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Abstract: This paper presents a methodology for generating virtual ground control points (VGCPs)
using a binocular camera mounted on a drone. We compare the measurements of the binocular
and monocular cameras between the classical method and the proposed one. This work aims to
decrease human processing times while maintaining a reduced root mean square error (RMSE) for
3D reconstruction. Additionally, we propose utilizing COLMAP to enhance reconstruction accuracy
by solely utilizing a sparse point cloud. The results demonstrate that implementing COLMAP for
pre-processing reduces the RMSE by up to 16.9% in most cases. We prove that VGCPs further reduce
the RMSE by up to 61.08%.

Keywords: photogrammetry; ground control points; structure from motion

1. Introduction

Digital elevation models (DEMs) can be generated through two methods [1]: (a) direct
methods, which require specialized instruments such as total stations and are typically
undertaken by surveyors, and (b) indirect methods, which utilize modern digital tech-
nologies like terrestrial laser sensors, drones, unmanned aerial vehicles, airplanes, and
satellites [2–4]. Although drones have become increasingly popular due to their accessibil-
ity and versatility, elevation models obtained from drones may not consistently achieve
satisfactory levels of precision. Various techniques may be employed to enhance the accu-
racy of the measurements, including the utilization of ground control points (GCPs) or the
integration of additional sensors, such as real-time kinematic (RTK) sensors.

A GCP is a mark on the ground for which the global position is known with centimeter-
level accuracy. There are two types of GCPs: standardized and non-standardized. The
former use contrasting colors against the ground, such as a grid with two black and two
white squares interspersed [5], or in some cases, different QR patterns for each GCP [6],
which can be detected by specialized software. Non-standardized GCPs can be generated
using other types of markings, such as fences or traffic signs. The traditional approach to
detecting these points is manual, whereby a user searches for the central point of the GCP
in the photograph and marks it, then searches for the same point in all the photographs in
which it appears, repeating this process for all the GCPs. While this process is acceptable
in terms of time for small reconstructions, it becomes tedious and prone to human errors
due to fatigue in larger projects that have many GCPs and thousands of images. There
are automatic approaches for standardized GCPs since they have less complexity when
searching for patterns [5–7], because there is already something predetermined to search
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for. Nevertheless, there are also automatic approaches for non-standardized GCPs, which
have the advantage of requiring less logistics since static objects within the same area can
serve as GCPs. For instance, Ref. [8] employed an edge detection approach to extract a
coastline and identified GCPs by line matching. In [9,10], template matching was used to
perform an automated search for light poles and use them as GCPs. In [11], a four-step
process was employed to retrieve the position of a point of interest in all images in which
it appears to apply it to traffic signs such as crosswalks. Moreover, Ref. [12] utilized the
Harris algorithm, a general purpose corner detector, to automate the detection process,
enabling arbitrary bright, isolated objects to be marked as GCPs.

Different positioning techniques have been sought to increase accuracy by dispensing
with GCPs or reducing their use to a minimum. Some examples are real-time kinematics
(RTK) and post-processing kinematics (PPK), which use information obtained from fixed
stations and satellites to determine the real-time position of a drone with a minimal margin
of error. However, according to [13], the improvement between using the RTK technique
versus using GCPs is minimal and requires more expensive equipment, so GCPs still play
a valuable role.

In the state of the art, alternatives to replace RTK sensors have been proposed, as
described in the work of [14,15]. In some works, the camera position is retrieved at differ-
ent times, considering the sampled plot’s dimensions, particularly the distance between
furrows. [16] propose using three drones together to improve the accuracy of a lead drone
by triangulation between the lead drone, a satellite, and the other two drones. Another area
of research focuses on enhancing photogrammetry algorithms, particularly those related to
feature point detection, description, and matching. Refs. [17–20] present examples of novel
algorithms that make use of convolutional neural networks (CNNs) to detect and describe
these invariant local features. Ref. [18] proposes the detection of key points in a format
similar to [21] but in a shorter time, at the cost of reducing the number of detected points.
In the field of feature-matching algorithms, there has also been a large number of recent
contributions [22–25]. SuperGlue [23] is remarkable for making more consistent feature
correspondences, taking into account the geometric transformations of the 3D world. In
addition, this algorithm works with SuperPoint [23] to achieve a data association system
with low error, albeit with a limited number of detected points.

