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Abstract: In data-driven systems, data exploration is imperative for making real-time decisions.
However, big data are stored in massive databases that are difficult to retrieve. Approximate Query
Processing (AQP) is a technique for providing approximate answers to aggregate queries based on
a summary of the data (synopsis) that closely replicates the behavior of the actual data; this can
be useful when an approximate answer to queries is acceptable in a fraction of the real execution
time. This study explores the novel utilization of a Generative Adversarial Network (GAN) for the
generation of tabular data that can be employed in AQP for synopsis construction. We thoroughly
investigate the unique challenges posed by the synopsis construction process, including maintaining
data distribution characteristics, handling bounded continuous and categorical data, and preserving
semantic relationships, and we then introduce the advancement of tabular GAN architectures that
overcome these challenges. Furthermore, we propose and validate a suite of statistical metrics
tailored for assessing the reliability of GAN-generated synopses. Our findings demonstrate that
advanced GAN variations exhibit a promising capacity to generate high-fidelity synopses, potentially
transforming the efficiency and effectiveness of AQP in data-driven systems.

Keywords: generative adversarial network (GAN); approximate query processing (AQP); data
synopsis; tabular data generators; database systems; data-driven decision-making systems

1. Introduction

Research and business today rely heavily on big data and their analysis. However, big
data are stored in massive databases that make them difficult to retrieve, analyze, share, and
visualize using standard database query tools [1]. For data-driven systems, data exploration
is imperative for making real-time decisions and understanding the knowledge contained
in the data. However, supporting these systems can be costly, especially regarding big data.
One of the most critical challenges posed by big data is the high computational cost associ-
ated with data exploration and real-time query processing [2]. To assist with the analysis of
big data, several systems have been developed, such as Apache Hive, which typically takes
a considerable amount of time to respond to analytical queries [3]. However, approximate
results can sometimes be provided for a query in a fraction of the execution time in order to
resolve this issue, particularly for aggregation queries. This is because aggregation queries
are typically designed to provide a big picture for a large amount of information without
having to compute an exact answer [4]. The majority of analytical queries require aggregate
answers (such as sum(), avg(), count(), min(), and max()) for a given set of queries (joined or
nested queries) over one or more categories (grouped by columns) on a subset (where and
the existence of) for big data. Approximate Query Processing (AQP) comes to the rescue by
identifying a summary of the population (also known as a synopsis) for discovering trends
and aggregate functions [5]. Online aggregations and offline precomputed synopses are
the two primary categories that can be used to classify existing AQP approaches. Offline
techniques summarize the data distribution and return the approximate results by running
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queries on these synopses. However, online aggregation techniques progressively generate
synopses and return approximate results while data are processing. The traditional ap-
proach for both categories uses data distribution to generate a subset of data via statistical
methods such as sampling methods [2]. One novel technique for AQP is to take advantage
of machine learning to further reduce the execution time, improve accuracy, and support
all types of aggregate functions. For instance, the DBEst Query processing engine [6] trains
models, notably regression models and density estimators, that provide accurate, efficient,
and cost-effective responses to different types of aggregate queries. Learning-based AQP
(LAQP) [7] and ML-AQP [8] methods build machine learning models based on historically
executed queries. The former builds an error model to predict each incoming query’s
sampling-based estimation error, whereas the latter trains models that learn patterns to
predict future query results with a bound error by applying prediction intervals constructed
using Quantile Regression models. Deep Generative Models (DGMs) are instrumental for
approximating complex, high-dimensional probability distributions of data populations [9].
By estimating the probability of each observation, DGMs facilitate the generation of data
synopses that faithfully represent underlying distributions. Thirumuruganathan et al. [10]
have leveraged DGMs for Approximate Query Processing (AQP) using Variational Au-
toencoder (VAE). VAE [11] generates new data by encoding input distributions into an
interpretable latent space wherein auto-encoders recreate the data. Our study introduces
a novel approach by employing the Generative Adversarial Network (GAN), another
state-of-the-art algorithm, for AQP. Unlike VAE, GAN follows a direct implicit density
model, allowing it to sample directly from the model’s provided distribution [12] without
the need for explicit estimation of the data distribution [13]. This fundamental difference
in methodology positions GANs as a more suitable option for AQP in certain contexts.
Our research explores and substantiates this suitability and demonstrates how GANs can
efficiently and effectively create high-fidelity data synopses, thus potentially transforming
AQP applications. This distinctive use of GANs in AQP highlights the innovative aspect
of our research, setting it apart from existing methods and contributing to the field with a
unique and precise solution.

The remainder of this paper is structured to methodically explore the intersection
of synopsis creation in APQ and a Generative Adversarial Network (GAN). Section 2
explores the theoretical underpinnings of database synopses and AQP alongside a technical
exposition on tabular GAN and sets the stage for understanding their relevance and
application. Section 3 identifies and discusses the inherent challenges in constructing
synopses from relational databases and underscores the need for innovative approaches.
Section 4 proposes a GAN-based solution that demonstrates how tabular GAN-based
generators can effectively meet these synopsis creation challenges. Section 5 details the
evaluation metrics for assessing the fidelity and utility of the generated synopses, including
error estimation techniques. The paper concludes with Section 6, which synthesizes our
findings and reflections on the potential of tabular GAN to enhance real-time decision
making in data-intensive environments.

2. Background

This section provides the necessary foundation for comprehending the fundamental
principles underlying the data synopses in APQ and the novel utilization of GAN in the
context of tabular data.

2.1. Data Synopsis in Databases

Query processing refers to the process of the compilation and execution of a database
query using a specific query language, such as SQL, in order to obtain an approximate result
of the requested query. Initially, the query parser validates the query to ensure that the
query has been properly stated. Afterward, the query optimizer adjusts the plan to provide
a more effective query execution plan. Finally, the query evaluation and execution engine
executes the query on the database and returns the results [14]. A traditional database
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system performs aggregate operations in batch mode, for which a query is submitted and
the system processes a huge amount of data slowly and then returns the final result [4]. As a
result, the primary concern for query processing is how to process queries efficiently based
on computational resources and time. Occasionally, it is impossible to provide exact results
in a reasonable amount of time, and an approximate answer with some error guarantee
would greatly assist users. In order to approximate a query plan outcome for complex
joint queries, the optimizer requires accurate estimates of the sizes of results generated
at accurate selectivity estimates. As a result, data synopses can be used to estimate the
number of results generated by a query by estimating the underlying data distribution [15].

2.2. Approximate Query Processing (AQP)

Approximate Query Processing (AQP) is a method that returns approximations of
aggregate query answers using a data synopsis that closely replicates the actual data’s
behavior [16]. As a higher level of abstraction, AQP aims to calculate an answer that is
approximate to the actual query result based on a data synopsis as a highly compressed and
lossy version of the database [17]. In Figure 1, the different phases of query processing are
shown, as the query in AQP is executed based on a data synopsis rather than actual data.

Query Compilation

Query Parser 
& Translator

Query 
Optimizer

Query 
Representation

Runtime Process

Query Evaluation & 
Execution Engine

Query 
Execution Plan

SQL Query Database

Result

Data 
Synopsis

Approximation

Database Catalog

Figure 1. Query processing flow diagram in APQ.

Based on a cost-effective approach, approximation accuracy (consequently completion
time) is determined by the size of data synopses, which means how much smaller the
synopses are than the original database [16]. We can create these synopses using either
offline or online techniques. Offline synopses are built using existing data statistics and
help answer queries quickly but can involve more complex and resource-intensive methods.
With offline methods, database optimization techniques like replication and indexing can
be employed to refine the synopsis when the database changes [18]. On the other hand,
online synopses allow for real-time query monitoring: giving users preliminary results that
are refined as more data are processed and stopping once the results reach a satisfactory
level of accuracy and confidence [4].

