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Abstract: This study offers a comprehensive examination, both theoretically and experimentally,
of the potential of methanol (M) as a sustainable aviation fuel (SAF) assessed in combination with
kerosene (Ke—Jet-A aviation fuel + 5% Aeroshell oil). Different blends of methanol and kerosene
(10%, 20%, and 30% vol. of (M) was added to Ke) were tested in an aviation micro turbo-engine
under various operating regimes, such as idle, cruise, and maximum. Key engine parameters,
including combustion temperature, fuel consumption, and thrust, were closely monitored during
these trials. Essential performance indicators such as combustion efficiency, thermal efficiency, and
specific consumption for all fuel blends under maximum operating conditions are also presented.
Physical and chemical characteristics, such as viscosity, density, calorific value and flash point, were
determined for each blend. Moreover, elemental analysis and FTIR spectroscopy were utilized to
evaluate the chemical composition of the fuels. This study further investigated the air requirements
for stoichiometric combustion and computed the resulting CO2 and H2O emissions. Experimental
tests were conducted on the Jet Cat P80® micro turbo-engine, covering assessments of starting
procedures, acceleration, deceleration, and pollutant emissions (CO and SO2) during various engine
operating conditions. The results suggest that the examined fuel blends demonstrate stable engine
performance at concentrations of 10% and 20% methanol. However, observations indicate that with
an increase in methanol concentration, particularly at 30%, the stability of the engine at idle and,
notably, at maximum speed decreases significantly. Specifically, at a 30% methanol concentration, the
engine no longer operates stably, exhibiting significant rpm fluctuations, leading to the decision not
to explore higher concentrations.

Keywords: methanol; kerosene; aviation; turbo-engine; fuel; sustainability

1. Introduction

Amidst a growing emphasis on environmental sustainability, the aviation industry
has turned its attention to alternative fuels like methanol. Several experimental studies
have been undertaken to evaluate the feasibility, performance, and environmental impact
of methanol-based aviation fuels. A systematic analysis of the latest research findings,
methodologies, and advancements in this field underscores the potential of methanol
as a viable alternative to conventional jet fuels. This has led to the conclusion that the
aviation industry is actively seeking sustainable alternatives to traditional fossil fuels to
mitigate environmental impacts. Methanol, recognized for its versatility as a liquid fuel,
has emerged as a promising candidate owing to its renewable properties.
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Numerous studies have delved into the production methods of methanol, with a
focus on sustainable pathways such as biomass and carbon capture utilization. Discussion
on the chemical and physical properties of methanol relevant to aviation applications
lays the groundwork for understanding its behaviour as a fuel. A comprehensive review
of experimental methodologies employed to evaluate methanol-based aviation fuels, in-
cluding engine performance tests, emissions analysis, combustion characteristics, and
material compatibility, has been undertaken in recent studies. Various experimental setups,
ranging from laboratory tests to real-flight simulations, have been explored, highlighting
the diversity of research approaches. These studies cover parameters such as thermal
efficiency, power output, combustion stability, and emissions profiles, including nitrogen
oxides (NOx), particulate matter (PM), and carbon dioxide (CO2). Comparative analyses
with traditional jet fuels are discussed to assess the viability of methanol as a drop-in
replacement. Additionally, environmental impact assessment is conducted, considering
factors such as life cycle analysis, carbon footprint, and sustainability metrics.

The challenges associated with the widespread adoption of methanol-based aviation
fuels are also addressed, including production scalability, infrastructure requirements, and
policy implications. Potential solutions and ongoing research efforts aimed at overcoming
these challenges are highlighted. Future perspectives on research directions and indus-
try adoption are also presented. Thus, the environmental implications and technological
strategies associated with methanol production from biomass sources, which examines the
state of the art in methanol production, emphasizing its environmental footprint and the
diverse methods employed for its synthesis, was made within [1]. The study assesses the
environmental impacts of various biomass-to-methanol conversion technologies, consider-
ing factors such as greenhouse gas emissions, energy consumption, and resource depletion.
Through a detailed analysis, the paper highlights these environmental aspects in the context
of sustainable methanol production. Furthermore, the review elucidates the technological
approaches utilized in the conversion of biomass to methanol. This includes an in-depth
exploration of cutting-edge techniques and advancements in the field, providing valuable
insights into the current state of research and development. The paper not only synthesizes
existing knowledge but also identifies key research gaps and areas that require further
exploration for the sustainable production of methanol from biomass.

Other studies, such as ref. [2], conduct a rigorous experimental study to explore the
feasibility and performance of methanol–diesel blends as fuels. Focusing on an diesel
engine, the research investigates the effects of incorporating methanol into diesel fuel,
aiming to assess combustion efficiency, emissions, and overall engine performance.

