxfordian). 
These deposits are sometimes covered by Miocene and Plio-Quaternary sediments. 

- The Taga Plateau: It occupies the southern flank of the anticlinal structure of Nador. 
It corresponds to the dolomitico-limestone formations of the Upper Jurassic period, 
which show a slight dip and a great extension towards the South. 
The ammonites studied in this work come from the Benia section, which is located 

on the southern flank of the Es Saffeh Mountain (Figure 1). The studied outcrop is raised 
near the old “Lime kiln”, which is located 2 km north western of the village of Bénia. 

 
Figure 1. Geological setting and stratigraphical succession studied: (A) Situation and geological 
map of Nador mountains; (B) Satellite image of the locality studied; (C) Synthetic lower Jurassic Figure 1. Geological setting and stratigraphical succession studied: (A) Situation and geological

map of Nador mountains; (B) Satellite image of the locality studied; (C) Synthetic lower Jurassic
lithostratigraphical column from Benia section; (D) Outcrop view of Benia section showing the
distribution of the ammonites chronozones.

The Nador Chain is organized into three topographic units arranged from north to
south as follows:

- The Nador Zérange: It corresponds to an anticline with a liasic core spilled towards the
north west; the southern flank is clearly less disturbed and shows good development
of the Jurassic series [50,51].

- The Faîdja Valley: It is occupied by marls from the Upper Jurassic period (Oxfordian).
These deposits are sometimes covered by Miocene and Plio-Quaternary sediments.

- The Taga Plateau: It occupies the southern flank of the anticlinal structure of Nador.
It corresponds to the dolomitico-limestone formations of the Upper Jurassic period,
which show a slight dip and a great extension towards the South.
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The ammonites studied in this work come from the Benia section, which is located on
the southern flank of the Es Saffeh Mountain (Figure 1). The studied outcrop is raised near
the old “Lime kiln”, which is located 2 km north western of the village of Bénia.

3. Materials and Methods

New bed-by-bed sampling in the Benia section located on the southern flank of the Es
Seffah Mountain was exhaustively carried out to achieve a high-resolution record, resulting
in 112 newly collected ammonites. Mean biometric parameters (length, width, thickness)
were measured for complete specimens. Ammonites’ associations allowed us to precisely
characterize the upper Pliensbachian and lower Toarcian biozones.

4. Lithostratigraphic Framework

The section described in this work had already been the subject of several stratigraphic
studies, which made it possible to subdivide the formation of the “Benia Marno-limestone”
into several terms (a–f), ([52–55]). In this work, we will retain the last subdivision of
established by Sebane [56], which could be summarized in two lithological units (Figure 1):

4.1. Lithological Unit I: (Sublithographic Marly Limestones)

It was a close alternation of marl and limestone grouping together the “a & b” terms of
Caratini (1970). The limestone beds were thick, more or less clayey, and sometimes compact
or crumbling. In the upper part, the limestone banks were better defined, and their upper
surfaces were highlighted by the accumulations of ammonites, belemnites, and trace fossils
of benthic organisms. The marly levels were greenish gray in color, were not very thin, and
contained abundant microfauna (foraminifera, ostacods).

The ammonites collected by Elmi et al. (1974) and Sebane (1984) within this limit
constituted two groups (Figure 2):

• The first included Arieticeras gr. Amaltheus (Oppel), Emaciaticeras type E. Villae (Gemm),
and Amaltheus margaritatus (Month). This association indicated an average Pliens-
bachian age;

• The second contained Canavaria (Canavaria) sp., Emaciaticeras sp., Canavaria (Canavaria)
gr., and Zancliana (Fuc). This association indicated the Upper Pliensbachian (Emacia-
tum Zone).

The lithological nature of the sediments (marl and limestones), as well as the abun-
dance of cephalopods and radiolarians, indicated an open marine environment.

4.2. Lithological Unit II (Marly Beds with Lumpy Levels)

It grouped together the terms (c and d) of Caratini (1970); the term c corresponded
to a greenish marl base, revealing small gray-greenish limestone levels, which passed
towards the top to small discontinuous and lumpy banks; the term d corresponded to
clayey “ammonitico-rosso”. It began with nodular to lumpy levels and was greenish
in color, becoming reddish at the top. The limestone levels were separated by lumpy
reddish levels.

The ammonites collected in this unit made it possible to distinguish two successive
intervals (Figure 2):

• The first contained Dactylioceras sp., Dactyloceras delicatum (Bean-Simp), Dactyloceras
tuberculatum (Guex), rare Hildaites gyralis (Buck), and Hildaites sp. This fauna indicated
the lower Toarcian (Polymorphum Zone);

• The second interval yielded Hildaites cf., subserpentinus (Buck), Hildaiites cf. borialis
(Seeback), and rare Harpoceratoiides sp. This association indicated the lower Toarcian
(Levisoni Zone). In its top part, we noted the appearance of the first Hildoceras gr.
lusitanicum (Merst.) indicating a middle Toarcian age (Bifron Zone).