In this paper, we propose the integration of different libraries, techniques, and a
drone for DEM creation, including (a) the OpenDroneMap (ODM) system [26] (which
includes OpenSFM and work with the monocular cameras for generating the point cloud),
(b) the creation of virtual ground control points (VGCPs) employing a binocular camera,
and (c) the utilization of the mid-range-cost DJI MAVIC PRO Platinum drone [27]. This
combination of resources aims to generate DEMs with a relative mean squared error (RMSE)
of less than 10 cm at a 100 m altitude. This value meets the guidelines set by [28,29]. This
proposal proposes a novel type of non-standardized automated GCP that will reduce the
time required for human processing and the reliance on conventional GCPs that typically
necessitate professional GPS equipment. The study proposes using a binocular camera
with GCPs to acquire position information through the drone’s onboard GPS, which can
reduce the dependency on external devices. In addition, pre-processing with COLMAP
was tested.

2. Materials and Methods

Figure 1 displays the photogrammetric methodology utilized in this study. The blue-
bordered figures represent the proposed phases related to creating and managing VGCPs.
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Figure 1. Methodology of a typical photogrammetry process with the proposed phases highlighted
with blue borders.

Our methodology is as follows:

1. The process starts with an image database from which a sparse point cloud is gener-
ated using OpenSFM [30].

2. From this sparse cloud, a dense cloud is computed by the OpenMVS library [31,32].
3. Outliers are removed using a middle-pass filter.
4. The point cloud is converted into a mesh.
5. The resulting mesh is textured using the Poisson tool [33] to make the reconstruction

more realistic.
6. A georeferencing process is performed in global coordinates according to the EPSG:4326

WGS 84 [34] standard (in degrees).
7. The reconstruction is checked for GCPs. If GCPs are present, a digital elevation model

is generated, an orthophoto of the reconstruction is created, and a quality report is
produced (classic process). On the other hand, if the reconstruction does not have
GCPs, the distance between some points of the image is checked to map them inside
the image (with the binocular camera) and thus generate VGCPs using the method
proposed in the following section.

8. Once the VGCPs are obtained, the process is repeated for the subsequent reconstruction.

2.1. Pre-Processing with COLMAP Library

Figure 2 shows the pre-processing adopted using COLMAP and the Libimage-exiftool-
perl library [35], which allows modifying and adding the EXIF parameters of the image for
the monocular dataset. The binocular point cloud is generated directly from the two input
images, requiring no additional processing. The steps are as follows:

1. The process starts with an image database from which a sparse point cloud is gener-
ated using an incremental reconstruction technique with the COLMAP library.

2. A database is created with the information of all points of the point cloud and the
information of the cameras calculated by COLMAP.

3. Using the Libimage-exiftool-perl library [35], the Exchangeable image file format
(EXIF) metadata of each image is modified, especially the GPS information of
the picture.
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Figure 2. Image pre-processing using COLMAP.

2.2. Re-Projections from Point Cloud to Image

To convert point cloud points into image coordinates for a specific image, we carry
out the following stages, see Figure 3.

1. The process starts with either a binocular or monocular point cloud.
2. Each point in the cloud is re-projected onto the query image and normalized.
3. Any points that are outside the image dimensions are then removed. For instance, one

can calculate the precise coordinates of a point for the query image x as 5454 and 8799
during the re-projection process. However, since the image resolution is 3400 × 2500,
any points identified within the query image that fall outside these dimensions will
be eliminated.

4. The process is repeated for each image of the dataset.
5. The output data are stored in a single file per image, with the format consisting of

the image name, point number, and local and global coordinates (if monocular). For
each binocular image, a file is produced in the following format: local coordinates
followed by global coordinates. The different formatting arises because binocular
images contain more points than monocular images.

Further details and re-projected point images can be found in Appendix A: Re-
projection results.

Point Cloud Query image
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Figure 3. Process to convert a new point cloud into local and global image coordinates.