By taking an online approach, there is no need to make any a priori assumptions. In
contrast to the offline approach, creating good data synopses is much more difficult [18].
The Online Analytical Processing (OLAP) system is an example of these systems, and one
of its key issues is the regular updating of aggregates to ensure that approximated answers
are smooth and continuously improving. By constructing a concise and accurate synopsis
of the underlying data distribution, the system consistently strives to reduce the amount of
time it takes to complete the task [2].
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2.3. Synopsis Construction

There may be considerable differences in the structure of the synopsis, and it should
be tailored to the problem being addressed. As an example, the AQP synopsis structure
is likely to differ from data mining tasks such as change detection and classification [19].
AQP systems should generate an effective synopsis that can be applied to various data
distributions and data types within different databases. It is common for big data to
produce massive amounts of complex data in a streaming manner. Traditionally, streaming
algorithms are evaluated based on three factors: running time, memory complexity, and
approximation ratio [20]. Synopsis construction in data streams can be achieved using a
variety of techniques:

Sampling methods: It has been demonstrated that sampling is a simple and effective
method of obtaining approximate results that provide an error guarantee when compared
with other approximate query processing techniques. It is possible to divide a sampling
estimation roughly into two stages. Initially, a suitable sampling method must be identified
to construct a sampling synopsis from the original dataset, and then a sampling estimator
must be analyzed in order to determine its distribution characteristics [21].

Histograms: In the histogram approach, the value range of attributes is divided into K
buckets with equal widths, and then the numbers of values falling within each bucket are
counted [22]. Based on these statistics, the histogram can then be used to reconstruct the
value of the entire dataset within each bucket using the most representative statistics for
each bucket [2]. In real-world applications, multiple visits to a data stream can improve
accuracy and performance, but this is not realistic. For this reason, one-pass and high-
accuracy algorithms are required in order to generate data synopses [21]. A histogram is
cheap to compute since only one pass through the relationship is required, but its precision
is not always satisfactory [22].

Wavelets: In synopsis construction, wavelets, derived from wavelet transformations
in signal processing, play a crucial role. These transformations decompose a function
into a set of wavelets using a wavelet decomposition tree, enabling multi-scale and multi-
resolution analysis. This unique feature allows wavelets to represent data at various
levels of granularity and resolution, making them particularly useful for abstracting and
compressing data. To generate a synopsis, the original data are decomposed n times,
leveraging the approximation coefficient at each level of the tree to reach an increasingly
abstract representation of the data [23]. While conceptually similar to data bucketing in
histograms, wavelets differ significantly in their approach. They transform data to compress
their most expressive features, a process that is computationally intensive but offers a more
nuanced representation. In contrast, histograms generate buckets by analyzing a subset
of the original data, which is less computationally demanding but also less detailed at
capturing data variations [2].

Sketches: Sketches are a type of probabilistic data structure based on the frequencies
of unique items in a dataset [24]. In order to construct the synopses, k random vectors can
be selected, and the data can be transformed by dot product to those vectors [19].

Although this section introduced the basic methods for constructing synopses, many
other techniques, such as clustering [19] and materialized views [25], can also be used to
generate them. Traditional methods have many challenges relating to data type, structure,
distribution, and query aggregation functions. Furthermore, synopses provide the most
accurate summary using the entire data stream, and it would be inconvenient to retrieve the
entire dataset in real-time databases as it changes over time. A discussion of the challenges
associated with generating data synopses in relational databases will be presented in the
following subsection.

2.4. GAN-Based Tabular Generator

GANs were introduced in computer vision, where they are commonly used to process
image data via Convolutional Neural Networks (CNNs). However, they are capable of
generating tabular data as well. The GAN architecture has undergone numerous enhance-
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ments in recent years as a result of improvement to the architecture among the research
community over the past few years [26]. To determine whether or not GAN is an appro-
priate option for synopsis generation, first we provide a detailed description of the GAN
method and its architecture.

Generative Adversarial Networks are characterized by two neural networks: the
generator, which creates data that are intended to mimic the true data distribution, and
the discriminator, which evaluates the data to distinguish between the generator’s fake
data and the real data from the actual distribution [27]. The generator draws a random
vector z from the latent space with the distribution pz(z). The generator G(z; θg) then
uses a parameter θg to map z from the latent space to the data space. Therefore, pg(x)
(the probability density function over the generated data) is used by G(z) to generate xg.
Then, the discriminator neural network D(x; θd) receives randomly either xg (the generated
sample) or xdata (the actual sample) from the probability density function over the data
space pdata(x). The discriminator neural network D(x; θd) is a binary classification model
in which D(x) returns the probability that x is derived from real data. Therefore, the
output of this function is a single scalar that indicates if the passed sample is real or fake.
Figure 2 depicts the described process and GAN architecture. The variables θg and θd are
the weights of the generator and discriminator that are learned through the optimization
procedure during training.
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Figure 2. GAN process flow diagram.

The goal of the discriminator in training is to maximize the probability that a given
training example or generated sample is assigned the proper label, whereas the goal of the
generator is to minimize the probability that the discriminator detects real data. Therefore,
the objective function can be expressed as a minimax value function, V(G, D), which is
jointly dependent on the generator and the discriminator, where:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))] +Ez∼pz(z)[log(1 − D(G(z)))]. (1)

The discriminator performs binary classification, which gives a value of 1 to real
samples (x ∼ pdata(x)) and a value of 0 to generated samples (z ∼ pz(z)). Therefore, in
the optimal adversarial networks, pg converges to pdata and the algorithm is stopped at
D(x) = 1/2, which means the global optimum occurs when pg = pdata [27].

The generation of data in an unconditioned GAN is completely unmanageable in a
multimodal distribution. Mirza and Osindero [28] introduced a conditional version of GAN
that can provide generators with prior information so that they can control the generation
process for different modes. Achieving this objective requires conditioning the generator
and discriminator on some additional information, y, where y can be anything from class
labels to information about the distribution of data (modes). This can be done by giving the
discriminator and the generator Y as an extra input layer in the form of a one-hot vector.
In fact, the input noise pz(z) to the generator is not truly random if the information y is
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added to it, and the discriminator does not only regulate the similarity between real and
generated data but also the correlation between the generated data and input information
y. Therefore, the objective function in Equation (1) can be rewritten as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x|y))] +Ez∼pz(z)[log(1 − D(G(z|y)))]. (2)

Figure 3 illustrates the structure of a CGAN and how the input information is applied
during the process. A majority of applications for conditional GAN are concerned with
synthesizing images by giving the label for the image that should be generated. Nonetheless,
in the case of tabular data, this could be the shape of data on a multimodal distribution and
can be used to inject information as prior knowledge to the generator.
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Figure 3. Conditional GAN process flow diagram.

To date, all proposed solutions have been published with the aim of adhering to
real data privacy regulations and preventing data leakage during data sharing or for the
generation of synthetic data for data imputation and augmentation. By contrast, in AQP
applications, it is necessary to generate realistic data rather than synthetic data that is
as close to real data as possible. The challenges associated with generating tabular data
using GAN have been addressed in a few publications since 2017. The purpose of this
section is to introduce promising variants of GAN for tabular data generation, followed
by a classification of the proposed solutions based on the previously discussed synopsis
construction challenges.

Choi et al. [29] proposed the medical Generative Adversarial Network (medGAN) to
generate realistic synthetic patient records based on real data as inputs to protect patient
confidentiality to a significant extent. The medGAN generates high-dimensional, multi-
label discrete variables by combining an autoencoder with a feedforward network, batch
normalization and shortcut connections. With an autoencoder, flow gradients are able to
end-to-end fine-tune the system from the discriminator to the decoder for discrete patient
records. The medGAN architecture uses MSE loss for numerical columns, cross-entropy
loss for binary columns, and the ReLU activation function for both the encoder and decoder
networks. The medGAN uses a pre-trained autoencoder to generate distributed repre-
sentations of patient records rather than directly generating patient records. In addition,
it provides a simple and efficient method to deal with mode collapse when generating
discrete outputs using minibatch averaging.

Figure 4 shows the medGAN architecture and defines the autoencoder’s role in the
training process.