The study involves detailed experimentation, utilizing a range of methanol–diesel
blends. Through comprehensive analyses, including combustion stability assessments,
thermal efficiency measurements, and emission profiling, it systematically evaluates the
impact of methanol–diesel blends on engine operation.

Methanol is a promising energy carrier, with approximately 90 billion liters produced
annually worldwide. The production mainly involves coal gasification and steam methane
reforming of natural gas. Integrating methanol production into existing facilities like
pulp and paper mills or power plants can establish nearly carbon dioxide (CO2)-neutral
closed-loop systems [3,4].

Green methanol, which is carbon-neutral, is produced by combining CO2 and hydro-
gen. This process uses renewable electricity-derived hydrogen and biogenic CO2. It helps
mitigate CO2 emissions by utilizing captured CO2 from various sources and repurposing it
as a valuable resource, contributing to sustainable industrial practices [4,5].

In methanol synthesis, unwanted products like H2O and waste heat can be efficiently
harnessed to produce H2 in a recirculating system. Green methanol is easy to transport,
store, and distribute, though precautions are needed to prevent corrosion and adverse
effects on certain materials due to its chemical properties [6].

Methanol production incorporating carbon capture and utilization (CCU) techniques
is being explored. Studies systematically evaluate the environmental impact of these
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processes, quantifying greenhouse gas emissions, energy consumption, and other environ-
mental indicators, providing valuable insights for sustainable chemical manufacturing [7,8].

International Air Transport Association (IATA), in 2023, provided a comprehensive
and critical examination of sustainable aviation fuels (SAFs) [9]. This is a vital resource,
offering an in-depth analysis of the current landscape, challenges, and opportunities related
to SAFs. It critically evaluated the feasibility and scalability of SAF production methods,
emphasizing key technological advancements and innovations in the field. Moreover, the
paper delved into the economic viability and policy frameworks necessary to facilitate the
widespread adoption of SAFs in the aviation sector.

Reference [10] provides a comprehensive techno-economic analysis of biomass gasi-
fication processes for methanol production. The study evaluates the economic feasibility
and technological viability of producing methanol from biomass feedstocks, covering as-
pects ranging from feedstock selection and gasification processes to methanol synthesis.
It quantifies capital costs, operational expenses, and overall production efficiency across
different process configurations and technological advancements.

In a related publication, the Federal Aviation Administration (FAA) released FAA
Advisory Circular AC 150/5230-4B in 2023 [11], offering a detailed set of guidelines and
procedures for the safe handling and quality control of aviation fuels. This advisory circular
serves as a foundational reference for professionals in the aviation industry, ensuring
adherence to stringent safety and quality standards in fuel management practices.

The utilization of alcohols in aviation turbo-engines remains a subject of controversy,
yet several studies have ventured into examining their feasibility and performance in this
domain. Initially, tests and certifications were conducted on ethanol/AVGAS blends for
aviation piston engines [12], with subsequent exploration involving ethanol/Jet-A mixtures
on piston aviation engines [13]. The adoption of a new controller type demonstrated the
engine’s capability to overcome certain operational limitations.

Further investigations have explored the introduction of butanol/Jet-A mixtures to
piston aviation engines, uncovering benefits over ethanol concerning physical–chemical
properties and performance, as well as reduced concentrations of gaseous pollutants
compared to traditional aviation fuel [14,15]. Additionally, research has investigated the
use of ethanol as an environmentally friendly fuel for small gas turbine engines in controlled
laboratory environments, evaluating various ethanol and Jet-A-1 mixtures and their effects
on engine parameters [16]. Notably, bioethanol blends with Jet-A fuel were subjected to
testing using the JET Cat P80® micro turbo-engine (GUNT Hamburg, Germany), with
careful monitoring of engine parameters across various operational conditions [17].

Regarding power engineering, studies have examined the biofuels’ effects and blends
derived from alcohol on gas turbines, revealing diverse effects on emissions such as in-
creased carbon monoxide (CO) levels alongside significant reductions in nitrogen oxides
(NOx) and particulate matter (PM10) [18]. Given the varied effects observed in combustion
from alcohol and JET-A-1 mixtures, methanol was selected as the experimentation alcohol
as an alternative fuel in microturbojet engines, an area with limited exploration.

A gap in the literature has been identified regarding the use of alcohols in turbine
engines, particularly the utilization of methanol in aviation turbine engines. Additionally,
the study of transient processes, such as startup, acceleration, and abrupt deceleration, in
advanced micro turbo-engines fueled with blends of kerosene and methanol in various
proportions, has not been identified in the literature.