2.3. Proposed Methodology for the Generation of Virtual Ground Control Points (VGCPs)

Our approach is to generate VGCPs using the distances calculated by the binocular
camera and SFM from the same points within the reconstruction in geodetic coordinates:

1. An image bank is acquired, both with the binocular and monocular cameras. The
monocular acquisition comes from a flight at a higher altitude (50 m, 100 m) of the
whole area to be reconstructed, with an overlap of 80% (height and overlap are fixed
considering [36–40]). The binocular camera images were acquired during a second
flight at a lower altitude (5 m, 10 m). We obtain some central points of the area to
be reconstructed, for example, about 4 points for a flat terrain of 20 thousand square
meters. Each point is chosen to be 20 m apart, trying to connect the points with several
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images collected by the cameras. The data of the binocular flight were saved in SVO
format, which were decompressed after the flight.

2. Apply COLMAP pre-processing (feature extraction, matching, and geometric verifica-
tion) to the monocular images.

3. Generate a sparse reconstruction from a set of monocular images using the OpenSFM
module of Web OpenDroneMap.

4. Perform a conversion from global coordinates EPSG:4326 WGS 84 [34] (in degrees) to
zone coordinates EPSG:32614 WGS 84/UTM zone 14N [41] (in meters). The conver-
sion is performed using the pyproj library [42], a Python interface to PROJ.

5. Convert the point cloud to points using the monocular camera image.
6. Generation of one point cloud per query image from the binocular camera.
7. Convert the point cloud to points via the binocular camera image.
8. The correspondences are computed for each pair of images in which a VGCP is to

be generated.
9. Eliminate from the list of correspondences all those that do not contain a point in

the point cloud both binocularly and monocularly, taking into account queryIdx
and trainIdx, which are parameters of the correspondence algorithm, as well as the
RANSAC matrix.

10. Search for an initial point, taking into account the position of the point and the number
of images in which the point appears.

11. Find the points surrounding the initial point with a radius of 500 pixels.
12. For each point, find the difference in the x, y, and z axes between the binocular and

monocular coordinates and calculate the average error.
13. Correct the distance error by shifting the coordinates of the starting point considering

the average error per axis.
14. Convert to EPSG:4326 WGS 84 [34] format (global coordinates in degrees).
15. Store the information in the following order: (1) the geodetic coordinates of the

rectified point, (2) the spatial position of the rectified point in the image, (3) the name
of the image within the image database, and (4) the VGCP number it represents,
taking into account all images. This storage process is performed for each image
containing this reference object and all reference objects.

Figure 4 shows the pre-processing carried out by the monocular camera to generate
the re-projections and store them all in a single text file.

Figure 5 shows the process carried out by the binocular camera to generate the re-
projections and store them in a text file for each image.

In summary, generating VGCPs using a binocular and a monocular camera involves
the following steps: 1. the generation of a sparse reconstruction of the monocular images;
2. the re-projection of those points inside the original images, with the resulting information
saved in a text file; 3. the depth calculation of each pair of binocular images, using stereo
techniques (ZED SDK), is saved in a format that includes the coordinates (x, y, z); 4. the
search for correspondences between monocular and binocular images, selecting the images
with the most significant degree of correspondence; 5. the elimination of points not present
in the monocular and binocular point cloud (the disparity-calculated one); 6. the selection
of a point found in the center of as many monocular images as possible (using the text file
from step 2); 7. correction of the position of the selected point, considering the position of
the other points found around it, achieved by measuring the position of the selected point
against the other points found around it, using the binocular camera as a reference; and
8. saving the information in GCP format. Figure 6 shows a flowchart with a simplified
algorithm to generate correspondences, considering the information generated in the
previous stages.
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2.4. Acquisition of Datasets
2.4.1. Monocular Drone

The DJI Mavic Pro Platinum [27] is a monocular drone with a 12.35 M CMOS 1/2.3′′

sensor equipped camera that has a focal length of 1/2.3′′ and captures images of size
4000 × 3000, including EXIF information. We used it in conjunction with the DroneDeploy
mobile application [43]. This software generates flight paths while considering the desired
height and image overlap. Figure 7 displays an image of the drone.

Figure 7. DJI MAVIC Pro Platinum

2.4.2. Binocular Drone

We employed two binocular drones, a DJI AGRAS T10 [44] and a DJI Inspire 1 [27].
Both drones were equipped with a binocular camera. The AGRAS T10’s camera was
mounted with a mechanical stabilizer at the bottom, at the height of the actuator. The
Inspire 1’s camera was located at the height of the ultrasonic sensor. This camera is the
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ZED 2 [45], providing a 2208 × 1242 resolution per lens in JPG format, with a GSD ranging
from 0.5 cm to 1 cm. It is noteworthy that the camera lacks EXIF information. The JETSON
NANO [46] is responsible for capturing and storing images in an SVO format from the ZED
2 controller card, which is originally from Stereolabs. The flight plan involves descending
gradually from 10 m to 2 m while stopping at 8, 6, and 4 m. Specific points on the plot are
targeted during this process.