The generator cannot generate discrete data because it must be differentiable. To
address this issue, Mottini et al. [30] proposed a method for generating realistic synthetic
Passenger Name Records (PNRs) using Cramer GAN, categorical feature embedding, and
a Cross-Net architecture for the handling of this issue (categorical or numerical null values).
As opposed to simply embedding the most probable category, they used the weighted
average of the embedded representation of each discrete category. The embedding layer is
shared by the generator and discriminator, resulting in a fully differentiable process as a
result of this continuous relaxation. For handling null values, they are substituted with a
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new category in categorical columns. However, continuous columns fill null values with a
random value from the same column and then a new binary column is inserted with 1 for
filled rows and 0 otherwise. These additional binary columns are encoded like category
columns. It should be noted that in this architecture, both the generator and discriminator
consist of fully connected layers and cross-layers. Also, except for the last layer (sigmoid),
all layers of the generator use leaky ReLU activations for numerical features and softmax for
categorical features. However, the discriminator uses leaky ReLU activations in all but the
last layer (linear). Neither batch normalization nor dropout are used in this architecture as
in the Wasserstein and Cramer GAN [31]. Data pre-possessing in this algorithm is depicted
in Figure 5.
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Figure 5. Pre-processing input data before feeding the discriminator in PNR-GAN.

As indicated, discrete values will be embedded using the embedding matrix; then,
they will be concatenated with continuous columns of input data.

Table-GAN [32] uses GAN to create fake tables that are statistically similar to the
original tables but are resistant to re-identification attacks and can be shared without
exposing private information. Table-GAN supports both discrete and continuous columns
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and is based on Deep Convolutional GAN (DCGAN) [33]. Besides the generator and
discriminator with multilayer convolutional and deconvolutional layers, the table-GAN
architecture also includes a classifier neural network with the same architecture as the
discriminator. However, it is trained using ground-truth labels from the original table to
increase the semantic integrity of the generated records. Information loss and classification
loss are two additional types of loss introduced during the backpropagation process. These
functions serve a critical role in balancing privacy and usability while also ensuring the
semantic integrity of real and generated data. Information loss functions by comparing the
mean and standard deviation of real and generated data. This comparison aims to measure
the discrepancy between them. It determines whether they possess statistically similar
features from the perspective of the discriminator. On the other hand, classification loss
measures the disparity in labeling. It assesses the difference between the actual label of a
record and how the classifier predicts it should be labeled. Figure 6 is a representation of
the loss functions in the table-GAN architecture.
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Figure 6. Loss functions representation in table-GAN architecture.

Xu and Veeramachaneni developed TGAN [34], which is a synthetic tabular data
generator for data augmentation that can take into account mixed data types (continuous
and categorical). TGAN generates tabular data column-by-column using a Long Short-Term
Memory (LSTM) network with attention. The LSTM generates each continuous column
from the input noise in two steps. First, it generates a probability that the column comes
from mode m, and then, it normalizes the column value based on this probability. TGAN
penalizes the original loss function of a GAN by incorporating two Kullback–Leibler (KL)
divergence terms. These terms measure the divergence between generated and real data for
continuous and categorical columns separately [35]. Therefore, the generator is optimized
as follow:

LG = −Ez∼N (0,1)[log(D(G(z)))] +
Nc

∑
i=1

KL(u′
i, ui) +

Nd

∑
i=1

KL(d′i, di). (3)

where u′
i and ui are probability distributions over continuous column ci for generated

and real data, respectively, d′i and di are the probability distributions over categorical
column di using the softmax function for generated and real data, respectively, Nc is the
number of continuous columns, and Nd is the number of categorical columns. The authors
also proposed a conditional version of TGAN, named CTGAN [36], for addressing data
imbalances and multimodal distribution problems by designing a conditional generator
with training by a sampling strategy to validate the generator output by estimating the
distance between the conditional distributions over generated and real data.

CTAB-GAN [37] was introduced with the ability to encode a mixed data type and a
skewed distribution of the input data table; it utilizes a conditional generator, information
and classification loss functions derived from table-GAN, as well as CNNs for both the gen-
erator and discriminator functions. Since CNNs are effective at capturing the relationships
between pixels within an image, therefore, they can be employed to enhance the semantic
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integrity of created data. However, in order to prepare data tables for feeding the CNN,
rows are transformed into the nearest square d × d matrix, where d = Ceil(

√
Nc + Nd), Nc

and Nd are the number of continuous and categorical columns, respectively, in a row of the
data table, and then, the extra cells values (d × d − (Nc + Nd)) are padded with zeros.

It is difficult for GAN to control the generation process of data-driven systems; there-
fore, integrating prior knowledge about data relationships and constraints can assist the
generator in generating synopses that are realistic and meaningful. In order to implement
this, DATGAN [38] incorporates expert knowledge into the GAN generator by matching
the generator structure to the underlying data structure using a Directed Acyclic Graph
(DAG). Using DAG, the nodes represent the columns of a data table, while the directed links
between them allow the generator to determine the relationship between variables so that
one column’s generation influences another. This means if two variables have no common
ancestors, they will not be correlated in the generated dataset. In relational databases, there
is no particular order in which columns appear in data tables. Nevertheless, the DAG
enables data tables to have a specific column order based on their semantic relationship.

2.5. Tabular GAN Evolution

GAN has made significant progress in recent years, which has led to the development
of novel variants that improve previously introduced versions that had promising results
prior to their introduction. Table 1 provides a summary of the variants of GAN that
have been discussed in this paper and highlights the specific architectural advancements
and loss functions that have been employed to enhance the performance of each variant.
MedGAN, for example, aims to generate high-dimensional discrete columns while avoiding
the common pitfall of mode collapse by leveraging an autoencoder network alongside a
Feedforward Neural Network (FNN) for generation and a Fully Convolutional Network
(FCN) for discrimination. PNR-GAN addresses the challenge of null values in data tables
by employing a cross-layer FCN for both the generator and discriminator and utilizes
Cramer loss to measure discrepancies. Table-GAN and CTAB-GAN employ Convolutional
Neural Networks (CNNs) in their generators to capture the spatial hierarchy of features
within tabular data, with CTAB-GAN incorporating conditions from CGAN and AC-GAN
for more-targeted data synthesis. CTGAN also adopts this conditional approach but further
refines the model to handle non-Gaussian and multimodal distributions effectively by
utilizing Wasserstein loss with a gradient penalty for a more stable training process. On the
other hand, TGAN and DATGAN leverage Long Short-Term Memory (LSTM) networks in
their generators to capture temporal dependencies and correlations within data: a crucial
aspect for maintaining integrity when generating sequential or time-series data. These
models demonstrate the ongoing refinement of GANs for complex data structures, where
the goal is not only to generate new data but to do so with an acute awareness of the
inherent relationships within the original dataset.

Table 1. Different tabular GAN architectures and capabilities.

Variant Capability Generator Discriminator Extra Loss
Functions

Additional
Networks

medGAN

Generate
high-dimensional
discrete columns.

FNN * FCN * MSE Autoencoder

Avoid mode
collapse. Cross-entropy

PNR-GAN

Generate discrete
columns. Cross-Layer FCN Cross-Layer FCN Cramer loss

Handle null
values.
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Table 1. Cont.

Variant Capability Generator Discriminator Extra Loss
Functions

Additional
Networks

table-GAN
Increase semantic
integrity. CNN * CNN Information loss Classifier (MLP *)

Classification loss

TGAN

Learn multimodal
distributions. LSTM * FCN Cross-entropy

Generate
mixed-type
variables.

CTGAN

Learn
non-Gaussian and
multimodal
distributions.

FCN FCN
Wasserstein loss
with gradient
penalty

Address
imbalanced
discrete column
issue.

CTAB-GAN

Generate discrete
and mixed-type
columns.

CNN CNN Cross-entropy Classifier (MLP)

Address
imbalanced
discrete column
issue.

Information loss

Learn long-tail
distributions. Classification loss

DATGAN

Increase semantic
integrity. LSTM FCN

Wasserstein loss
with gradient
penalty

DAG

Increase
representation of
imbalanced class.

* FNN: Feedforward Neural Network; FCN: Fully Connected Neural Network; CNN: Convolutional Neural
Network; MLP: Multi-Layer Perceptron; LSTM: Long Short-Term Memory.

Figure 7 provides a visual representation of the progression and diversification of
GAN architectures as they have been specialized for tabular data generation. The diagram
traces the lineage of various GAN models starting with the inception of the original GAN
framework in 2014. It distinguishes between architectures developed for non-tabular data
(in green) and those specifically tailored for tabular data (in yellow), underscoring how
foundational models have been adapted and extended to meet the unique challenges of
tabular datasets. The evolutionary trajectory begins with the general-purpose GAN and
branches into models like DCGAN, which introduced convolutional layers for improved
performance on image data. From there, tabular-specific adaptations emerge and inno-
vations continue with the integration of LSTM in TGAN and DATGAN to capture the
sequential relationships within data and conditional mechanisms in CTGAN and CTAB-
GAN for generating data with given constraints. The figure encapsulates the dynamic and
branching nature of GAN development and highlights the critical adaptations made to
leverage the power of GANs in the realm of structured data synthesis.
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Figure 7. Tabular GAN-based generator evolution based on their relationships. Yellow boxes are
tabular generators, and green boxes are introduced for non-tabular data.