The analysis of lithofacies and microfacies made it possible to define two types of
environment: first, a deep environment, inhabited by small brachiopods (dwarf forms). The
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sedimentation showed significantly high levels of illite and pyrite. The combination of these
characters indicated a narrow basin, having the shape of a deep gutter, poorly oxygenated
on the bottom, where we noted the presence of a certain degree of confinement ([56–58]).
Then, a relatively deep environment where a clayey sedimentation rich in lumpy facies
(Ammonitico-rosso facies) settled. The microfauna reappeared. These characters indicated
a resumption of life due to the change in conditions that became more favorable. The
transition between the first environment and the second was marked by the absence of
benthic life (azoic episode) [56].
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5. Results

The systematic study identified and described fourteen (14) genera of ammonites
belonging to six subfamilies (Figure 3): Dactylioceratinae, Hildoceratinae, Harpoceratinae,
Mercaticeratinae, Calliphylloceratinae, and Lytoceratinae.
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Catacoeloceras sp.; (k,k’) Callyphyloceras sp.; (l) Partshiceras sp. Scale: 1 cm. 
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In the Nador Mountains during this time interval, hypoxia, favorable to the accu-

mulation and preservation of organic matter, is characterized by a significant disturbance 
of the global carbon cycle marked by a negative excursion of the isotope δ13C, δ18O and an 
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mens of a small size (swarf forms) collected in the marly levels and the well-identified 
specimens (ammonites) are attributed to the microshell forms and can be interpreted as a 
response to the conditions of the reducing environment during the Lower Toarcian, par-
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tum Zone to the end of the Polymorphum Zone. The Levisoni Zone was recognized by 
the presence of Hildoceratidae [52]. During this time interval, hypoxia, favorable to the 

Figure 3. The ammonites collected: (a,a’) Harpoceras falciferum SOWERBY; (b,b’) Maconieras vigoense
BUCKMAN; (c,c’,f,f’) Hildoceras lusitanicum MEISTER; (d,d’) Hildoceras sp.; (e,e’) Hildoceras suble-
visoni FUCINI; (g,g’) Mercaticeras sp.; (h,h’) Dactylioceras sp.; (i) Peronoceras fibulatum SOWERBY;
(j,j’) Catacoeloceras sp.; (k,k’) Callyphyloceras sp.; (l) Partshiceras sp. Scale: 1 cm.

The faunas studied were identical to those known in Western Europe and occupied
the same stratigraphic positions. The vertical extension showed two important horizontals:
the first, at the base of horizon XIII, corresponded to the extinction of the Hildoceratinae and
the appearance of Hammatoceratidae and Grammoceratinae; the second, at the base of horizon
XXII, marked the disappearance of Grammoceratinae and the emergence of Dumortiinae.

The Dactylioceratidae, Harpoceratidae, and Arieticeratidae collected in the Es-Saffeh Moun-
tains section made it possible to recognize all the passage terms from the Emaciatum Zone
to the end of the Polymorphum Zone. The Levisoni Zone was recognized by the presence
of Hildoceratidae.

6. Discussion

In the Nador Mountains during this time interval, hypoxia, favorable to the accumu-
lation and preservation of organic matter, is characterized by a significant disturbance of
the global carbon cycle marked by a negative excursion of the isotope δ13C, δ18O and an
increase in organic carbon content (TOC).

Benthic life almost completely disappears, and microfauna (foraminifera) is
absent ([56–59]). Although the existence of a sexual dimorphism of the Dactylioceratidae
is often discussed by certain authors [60], it should, however, be pointed out that the few
specimens of a small size (swarf forms) collected in the marly levels and the well-identified
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specimens (ammonites) are attributed to the microshell forms and can be interpreted as
a response to the conditions of the reducing environment during the Lower Toarcian,
particularly at the end of the Polymorphum Zone and the beginning of the Levisoni Zone.

7. Conclusions

The paleontological analysis of the fauna of ammonites collected in the marl–limestone
series of the Pliensbachian and The Toarcian of the Es-Saffeh Mountains (Nador Mountais,
western Algeria) brings new data to the Oceanic Anoxic Event of the lower Toarcian (T-
OAE), well known over a significant part of the North West Europe and West Tethys shelves
and basins [60].

The Dactylioceratidae, Harpoceratidae, and Arieticeratidae collected in the Es-Saffeh Moun-
tains section made it possible to recognize all the passage terms from the Emaciatum Zone
to the end of the Polymorphum Zone. The Levisoni Zone was recognized by the presence
of Hildoceratidae [52]. During this time interval, hypoxia, favorable to the accumulation and
preservation of organic matter, was characterized by a significant disturbance of the global
carbon cycle, marked by an increase in organic carbon content (TOC). Benthic life almost
completely disappeared, and microfauna (foraminifera) were absent ([56,59]). It should,
however, be pointed out that the few specimens of a small size (swarf forms) collected
in the marly levels and the well-identified specimens (ammonites) were attributed to the
microshell forms and could be interpreted as a response to the conditions of the reducing
environment during the Lower Toarcian, particularly at the end of the Polymorphum Zone
and the beginning of the Levisoni Zone.

These levels were correlated to those described in the North West Tethyan basins,
where this global anoxic event (Oceanic Anoxic Event: OAE) was recorded [50]. During
this period, the environmental conditions were also related to the Liasic tectonic event
(eustatism), which played a key role in the paleogeographic evolution in North Africa
and Europe.
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