2.4.3. Monocular Datasets

Two flights were conducted over two plots in Jojutla, a municipality in the Mexican
state of Morelos. The heights of each flight were 50 m, 75 m, and 100 m. These heights were
chosen based on typical photogrammetry flights of the state of the art, ranging from 50
to 300 m [36,39,47,48]. However, limitations of the DJI MAVIC Pro Platinum drone used
for this study restrict it to flying only up to a maximum height of 100 m above ground
level [37].

(a) Dataset 1 was acquired on 19 November 2022, between 7:00 and 7:40 a.m. It
consisted of 58 photos taken at 100 m, 86 photos taken at 75 m, and 146 photos taken at
50 m; see images for reference in Figure 8.

Figure 8. Three sample images of dataset 1 captured with the monocular camera.

(b) Dataset 2 was acquired on December 1, 2022, between 4:00 and 4:30 p.m. It
consisted of 62 photos taken at 100 m, 81 at 75 m, and 142 photos taken at 50 m; see images
for reference in Figure 9.

Figure 9. Three sample images of dataset 2 gathered with the monocular camera.

2.4.4. Binocular Datasets

(a) Dataset 3 consists of three flights conducted over a plot of land containing two-
month-old cane in Tlaltizapán, Morelos, Mexico. The first two flights employed a binocular
camera and covered four predetermined locations. The drone started at a height of 10 m
and progressively reduced altitude to 2 m before ascending to 10 m and proceeding with
the flight. The primary distinction between the initial two flights lies in using a mechanical
stabilizer in one of them, while the other did not employ one. Specifically, the first flight
had the camera mounted directly onto the chassis. In contrast, the second flight attached
the camera to the mechanical stabilizer to test whether the drone’s high frequencies would
hurt the stabilizer (refer to Figure 10). The third flight of the monocular drone occurred
at an altitude of 100 m and was impeded by a bird attack, preventing it from flying lower.
The photographs were captured between 4:00 and 4:40 p.m. on 20 May 2023. The pictures
are in JPG format with a resolution of 4000 × 3000 and a GSD of 3 cm. The geolocation of
the photographs is available in the EXIF data. There are 46 images for the monocular flight
and 2000 images for each binocular flight. The large volume of this collection is because
the ZED camera constantly captures pictures, as there is no option to capture them at a
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specific moment. The main reason for the different format is that the monocular camera
has 4 K (4000 × 3000) resolution, and the ZED camera is limited to 2 K (2208 × 1242 per
lens). Figure 11 illustrates examples of these images.

Figure 10. Example of a binocular image from dataset 3.

Figure 11. Examples of three monocular images from dataset 3.

(b) Dataset 4 consists of three flights conducted over a plot of agave in Zapopan,
Jalisco, Mexico. The first two flights utilized a monocular camera and followed a flight path
defined by the DroneDeploy application with an 80% overlap. They were conducted at
100 m and 50 m heights, respectively. The third flight was conducted by the binocular drone,
which followed a flight path similar to the monocular drone but manually at the height
of 10 m, and there are two thousand images, as in Dataset 3 (see Figure 12). This flight
was performed to select images with better matches between monocular and binocular in
post-processing. The photographs were taken on 1 December 2023, from 1:00 to 1:30 p.m.
Four pieces of green cardboard, each measuring 65 cm × 50 cm and featuring a black
central point, were distributed within the field. The photographs, which have a resolution
of 4000 × 3000 and are in JPG format, have a GSD of 3 cm, and their geolocation is included
in the EXIF. A total of 138 images were obtained for the monocular flights. An example can
be seen in Figure 13.

Figure 12. Example of a binocular image from dataset 4.

Figure 13. Examples of three monocular images from dataset 4.

2.5. Metrics

A photogrammetric system must achieve both relative and absolute accuracy in
its reconstruction. This implies consistent re-projection of its points both locally and
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geographically. Figure 14 illustrates one house with a good relative accuracy, because
the dimensions of a house can be measured accurately in an arbitrary coordinate system.
However, the absolute accuracy is poor or not known, because the house is not represented
in the correct geographical reference coordinate system.