3. Synopsis Construction Challenges

Traditional methods for synopsis construction have many challenges related to data
type, structure, distribution, and query aggregation functions. Furthermore, synopses
provide the most accurate summary using the entire data stream, and it is inconvenient to
retrieve the entire dataset in real-time databases as it changes over time. According to the
data structure of relational databases, the challenges associated with generating synopses
can be categorized into many significant groups [34].

3.1. Data Type

It is challenging to construct a data synopsis that is representative of the entire data
table due to the difference in data types. For instance, different activation functions on
the output are required for generative models since relational database tables include
numerical, categorical, ordinal, and mixed data types. As an example of a mixed data
type, a financial database contains columns for loan debts, wherein a loan holder may
have no debt or debt with a positive value [37]. In data analysis, this can be defined as
categorical data using a step function, but in reality, it is continuous data. In this regard, a
data generator must be able to detect these types of data in order to avoid adverse effects on
the interpretation of the data. The several types of data used to create AQP data synopses
are broken down in Table 2. We mention that textual data types are not typically utilized in
AQP queries and are therefore ignored here.

Table 2. The data types that can be used in AQP queries. These can be aggregated (sum, avg, max,
and min), can be bounded by ’where’ conditions, and can be considered as a group to aggregate
other columns.

Data Type Possible Role in Queries

Numerical

Continuous Numeric intervals of real num-
bers without a finite set of values

aggregation, condition

Discrete Finite, countable set of integer
numbers

aggregation, condition,
groupby

Mixed Numeric, but considered as cat-
egorical based on the different
range

aggregation, condition,
groupby
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Table 2. Cont.

Data Type Possible Role in Queries

Categorical

Binary One-hot encoded condition, groupby
Textual One-hot encoding needed condition, groupby
Numeric Treats textual and numbers as

meaningless.
condition, groupby

Ordinal Numeric Numeric categories with a clear
ordering (like 1–5 rating)

aggregation, condition,
groupby

3.2. Bounded Continuous Columns

Continuous column Ci is bounded if there are two numbers a and b for which for all
x ∈ X a ≤ x ≤ b. The intricacy of synopsis construction for these bounded continuous
columns arises from the necessity to sample from a probability distribution that not only
mirrors the true underlying statistical characteristics of the original data but also adheres
strictly to these boundary constraints. For instance, a credit card’s expenditure column
might be restricted from zero to an upper limit reflecting the credit limit; hence, the synthetic
data generation process must respect these limits to produce meaningful and applicable
synthetic transactions. The challenge intensifies as it requires the synthesis process to be
sensitive to the distribution’s tails and to avoid the generation of outliers that fall outside the
established bounds, which would otherwise lead to unrealistic and operationally irrelevant
data points.

3.3. Non-Gaussian Distribution

When dealing with the non-Gaussian distributions that are common in real-world
datasets, the assumption of normality often fails in the field of synopsis construction. Such
distributions may be multimodal: containing several peaks or modes that reflect the com-
plexity of underlying data-generation processes. For instance, the distribution of incomes
in a socio–economic dataset could exhibit multiple modes corresponding to different socio–
economic classes. Traditional synopsis generation techniques may inadequately capture
the multimodal structure of such distributions, leading to the absence of entire modes. This
results in a generated synopsis that fails to represent segments of the population within the
original dataset [34].

Moreover, the presence of long-tailed distributions poses additional challenges [37].
These distributions are characterized by a proliferation of infrequent events, such as a
customer purchase history for which the vast majority of customers make infrequent
purchases while a minor fraction exhibits high purchase frequencies. Synthesizing data
from such a distribution requires not only capturing the frequent low-occurrence events
but also accurately representing the rare high-occurrence instances. Conventional methods
may struggle with this: often either over-representing the tail and creating too many rare
events or under-representing it and thus failing to capture the true nature of the underlying
data. This misrepresentation can skew the synopsis, rendering it less effective for use in
decision-making processes for which an understanding of rare events is critical.

3.4. Imbalanced Categorical Columns

In the construction of data synopses, the handling of imbalanced categorical columns
presents a significant challenge [34]. Categorical variables in real-world datasets frequently
show a skewed distribution in terms of the frequency of occurrence across categories. The
presence of such a disparity indicates that minority categories make only a small contri-
bution to the overall distribution of data, which may result in their under-representation
in the generated synopsis. The process of creating synopses is influenced by a lack of
representation of certain classes and results in bias towards the majority class due to its
higher statistical likelihood. For instance, consider a customer gender column in a retail
database with a pronounced imbalance where ‘male’ customers vastly outnumber ‘female’
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customers. A synopsis generated from this distribution might reflect this skew, resulting
in a synthetic dataset dominated by ‘male’ entries. However, this skew inaccurately por-
trays the significance of the ‘female’ category, which, despite its smaller size, may carry
substantial weight in consumer behavior analysis.

3.5. Semantic Relationships and Constraints

Tabular data often includes complex semantic relationships that are not easily un-
derstood through standard statistical analysis [39]. These relationships can exist between
categorical and numerical columns alike and are crucial for maintaining the integrity and
usefulness of the generated synopsis. Identifying and encoding such relationships is a
challenge due to the heterogeneity of domain-specific constraints and the complex nature
of the inter-column dependencies, which may not be amenable to simple rule-based gen-
eralizations. For instance, semantic relationships may determine that certain numerical
values possess validity solely when paired with specific categorical entries, imposing a
constraint-based association. Alternatively, a rule-based linkage could suggest a probabilis-
tic co-occurrence pattern between different fields in the data. Hence, it is imperative for
a comprehensive process of generating synopses to include mechanisms that can deduce
these complex relationships, which can be multi-faceted and deeply embedded within
the structure of the data. A failure to do so not only compromises the authenticity of the
synthesized data but also limits the operational relevance of the synopsis, as it could lead
to the generation of implausible or inconsistent records that do not adhere to the real-world
rules and constraints governing the dataset. Figure 8 represents two examples of generated
samples from a table that the model should reject semantically. To generate a representative
data synopsis in AQP, the city must be properly associated with the state, and the joined
column cannot precede the founded column.

Team City State Capacity Founded Joined

Charlotte FC Charlotte North Carolina 38,000 2019 2022

Los Angeles FC Los Angeles California 22,000 2014 2018

Team City State

Charlotte FC Los Angeles North Carolina

(a) Constraint-based rejected samples

Team Founded Joined

Los Angeles FC 2018 2014

(b) Rule-based rejected samples

Figure 8. Each soccer team in the table corresponds to a particular location and has a specific capacity,
foundation year, and year of entry into MLS: (a) and (b) show two examples of constraint-based and
rule-based sample rejection during the data synopsis generation process.

4. GAN-Based Synopsis Construction Solutions

It is possible to categorize synopsis construction solutions into three different cate-
gories: Data Transformation, which addresses data type issues; Distribution Matching,
which addresses ranges and distributions of data; and Conditional and Informed Genera-
tion, which addresses imbalance classes, semantic relationships, and table constraints.

4.1. Data Transformation

Mode normalization is capable of detecting modes of data by assigning samples to
different modes and then normalizing each sample based on the corresponding mode
estimator [40]. To deal with multimodal distributions for continuous columns, mode-
specific normalization is introduced in TGAN [34]. Using this algorithm, first, the number
of continuous columns’ modes is calculated using Gaussian kernel density estimation.
Then, the Gaussian Mixture Model (GMM) can be employed to efficiently sample values
from a distribution with multiple modes by clustering the values of continuous columns
(Ci). In other words, the weighted sum of the Gaussian distributions over Ci can represent
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the multimodal distribution over it. A normalized probability distribution over m Gaussian
distributions can then be used to represent each continuous column so that each column
can be clustered into m fixed Gaussian distributions. As a result, if there are fewer than
m modes in one column, then the probability of that mode is high, and for the rest, it is
close to zero. However, in CTGAN [36], first, a Variational Gaussian Mixture (VGM) model
should be applied to each continuous column (Ci) in order to fit a Gaussian mixture and
find the number of modes (m). Then, a one-hot vector (βi,j) indicates to which mode a given
value belongs, and a scalar (αi,j) serves as the value itself within that mode. For the learned
Gaussian mixture for column Ci with m modes, the following equation is given:

PCi (cij) =
m

∑
k=1

wkN (cij; µk, σk). (4)

where ci,j is value of the jth row from the ith column, µk and σk are the mean and standard
deviation, respectively, of the Gaussian distribution for the kth mode, and wk is the weight
of the kth mode. For each value, the probability density ρ of kth mode is:

ρk = wkN (cij; µk, σk). (5)

Therefore, each value can be normalized according to the mode with the highest
probability. As an example, the values of α and β related to column ci,j in the kth mode
will be:

αi,j =
ci,j − µk

λσk
, β = [0, 0, . . . , 1︸︷︷︸

kth element

, . . . , 0, 0]. (6)

where λ is a parameter specified by the modeler.
For categorical columns D, the situation is different; TGAN [34] is stated to con-

vert these columns (dij) to a representation using one-hot encoding with added noise
(Uni f orm(0, γ), where γ is an arbitrary number). To achieve this, after creating the one-hot
vector, noise will be added to each element, and the resulting representation will be renor-
malized. Therefore, each data row can be represented by a concatenation of continuous
and categorical columns as follows:

rowj = α1,j ⊕ β1,j ⊕ ... ⊕ αNc ,j ⊕ βNc ,j ⊕ d1,j ⊕ ... ⊕ dNd ,j. (7)

where di,j is the one-hot representation of a categorical column, Nc is the number of
continuous columns, and Nd is the number of categorical columns Di. The direct sum
operator ⊕ combines the contributions of different vectors or matrices to form a new vector
rowj. Each component represents a different subspace or block in the final vector.

As previously discussed, columns can be considered mixed if they contain both
categorical and continuous values or continuous values with null values. The encoding
process for continuous and categorical columns in CTAB-GAN [37] is exactly the same
as CTGAN [36] by defining α and β. However, in mixed-type columns, the encoder is
defined so that each column is considered a concatenation of value–mode pairs, where the
categorical part of values takes zero for α and is treated as continuous. Figure 9 shows the
distribution over an arbitrary mixed-type column with two modes for continuous (m2, m3)
and two categorical parts (m1, m4) and illustrates how this algorithm transforms one row
of mixed-mode data.
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𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒

𝜷𝟏 = 𝟏, 𝟎, 𝟎, 𝟎
𝜶𝟏 = 𝟎

𝜷𝟒 = 𝟎, 𝟎, 𝟎, 𝟏
𝜶𝟒 = 𝟎

Categorical or 
null values

Categorical or 
null values

Numerical values modes

𝜷𝟐 = 𝟎, 𝟏, 𝟎, 𝟎

𝜶𝟐 =
𝒄𝟐 − 𝝁𝟐
𝝀 × 𝝈𝟐

𝜷𝟑 = 𝟎, 𝟎, 𝟏, 𝟎

𝜶𝟑 =
𝒄𝟐 − 𝝁𝟑
𝝀 × 𝝈𝟑

Figure 9. Distribution over a mixed-type column: m1 and m4 represent the categorical part or null
values of this column, whereas m2 and m3 represent modes for numeric parts. The numeric parts are
defined by the Variational Gaussian Mixture (VGM) model [37].

4.2. Distribution Matching

In order to generate synopses with the same distribution as the underlying distribution,
the training algorithm should penalize the generator. Information loss [32] helps the
generator generate synopses statistically closer to the real ones. It utilizes the statistical
characteristics Lmean (first-order statistics, Equation (8)) and Lsd (second-order statistics
Equation (9)) of the extracted features prior to the classifier in the discriminator to penalize
the generator for the discrepancy between real and generated data. This makes sense
because the extracted features are used to determine the binary decision of the discriminator.

Lmean =∥ E[ f x]x∼pdata(x) −E[ f G(z)]z∼pz(z) ∥2 . (8)

Lsd =∥ SD[ f x]x∼pdata(x) − SD[ f G(z)]z∼pz(z) ∥2 . (9)

where f represents features, E[ f ] is the average, and SD[ f ] is the standard deviation
of features over all rows in the data table. The Euclidean norm is used to measure the
discrepancy between two terms. As we discussed before, table-GAN [32] was developed
to protect confidential data privacy when they are shared with the public. As a result, it
should be possible to control the similarity of generated data with real data during the
generating process. To this end, information loss for the generator is demonstrated as
follows:

LG
in f o = max(0,Lmean − δmean) + max(0,Lsd − δsd). (10)

where δ is a threshold indicating the quality degradation of generated data, and max(.)
represents the hinge-loss, which is zero until δ is reached. However, in AQP, it is not
necessary to meet this threshold in order to generate realistic data synopses.

DATGAN [38] uses the improved version of the Wasserstein loss function in
WGAN [41] in addition to the Vanilla GAN loss function with a gradient penalty [42]
and also adds the KL-divergence as an extra term to the original loss function. Both of
these terms aim to minimize the difference between the probability distributions of real
and generated data. WGAN employs an alternative method to train the generator to better
approximate real data distributions. This approach replaces the discriminator model with
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a critic that scores the degree to which a data sample is real or fake rather than using
the discriminator as a classifier. Therefore, WGAN considers the discriminator output as
a scalar score instead of a probability, and Wasserstein loss ensures a greater difference
between the scores for real and generated data. As a result, the network can prevent
vanishing gradients in the generator models. However, the WGAN’s primary problem is
that it must clip the weights of the critic in order to enforce the Lipschitz constraint. This
issue can be addressed by adding a gradient penalty to the critic. Equation (11) shows the
Wasserstein objective function, and Equation (12) shows the same with a penalty on the
gradient norm for random samples x̂ ∼ px̂.

min
G

max
D

V(D, G) = Ex∼pdata(x)[D(x)]−Ez∼pz(z)[D(G(z))]. (11)

LW = Ez∼pz(z)[D(G(z))]−Ex∼pdata(x)[D(x)] + λ Ex̂∼px̂ [||∇x̂D(x̂)||2 − 1)2]. (12)

where λ is a parameter defined by the modeler and x̂ sampled from G(z) and x.

4.3. Conditional and Informed Generator

Imbalances in categorical columns can cause inaccuracies when generating synopses
and may result in the generator not being trained to match the distribution of the real data.
In CTGAN [36], the conditional generator is introduced (using training-by-sampling) as a
solution to this problem. To this aim, the generated value can be interpreted as a conditional
distribution of rows given the value of an imbalanced categorical column. Therefore, the
original distribution can be reconstructed as follows:

Pg(row|Di = k) = P(row|Di = k) => P(row) = ∑
k∈Di

Pg(row|Di = k)P(Di = k). (13)

where k is a value in the ith categorical column Di. For the implementation of this solution,
a conditional vector consisting of a mask vector that represents the address of the table
value (column and corresponding row value) is required. This conditional vector does
not guarantee the feedforward pass obtains the correct value based on the mask vector M;
instead, the suggested approach penalizes the conditional generator’s loss by averaging
the cross-entropy between the generated M̂i and the expected conditional vector Mi over
all instances of the batch. The generator loss can be expressed as follows:

LG = E[H(Mi, M̂i)]. (14)

where H(.) is the cross-entropy between two values. As a result, the generator learns to
replicate the masked value in the generated row during training. The conditional vector
for a data table with N categorical columns is the direct sum of all mask vectors (M) across
each column Di, where for each value ci,j :

Mi =

{
1 if jthvalue
0 the rest

}
, cond = M1 ⊕ . . . ⊕ MN . (15)

In fact, generator loss allows the generator to learn to produce the same classes as
the given conditions. Mask vectors (Mi) are initialized with 0 for each categorical column
(Di) during the conditional generator procedure. Then, a column is chosen at random,
and the Probability Mass Function (PMF) is applied to the column’s range of categories.
According to PMF, one category is then picked, and its value in the corresponding mask
vector is changed to 1. Finally, the conditional vector is formed, and the generator is able
to generate a synthetic row for the given categorical column. Figure 10 represents a mask
vector generation process for a data table with Nd categorical columns when the generator
is conditioned for the jth category of the ith categorical column.
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𝐷1, 𝐷2, …, 𝐷𝑁𝑑

𝑑11, 𝑑12, …

𝑫𝟏

𝑑𝑁1, 𝑑𝑁2, …

𝑫𝑵𝒅

𝒎𝒂𝒔𝒌 vector 𝒋𝒕𝒉 Category in 𝒊𝒕𝒉 Categorical Colum

0,… , 0 0,… , 1, … , 0 0,… , 0

𝒅𝒊𝟏 𝒅𝒊𝒋 𝒅𝒊𝒌

. . .