Figure 14. The relative accuracy is good, but the absolute accuracy is poor.

2.5.1. RMSE

The RMSE (root mean square error) measures the difference between estimates and
real values by squaring the differences and calculating their average. Finally, as its name
suggests, the square root of the resulting average must be calculated to quantify the error’s
magnitude accurately [49–51]. The RMSE is a measure of the magnitude of the error. In
photogrammetry, the GCPs provide the global position within a few centimeters of error.
Some GCPs are used to improve the accuracy of the DEM, while others are used to measure
the error. The latter are calculated using SFM, and a comparison is made between the
measured value of the GCP on the ground and the calculated value for each axis, using
Equation (1):

RMSEX =

√
∑n

i=1(Xoi − XGNSSi)2

n
(1)

where n is the number of GCPs evaluated, Xoi is the x-axis for the i -th GCP within the
DEM, and XGNSSi is the x-axis for the i -th GCP measured by the GNSS.

2.5.2. CE90 and LE90 Metrics

The CE90 and the LE90 metrics are precision indicators. CE90 represents the circular
error at the 90th percentile, recording the percentage of measured points with a horizontal
error less than the specified CE90 value. On the other hand, LE90 denotes the linear error
at the 90th percentile, revealing that a minimum of 90 percent of vertical errors lie within
the stated LE90 value. In other words, CE90 and LE90 are equivalent, with CE90 being for
the x-axis and LE90 for the y-axis [52] (Equation (2))

CE90 =
90 ∗ N

100
(2)

where N represents the total measurements.

2.5.3. Development Tools

The following tools were used in the development of the project: A computer with
the following components: INTEL I7 8700k, NVIDIA RTX 3060, XPG D40 24 GB RAM
3200 MHz, XPG S40G 512 GB m.2; Docker [53]; OpenCV [54]; ODM [26]; Ubuntu 20.04 [55].

3. Results

Formula 3 was used to calculate the percentage differences and facilitate understand-
ing of the data. A positive result means that the reconstruction’s accuracy increased using
the VGCPs.

AD =

n

∑
i=1

((
O − M

O
) ∗ 100)

n
(3)
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where AD stands for the average difference, O represents the original value of metrics in
the reconstruction without VGCPs, M represents the value of metrics in the reconstruction
using VGCPs, and n represents all metrics (absolute RMSE, relative RMSE, CE90, and LE90).

3.1. Results of COLMAP Pre-processing

To determine whether there are disparities in utilizing COLMAP image pre-processing,
we produced 12 reconstructions drawn from Dataset 1 and Dataset 2. Six of the recon-
structions used pre-processing, while the other six did not. No virtual control points
were generated during the tests, as our focus was on examining the effectiveness of the
pre-processing. As previously stated, we evaluated the performance of applying or not
applying COLMAP for each height (100, 75, and 50 m) in Dataset 1 and Dataset 2, consisting
of 269 images. Tables 1 and 2 presents the results obtained from the above-mentioned
experiments in Dataset 1 and Dataset 2 respectively.

Table 1. Results of COLMAP pre-processing for Dataset 1, where ‘W/o’ means without, ‘W’ mean
with, and ‘Diff’ means difference in meters.

Process 100 m 75 m 50 m

W/o W Diff W/o W Diff W/o W Diff

Absolute RMSE 0.69 0.6 −0.24 0.56 0.57 −1.55 0.51 0.53 −3.04

Relative RMSE 0.11 0.04 61.06 0.053 0.052 1.26 0.027 0.025 8.54

CE90 0.71 0.83 −16.57 0.376 0.384 −2.26 0.36 0.38 −5.02

LE90 0.54 0.41 23.45 0.67 0.68 −1.88 0.67 0.64 4.69

Average difference 16.9% −1.1% 1.29%

Table 2. Results of COLMAP pre-processing for Dataset 2, where W/o means without, W means
with, and Diff means difference in meters.