. . . . . .

Figure 10. Following vectorization of categorical columns, all vectors are initialized with 0; then, the
jth category from the ith column is selected and the value of the corresponding element is changed
to 1.

It has been discussed previously that columns in a table may have a meaningful
relationship with one another. CTAB-GAN [37] utilizes a classifier neural network using
Auxiliary Classifier GAN (AC-GAN) [43], which is a conditional GAN type that requires
the discriminator to predict the class label c ∼ pc of generated data as well as the realness
classifier. In AC-GAN, the generator generates a new sample using noise z and a class label
c, while the discriminator provides both a probability distribution over sources P(S|X)
and a probability distribution over class labels P(C|X). The objective function contains the
following terms:

LS = Ex∼pdata(x)[log P(S = real)] +Ex∼pz(z)[log P(S = f ake)]. (16)

LC = Ex∼pdata(x)[log P(C = creal)] +Ex∼pz(z)[log P(C = c f ake)]. (17)

where LS is the likelihood of predicting the correct source, LC is the likelihood of predicting
the correct class, and c is a class label. The discriminator is trained to maximize LC +LS, and
the generator is trained to maximize LC −LS. These objective functions allow the training
procedure to generate data according to a specific type of data, while the discriminator
must predict the class label of the generated data and determine whether or not it is real.
As a result of this, the classifier loss (Equation (18)) is added to the generator in CTAB-GAN
to increase the semantic integrity of generated records and to penalize the generator when
the combination of columns in a data row is semantically incorrect.

LG
class = Ez∼pz(z)[|l(G(z))− C( f e(G(z)))|]. (18)

where l(.) returns the target label and f e(.) returns the input features of a given row.
As mentioned before, DATGAN [38] uses DAG to control the generation process based

on semantic relationships and correlations between columns. According to the constructed
DAG, each column and its sequence are represented by Long Short-Term Memory (LSTM)
cells. Therefore, by providing the generator with prior knowledge, DAG decreases the
GAN’s capacity to overfit noise in the training process and enables the GAN to produce
more accurate data by using this noise more efficiently. Inputs and outputs of LSTM cells
should be modified in accordance with the GAN architecture. Inputs can be expressed
as follows:

it = at ⊕ ft−1 ⊕ zt. (19)

where zt is a tensor of Gaussian noise, which is the concatenation of the noise from the
source nodes at each node of the DAG. The variable ft−1 is the transformed output of the
previous tensor (ht−1). For the purposes of determining which previous cell outputs are
relevant to a node input, at represents a weighted average of all ancestor LSTM outputs.
Therefore, at and zt are defined based on all ancestors of the current node. Data input
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into DATGAN architecture (generated and real data) should be encoded into [−1,1] or
[0,1] using the techniques described in Section 4.1. Additionally, for categorical columns,
generators produce a probability over each class, making it easy for a discriminator to
differentiate between real and created values. Therefore, DATGAN recommends using one-
sided label smoothing for the default loss. This means categorical 0,1 vectors are introduced
with additive uniform noise and then rescaled to [0,1] bound vectors. Figure 11 illustrates
the DATGAN process flow diagram, including the data transformer and label smoothing.

Encoding

Label 
Smoothing

Discriminator

𝑥

LSTM

𝑎𝑡

𝑓𝑡−1

𝑧𝑡

⨁ 𝑖𝑡

ℎ𝑡

Transformer𝑓𝑡

Real dataLSTM output

Figure 11. DATGAN process flow diagram.

In this algorithm, DAG is generated manually; therefore, semantic relationships
between variables should be injected as expert knowledge and cannot be detected by the
model. However, tabular data cannot be considered sequential since the order of columns
in a data table is generally random. Therefore, a DAG is used to create a specific sequence
of columns.

The solutions presented in this section directly counter the challenges identified in
Section 3, thereby underscoring the robustness and versatility of GAN-based synopsis
construction. Specifically, ‘Data Transformation’ effectively addresses issues related to
data types and structures and ensures that synopses are both accurate and representative
of the underlying database despite its evolving nature. ‘Distribution Matching’ adeptly
handles the complexities of data ranges and distributions: a critical aspect for maintaining
the integrity and utility of the synopsis. Lastly, the ‘Conditional and Informed Genera-
tor’ approach is instrumental for overcoming challenges related to imbalanced classes,
semantic relationships, and table constraints, thereby enhancing the synopsis’s relevancy
and applicability in real-time database environments. This comprehensive alignment of
challenges and solutions highlights the innovation and practicality of our GAN-based ap-
proach for synopsis construction for Approximate Query Processing and marks a significant
advancement in the field.

While the application of a Generative Adversarial Network (GAN) in synopsis con-
struction for Approximate Query Processing (AQP) marks a significant stride forward,
it is important to acknowledge certain inherent limitations. Firstly, the effectiveness of
GAN is heavily contingent on the volume and quality of training data. In scenarios where
data are sparse or of poor quality, GAN may struggle to generate accurate and represen-
tative synopses [44]. Secondly, the complexity of GAN architectures and the need for
extensive hyperparameter tuning can pose challenges, particularly in terms of compu-
tational resources and time required for model training and optimization [45]. Another
limitation lies in the GAN’s ability to capture and maintain complex semantic relationships
and constraints within the data: a critical aspect in relational databases [38]. This often
necessitates additional layers of complexity in the model architecture, further escalating
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the computational demands [44]. Lastly, despite advancements, there remains a degree of
unpredictability and lack of interpretability in the outputs generated by GAN, which can be
a significant drawback in decision-making contexts where transparency and explainability
are paramount. Acknowledging these limitations is crucial for setting realistic expectations
and guiding future research towards addressing these challenges and thereby enhancing
the practical applicability of GAN-based AQP in data-driven systems.

4.4. Comparative Analysis of GAN-Based Methods

Table 3 presents a comparative analysis between GAN-based methods and traditional
methods for synthetic data generation. It highlights GAN’s superiority in handling com-
plex, high-dimensional data and producing highly realistic outputs [46]. The table also
emphasizes the versatility and adaptability of GAN-based methods in various domains,
showcasing their innovation potential and advanced capabilities in data augmentation and
privacy preservation [47]. Conversely, traditional methods are noted for their simplicity and
direct control over data, but they fall short in terms of complexity, realism, and adaptability.

Table 3. Comparative overview of GAN-based vs. traditional methods for tabular data generation.

Aspect GAN-Based Methods Traditional Methods

Data Complexity Excels at high-dimensional,
complex data.

Suited for simpler,
lower-dimensional data.

Realism Generates highly realistic and
detailed data.

Less capable of producing
realistic data.

Computational Load Higher, but necessary for
complex model training.

Lower, but may compromise
data complexity.

Ease of Use Complex, but offers superior
results for skilled users.

Simpler, but limited in
advanced capabilities.

Versatility Highly versatile for various
domains and data types.

Limited versatility and
application scope.

Control Over Data Advanced techniques allow
increased control.

More direct control, but at the
expense of data quality.

Adaptability Adapts well to new and
evolving data patterns.

Less adaptive to changing
data environments.

Innovation Potential Continually evolving with
cutting-edge research.

Lacks the rapid innovation
seen in GAN-based methods.

Data Augmentation Superior at generating novel
data variations.

Basic augmentation
capabilities.

Privacy Preservation
Can be tailored for
privacy-preserving data
generation.

Often lacks sophisticated
privacy-preserving
mechanisms.

5. Synopsis Evaluation and Error Estimation

To avoid performing expensive computations and to take a trial-and-error approach,
AQP requires an estimation of errors before running the query. As a result, the AQP system
is able to select the optimum synopsis type and resolution based on the user’s latency or
accuracy requirements. Error Quantification Modules (EQMs) in AQP systems perform this
process by measuring the quality of responses either by predicting or by running queries
on synopses [18]. A broad classification of the criteria for evaluating approximate query
processing systems can be made as follows [48]:

• Query Type: In terms of aggregation functions and conditions, what types of queries
are covered by the methods?

• Time Complexity: How long does it take to produce the synopses and return an
approximate result?
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• Space Complexity: What is the required storage space for data synopses?
• Accuracy: Does the approximate answer meet the error confidence interval?

In this study, however, the focus is on the creation and quality of synopses; therefore,
this section discusses the synopsis evaluation technique rather than the EQM process.
Different aggregation functions necessitate unique considerations when creating a synopsis.
For example, min() and max() require that the synopsis include the critical outliers, which
contain critical information. For instance, as depicted in Figure 12, a single transaction
in a real-world database may contain vital information and influence decisions based
on business problems. As can be seen in this figure, a food supplier sells its product to
both retailers and wholesalers. Although retailers make the majority of sales transactions,
wholesalers can place orders that are more significant in terms of quantity and cost.

(a) (b)

With Outliers 

Without Outliers 

With Outliers 

Without Outliers 

Figure 12. In the “invoices” table, there are only two records with outliers for each branch. (a) The
aggregated query group by branch is shown to return the maximum quantity and maximum price
sold in a week, and (b) shows a similar query for minimum values. Obviously, approximate results
for min() and max() are unreliable when dealing with outliers.

Likewise, count() and sum() may return unacceptable results for minority groups if
the query aggregates groups by those columns. Avg() can also be sensitive in situations
where a query filters data based on specific conditions or criteria.

In generative models, evaluation methods cannot be generalized to other contexts;
instead, they must be evaluated explicitly based on their application. During the optimiza-
tion of these models, Gaussian distributions are fitted to a mixture of Gaussian distributions
by minimizing distance measures such as Maximum Mean Discrepancy (MMD) [49] and
Jensen–Shannon divergence (JSD). Minimizing MMD or JSD results in the omission of some
modes in a multimodal distribution. In addition, maximizing the average log-likelihood or
minimizing the KL-divergence can assign large probabilities to non-data regions. In image
synthesizing applications, three common criteria are used to evaluate generative models:
log-likelihood, Parzen window estimates, and visual fidelity of samples [50]. However, the
evaluation of results for tabular data with complex data types and distributions would be
quite different.

In the pursuit of evaluating the fidelity of generated data synopses to their original
datasets, it is imperative to establish that the synthetic data closely reflects the properties
and structure of the real data it aims to mimic. The SDMetrics Python library [51] offers
a comprehensive suite of metrics designed to assess both the quality and the privacy of
synthetic datasets. For the scope of this study, the primary focus is on the quality aspect of
the synthetic data as privacy concerns, while important, are beyond the study’s aims and
could potentially compromise data utility. To contextualize the effectiveness of different
data generation methodologies, this study employs the Adult dataset [52]—a commonly
used benchmark in the field. The dataset comprises 15 attributes encompassing a mix of six
numerical and nine categorical columns: thereby presenting a varied set of challenges in
data generation.

The evaluative framework categorizes the analysis into four distinct dimensions: Data
Coverage, Data Constraint, Data Similarity, and Data Relationship. These dimensions
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collectively capture the extent to which the generated data mirror the real data in terms of
distribution, constraints, patterns, and inherent relationships.

The experimental validation involves a comparative analysis of several data synopsis
generation approaches. The Gaussian Copula [53] data generator [51] serves as a statistical
benchmark and leverages classical methods to model and generate synopses. By contrast,
the Variational Autoencoder [11] (VAE)-based data generator represents an approach
grounded in the domain of deep generative models. The study further includes the
Copula GAN data generator [51], which amalgamates classical statistical modeling with
the advanced capabilities of GAN-based deep learning and aims to blend the strengths of
both domains. Lastly, the CTGAN [36] data generator, which relies purely on GAN-based
methodologies, is put to the test to generate data synopses. By comparing these diverse
methods, the experiment seeks to provide a comprehensive evaluation of their performance
in creating accurate and reliable data synopses for Approximate Query Processing (AQP).

5.1. Data Coverage

For discrete columns Di, we must determine whether all categories in the real data
are represented in the synopsis. To accomplish this goal, a score is calculated by dividing
the number of unique categories in the synopsis by the number of unique categories in the
corresponding column of the actual data as follows:

coverageDi =

( NDg

NDdata

)
i
. (20)

where i is the column index, NDg is the number of unique categories in the generated
synopsis, and NDdata is the number of unique categories in the real data. When a column is
scored 1, all of the unique categories in the actual data are present in the generated synopsis,
while a score of 0 indicates that no unique categories are present in the generated synopsis.
In the case of continuous columns, the coverage metric is used to measure whether a
generated column in the synopsis covers the whole range of values that can be found in the
real column. The coverage score for continuous columns is calculated as follows:

coverageCi = 1 −
[

max
(

min(Cg)− min(Cdata)

max(Cdata)− min(Cdata)
, 0
)
+ max

(
max(Cdata)− max(Cg)

max(Cdata)− min(Cdata)
, 0
)]

. (21)

where Cg is the generated value and Cdata is the real value of column Ci. The goal of this
metric is to determine how closely the min and max of the generated values match the
actual min and max values. It is possible for Equation (21) to become negative if the range
covered by the generated synopsis is inadequate, and in such a situation, it returns a score
of 0 since this is the lowest possible result.

Figure 13 serves as an illustrative comparison of the real and generated distributions
of the ‘age’ column from the Adult dataset generated by two different synthesis techniques:
the (a) CTGAN-based approach and the (b) Variational Autoencoder (VAE). The coverage
metric, as defined, assesses the span of generated data against the actual data’s range.

Figure 13. Coverage of age distributions in real and synthesized data from CTGAN (a) and VAE
(b) methods.
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5.2. Data Constraint

In order to measure how a continuous column adheres to a boundary of real data,
boundary adherence is introduced. The frequency of generated values within the minimum
and maximum ranges of the real column values is calculated using this metric.

adherenceCi =
N(min<xi<max)

Ni
. (22)

where Ni is the number of records in column Ci. A column with a score of 1 indicates all
values adhere to the boundaries of real data, while a column with a score of 0 indicates that
no values fall between the minimum and maximum of the real data.

Figure 14 elucidates the boundary adherence of generated data for the ‘education-num’
column, which is an integer value intrinsically tied to education levels generated by VAE
model. The metric presented assesses the generated data’s fidelity to the real data’s range,
where adherence to the minimum and maximum boundary values is critical, as values
outside this range would be nonsensical given the nature of the data.

Figure 14. Boundary adherence of generated ‘education-num’ values compared to real data for
VAE model.

5.3. Data Similarity

The Synthetic Data Metrics (SDMetrics) library [51] introduces several metrics for
measuring data similarity. In order to calculate the similarity between real and generated
marginal distributions, two types of metrics are available: the Kolmogorov–Smirnov (KS)
statistic for continuous columns and the Total Variation Distance (TVD) for discrete columns.
Based on the KS statistic, we can determine how much the empirical distribution function
of the generated data differs from the Cumulative Distribution Function (CDF) of the real
data. This means that in this case, the KS statistic represents the maximum difference
between the two generated and real CDFs, as illustrated in Figure 15.
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CF
D

Max distance = 0.08

Figure 15. Distances are measured between 0 and 1, but the complement of this metric can also be con-
sidered. Therefore, a higher score indicates higher quality according to 1-(KS statistic distance) [51].

The KS statistic can be calculated using the following expression:

KSdata,g = sup
x

∣∣F1,data(x)− F2,g(x)
∣∣. (23)

where F1,data and F2,g are the empirical distribution functions of the real and generated data,
respectively, and sup is the supremum function.