Process 100 m 75 m 50 m

W/o W Diff W/o W Diff W/o W Diff

Absolute RMSE 0.637 0.656 −2.984 0.551 0.547 0.666 0.463 0.466 −0.576

Relative RMSE 0.125 0.121 3.191 0.043 0.028 36.154 0.025 0.022 13.158

CE90 0.659 0.696 −5.539 0.633 0.453 28.436 0.345 0.356 −3.188

LE90 0.659 0.666 −0.986 0.579 0.568 1.901 0.669 0.639 4.484

Average difference −1.6% 16.8% 3.47%

The use of COLMAP for data pre-processing generally increases accuracy. However,
if reconstruction speed takes priority over quality, it is not recommended, as the average
increase in accuracy is only 5.96%. Conversely, if processing time is not a concern, pre-
processing with COLMAP proves effective.

3.2. Results of Virtual Ground Control Points in Dataset 3

To evaluate the accuracy gained by incorporating the VGCPs in Dataset 3, four recon-
structions were generated for each flight: (a) one considering the VGCPs, (b) one without
them, (c) one considering the VGCPs but using COLMAP pre-processing, and (d) one
without them but using COLMAP pre-processing. To calculate the percentage difference
and facilitate the understanding of the data, Equation (3) was used, where a positive result
means that the accuracy of the reconstruction increases with the use of the VGCPs.

Table 3 presents the results obtained from the above-mentioned experiments.
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Table 3. Impact of using VGCPs and COLMAP on Dataset 3 in meters.

Process Original Only VGCPs COLMAP COLMAP + VGCPs

Absolute RMSE 0.7227 0.5223 0.7450 0.7107

Relative RMSE 0.0967 0.0983 0.0967 0.0937

CE90 0.7930 0.5905 0.7950 0.5720

LE90 0.4440 0.2835 0.4390 0.2255

Average difference 0 21.9204% −0.5541% 20.4611%

Table 3 demonstrates that using only VGCPs reduces the RMSE in the test cases by
up to 21.9%. However, when COLMAP pre-processing is used for this dataset, the RMSE
increases further, resulting in a negative difference of up to 0.55%.

3.3. Analysis of the Creation of Virtual Ground Control Points in Dataset 4

Two reconstructions were generated for each flight to evaluate the accuracy obtained
by incorporating the VGCPs in dataset 4: (a) one considering only the VGCPs and (b) one
without them. Equation (3) was used, in the same way as in the experiment on Dataset 3,
to calculate the percentage difference and facilitate the understanding of the data. Table 4
presents the results obtained from the above-mentioned experiments.

Table 4. Creation of VGCPs in Dataset 4 at flight heights of 50 and 100 m, where ‘W/o’ means without,
‘W’ means with, and ‘Diff’ means difference in meters.

Process 100 m 50 m

W/o W Diff W/o W Diff

Absolute RMSE 0.41 0.43 −5.65 0.42 0.26 36.93

Relative RMSE 0.044 0.039 10.6 0.103 0.064 37.62

CE90 0.42 0.21 49.88 0.199 0.039 80.4

LE90 0.41 0.135 67.07 0.887 0.094 89.42

Average difference 30.47% 61.08%

Table 4 demonstrates that utilizing VGCPs can decrease the RMSE by up to 61.08%

4. Discussion

Comparing the results obtained in this article with those of the state of the art is chal-
lenging because each article presents its own dataset. These datasets can vary significantly,
as shown in [56], where the authors present a method to enhance the accuracy of maritime
reconstructions using both sonar and SFM. In addition, it is essential to note that some arti-
cles present reconstructions with different conditions than those used in this study, such as
flight heights of up to one thousand meters or the use of high-performance cameras [57–60].
Therefore, we focused on articles that utilized commercial drones, which are commonly
used in typical reconstructions that do not require millimeter-level accuracy. However, they
have used RTK or GCPs to improve their reconstruction devices, which are expensive or
inaccessible to many people. Table 5 presents the results reported in the literature.
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Table 5. Comparison between the state of the art and our method. Where: The asterisk (*) represents
information that the author did not provide.

Article Height Camera GCP Sensors Overlap Metrics Algorithm RMSE

[47] 120 m Sensefly eBee Plus 34 * 75% RMSE Pix4D 0.2–1.1 m

[48] 80 m DJI spark 0 * 90% RMSE Pix4D 97 cm

[37] 61 m DJI Mavic 2 Pro 9 * 75% RMSE Pix4D 21–96 cm

[38] 50 m 4 differents cameras 7 * * RMSE Pix4D 3–88 cm

[61] 75–120 m DJI Mavic 2 Pro 9 * 80% RMSE Pix4D 5.5–31.6 cm

[62] 40–50 m DJI Phantom 3
Advanced 20 * 80% RMSE Pix4D 11.3–18.2 cm

[39] 50–100 m DJI Phantom IV y DJI
Phantom IV RTK 0 RTK 80% RMSE Pix4D 2.8–15.6 cm

[63] 75 m DJI Phantom 4 15–20 * 80% RMSE Pix4D 8.1–14.6 cm

Ours 50–100 m DJI MAVIC PRO
PLATINUM 4 Binocular

camera 80% RMSE ODM 3.9–9.3 cm

[64] 70 m DJI Mavic Pro
Platinum 21 * 70% RMSE Pix4D 4.2–6.2 cm

[36] 50 m DJI Phantom 4 Pro 0 * 85% RMSE Pix4D *

Table 5 shows that our proposed methodology is among the top three performers
despite using fewer GCPs and not utilizing an RTK sensor. This suggests a promising
future for this technology. A binocular drone mounted on a commercial drone’s body can
significantly improve data acquisition. This approach avoids sudden movements on the
ground and makes it easier to plan a flight path. Monocular acquisition requires descending
in a straight line to acquire the binocular image, which can hinder the performance of the
proposed methodology. The usage of the binocular camera leads to the generation of virtual
ground control points, which offer numerous advantages. Firstly, no improvements are
needed. Binocular cameras do not require marks to be placed on the ground as is typically
needed, resulting in time savings. To ensure accuracy (1–10 cm error), the GPS receiver
must remain within 15 min to 48 h per point [65], depending on weather conditions and
the desired level of precision. It is unnecessary to manually locate each GCP within all
image bank images, as this process is automated. A file is then provided which indicates
the photos in which the VGCP is located, along with its coordinates within those images.
The drone avoids exposing the user to risk by automatically generating virtual ground
control points in difficult-to-access areas like steep slopes or cliffs, eliminating the need
for manual placement and the associated process. However, this proposal offers benefits
only in terms of relative accuracy, as it employs the distances identified by the binocular
camera, which are within the monocular reconstruction, as a size control. In future work,
and to reduce the absolute error, it is proposed to include a typical ground control point to
triangulate the positions.

5. Conclusions

This paper presents a methodology for generating ground control points virtually,
using information from a binocular drone and SFM-generated data from monocular images
of a commercial drone. The aim is to reduce the reliance on typical GCPs. We propose
a methodology for establishing co-correspondences between two point clouds contain-
ing different measurement systems: binocular and monocular. This is achieved using
minutiae typical to both point clouds, as shown in Figure 6. Additionally, we propose a pre-
processing step using COLMAP to refine the positions calculated by the GPS. The results
demonstrate (Tables 3 and 4) that using COLMAP for pre-processing generally improves
accuracy by up to 16%. However, it may have a negative impact in some cases, but only
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up to 1.5%. Therefore, using COLMAP as a pre-processing step is feasible. Additionally,
co-correspondences can generate virtual ground control points (VGCPs) that can be added
to reconstructions as typical GCPs, resulting in decreased RMSEs. Additionally, using
VGCPs reduces the data acquisition time in the field by eliminating the need to place or
globally measure markers physically. It also saves time in the human pre-processing of
images by automatically identifying and marking GCPs in all photos, eliminating the need
for manual searching and marking.
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Appendix A. Re-Projection Results

Figures A1–A3 show the points of the re-projected point cloud in each image in image
bank 1; these points have the same spatial location between images (on the ground). In
the areas of overlap, the same characteristics are observed, and it is interesting to note
how they transition between images. Areas of overlap permit the system to automatically
detect common characteristics (key points) through system analysis, which selects the most
optimal characteristics. In contrast, manual methods necessitate that the user propose the
points of interest in the images.

Figure A1. Example of re-projection 1.

https://huggingface.co/datasets/Ariel9874/Generation-of-Virtual-Ground-Control-Points-using-a-Binocular-Camera-Datasets
https://huggingface.co/datasets/Ariel9874/Generation-of-Virtual-Ground-Control-Points-using-a-Binocular-Camera-Datasets
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Figure A2. Example of re-projection 2.

Figure A3. Example of re-projection 3.
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