In order to calculate the TVD statistic, we first computes the frequency of each category
value in the real and generated columns and express them as probabilities. Once the
frequencies are calculated, the TVD statistic compares the difference in probabilities using
the following formula:

TVDdata,g = 1 − δ(X, G) = 1 − 1
2 ∑

x∈Ddata

|Xx,g − Gx,g|. (24)

where x and g refer to all possible categories in discrete column D, and X and G represent
the frequencies for those categories for real and generated data, respectively. The similarity
score is considered the complement of a TVD, so a higher score indicates a higher level
of quality.

Table 4 presents a comparative analysis of these metrics across all columns of the
Adult dataset, with produced data generated by four different methods: Copula, CTGAN,
VAE, and Copula-GAN. The values are indicative of the closeness of the generated data’s
distribution to that of the real data.

Table 4. Comparative evaluation of data similarity using KS and TVD statistics for generated data on
the Adult dataset.

Column Metric Copula CTGAN VAE Copula-GAN

age KS Statistic 0.97 0.89 0.90 0.94
workclass TVD Statistic 0.98 0.79 0.89 0.94
fnlwgt KS Statistic 0.93 0.97 0.55 0.90
education TVD Statistic 0.97 0.88 0.92 0.91
education-num KS Statistic 0.85 0.93 0.96 0.94
marital-status TVD Statistic 0.97 0.93 0.94 0.95
occupation TVD Statistic 0.96 0.81 0.91 0.88
relationship TVD Statistic 0.98 0.88 0.91 0.88
race TVD Statistic 0.98 0.96 0.96 0.96
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Table 4. Cont.

Column Metric Copula CTGAN VAE Copula-GAN

sex TVD Statistic 0.99 0.92 0.98 0.93
capital-gain KS Statistic 0.09 0.44 0.59 0.94
capital-loss KS Statistic 0.53 0.97 0.99 0.96
hours-per-week KS Statistic 0.78 0.93 0.96 0.93
native-country TVD Statistic 0.97 0.90 0.93 0.87
income TVD Statistic 0.99 0.98 0.97 0.97

A missing value (null value) can occur in many different situations in a real-world
database [54]. This is why the missing-value similarity score has been introduced for the
purpose of detecting these missing values when generating a synopsis. In this metric, the
number of missing values in the generated data is compared to the number of missing
values in the real data for each column. The metric can be applied to any column with any
type of data. As part of this process, the proportion of missing values in both the real and
synthetic data is calculated, and the normalized version of this (Equation (25)) results in a
similarity score between 0 and 1, with 1 representing the highest level of similarity.

missing = 1 − |Xp − Gp|. (25)

where p is the proportion of missing values, and X and G represent the distributions for
real and generated data, respectively. In addition, it is possible to measure the statistical
similarity between a column of real data and a column of generated data using mean,
median, and standard deviation using the following formula:

similarity = max
(

1 − | f (x)− f (g)|
|max(x)− min(x)| , 0

)
. (26)

where an arithmetic mean, median, or standard deviation is defined as f , and it returns a
score between 0 and 1, where a high value represents a high degree of similarity.

5.4. Data Relationship

For measuring the semantic relationship and correlation between columns within a
single data table, the contingency can be applied to discrete columns using crosstabulation
(also known as a contingency table). This score is a matrix representation of the multivariate
frequency distribution of variables. First, two contingency tables should be created over
the categories present in each column in order to compare a discrete column in the real
data with the corresponding column in the generated data. Indeed, the created tables
summarize the proportion of rows in real and generated data that have each combination
of categories. After that, the total variation distance is used to calculate the difference
between the contingency tables. In this case, the distance would be between 0 and 1, so
subtracting 1 from the score would indicate a high degree of similarity. Below is a formula
that summarizes the process.

contingencyx,g = 1 − 1
2 ∑

x∈Ddata

∑
g∈Dg

|Xx,g − Gx,g|. (27)

where x and g refer to all possible categories in discrete column D, and X and G represent
the frequencies for those categories for real and generated data, respectively. A score of 1
indicates the best contingency between real and generated data, and a score of 0 indicates
the worst contingency. Also, a correlation similarity test can be applied to continuous
columns by measuring the correlation between two numerical columns and computing
the similarity between the real and generated data using Pearson’s and Spearman’s rank
coefficients. Initially, a correlation coefficient should be calculated between two continuous
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columns in the real data and their corresponding columns in the generated data. Then,
after normalizing two correlation values, the following equation returns a similarity score.

correlationx,g = 1 −
|Xx,g − Gx,g|

2
. (28)

where x and g refer to all values in continuous column C, and X and G represent the distri-
butions for real and generated data, respectively. In this score, the correlation between the
columns is bounded between −1 and 1, with −1 representing the most negative correlation
and 1 representing the most positive correlation between the real and generated columns.

Traditionally, relational databases are divided into separate tables for each object,
and to retrieve information from those tables, related fields within the tables need to
be linked together by defining relationships. Users can then retrieve information from
multiple tables simultaneously by calling queries [55]. In terms of measuring the similarity
among those tables, the cardinality of related tables can be used. The cardinality of a
table relationship is determined by how many rows in each table are related. Therefore,
when generating synopses, measuring whether a table’s cardinality is the same between
the real and generated data is an important metric. In order to measure the similarity of
cardinality between related tables, the marginal distribution can be utilized by computing
the similarity between a real and generated cardinality distribution using the KS or TVD
score. In the case of real and generated data, the cardinality complement score returns 1
when the cardinality values are the same and 0 when they are different.

6. Conclusions

The construction of synopses is essential for data-driven decision-making systems in
order to provide approximate answers to queries. Since traditional statistical approaches are
ineffective, many researchers are exploring how realistic data can be generated with Deep
Generative Models in order to revolutionize the AQP system. In this paper, we discussed the
challenges associated with the generation of synopses in relational databases and whether
Generative Adversarial Networks can be used to accomplish this task. Furthermore, we
summarized and reformed statistical metrics for evaluating the quality of the generated
synopses as a part of this study.

There is no doubt that GAN has an incredible ability to generate realistic images and
videos. However, each data point in an image is represented by a pixel, which cannot be
interpreted alone but only in relation to the other pixels in the image. Consequently, the
meaning of the same pixel in one image differs from the meaning of the corresponding
pixel in another image [38]. In contrast to images, data tables typically contain columns
that have a specific meaning and can be understood by their positions and values, and their
values may also have semantic relationships with each other. We analyzed the challenges
associated with synopsis construction in a relational database and categorized them into
the following categories: data type, bounded continuous columns, non-Gaussian distribu-
tion, imbalanced categorical columns, and semantic relationship and constraint between
columns. Then, by reviewing the promising variants of GAN designed for generating tabu-
lar data, we realized that the solutions to the given challenges revolve around the following
areas: first, data transformation in the preprocessing phase, especially for handling categor-
ical and null values; second, data distribution matching, typically by defining specific loss
functions to penalize the discriminator and generator for the differences between generated
and real data distributions to learn multimodal mapping from inputs to outputs; and third,
a conditional and informed generator, for which the generator is conditioned on some sort
of auxiliary information (such as class labels or data) from other modalities so that the
generator is fed with different contextual information and prior knowledge so that it can
capture the interactions between columns in a dataset. We demonstrated that although the
majority of proposed methods are geared towards applications such as data privacy for
data sharing, data augmentation for machine learning model training, and data imputation
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for missing values rather than generating synopses, GAN is capable of generating data
synopses that are identical to actual data.

In summary, this research underscores the remarkable potential of Generative Adver-
sarial Networks (GANs) in a domain relatively unexplored: the generation of synopses
for AQP in data-driven decision-making systems. While GANs have already proven their
efficacy at creating realistic images, videos, audio, and text, their application to handling
the complexity of tabular data presents a unique set of challenges. The intrinsic difficulty
lies in enabling these algorithms to fully comprehend and preserve semantic relationships
and constraints inherent in relational databases during the training process. Our work has
illuminated the path forward but also highlighted the nascent state of the field of GAN and
Adversarial Learning, especially in the context of AQP. There is a significant opportunity
for future research to build upon our findings to refine and enhance GAN methodologies
to more effectively construct synopses. This advancement is not just theoretical but has
substantial practical implications: potentially revolutionizing AQP in data-driven systems.
As we approach these advancements, it is crucial to prioritize ongoing innovation and
enhancement in this field. This will significantly enhance the efficiency and precision of
decision-making processes in a data-driven world.
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