The novelty of this study lies in the investigation of the effects of kerosene–methanol
blends in an aviation microturbine engine.

This study aims to evaluate the aviation micro turbo-engine operational parameters,
commonly used for drones or aero models, when fueled with different blends of kerosene
and methanol. A comparative analysis of fuel blends comprising Jet-A + 5% Aeroshell 500
Oil (Ke) with 10%, 20%, and 30% methanol is conducted, with Ke serving as the reference
fuel. Moreover, given the polarity of the methanol, its miscibility with Jet-A is very low,
thus leading to problems related to the homogeneity of the blend. But in order to overcome
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the issue of methanol polarity and its miscibility problem, simple stirring of the liquids
ensures a relative homogeneity, making the blend suitable for use.

This research provides a fresh perspective on the potential of these alternative fuel
blends, assessing their performance concerning efficiency, emissions, and behavior under
various operational conditions. The findings obtained could contribute to the development
of more sustainable and energy-efficient technologies in aviation. Additionally, it addresses
a gap in the literature concerning the testing of methanol in turbine engines.

2. Materials and Methods

Fuel blends of kerosene + 10% methanol, kerosene + 20% methanol, and kerosene + 30%
methanol were prepared and were subjected to burning in a turbo-engine, and all the tests
described below were performed.

2.1. Analysis of the Fuel Blends

Physical–chemical properties of the fuels and blends used for testing were determined
as follows:

Density Measurements
The density of all investigated fuel blends was determined in accordance with SR EN

ISO 3675/2002 [19].
Flash Point Measurements
Flash points, which denote the minimum temperature at which the vapors of sub-

stances ignite when exposed to a flame, were determined for Jet-A fuel, methanol, and all
tested fuel blends as outlined in ASTM D92 [20].

Kinematic Viscosity Measurements
Kinematic viscosity measurements were performed for Jet-A fuel at 40 ◦C, methanol,

and all tested fuel blends, as experimentally determined following the procedures outlined
in SR EN ISO 3104/2002 [21].

Low Calorific Value Determination
The low calorific value of Jet-A fuel, methanol, and all fuel blends was experimentally

determined following ASTM D240-17 guidelines [22].
FTIR Analysis (Fourier Transform Infrared Spectroscopy)
FTIR analysis was conducted for all samples using a Spectrum Oil Express Series 100,

v 3.0 spectrometer from Perkin Elmer (Waltham, MA, USA), equipped with specialized
software for fuel blend analysis.

Elemental Analysis
An elemental analysis was conducted for Jet-A fuel, methanol, and all tested fuel

blends; the main elements of the fuels (C, N, H, and O) were assessed to determine their
percentage of carbon, hydrogen, nitrogen, and oxygen content, following the procedure
outlined in ASTM D 5291-16 [23].

2.2. Fuel Blend Combustion

After establishing the elemental analysis of all fuel blends, calculations were conducted
to determine the minimum air quantities required for stoichiometric combustion. Accurate
calculations of resulting water and CO2 emissions facilitate a thorough assessment of
gaseous pollutant generation during combustion. Consequently, it was observed that
the examined fuel blends yield reduced levels of gaseous pollutants in comparison to
conventional combustion methods.

2.3. Combustion Tests

The experimental setup, methodologies, equipment, and testing protocol are detailed
in the subsequent section. The experiments were carried out utilizing a Jet CAT P80®

turbo-engine [24], illustrated in Figure 1.
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Figure 1. The instrumentation setup for the test bench.

This section investigates the influence of different fuel blends on the performance of
a turbocharged engine. The fuel blends under scrutiny comprise kerosene mixed with
varying proportions of methanol (10%M, 20%M, and 30%M), with each blend supple-
mented with 5% of Aeroshell 500 oil for engine lubrication, given the absence of a dedicated
lubrication system in such a small engine. The experiments were carried out across three
different operational modes: idle regime (18.7% throttle gas), cruise regime (30% throttle
gas), and maximum regime (94% throttle gas—this for safety reasons). Each mode under-
went testing for approximately 2 min, during which engine parameters were meticulously
monitored. The parameters measured were the following: temperature (Tcomp) after the
compressor, temperature (Tcomb) in front of the turbine, fuel flow (Qf), air flow, pressure in
the combustion chamber, and thrust (F). Despite variations in fuel blends, the turbocharged
engine consistently maintained its shaft speed throughout the experiments; various fuel
blends were introduced into the combustion chamber in different proportions to sustain
this consistent speed. Despite these variations, the compressor operated steadily through-
out the experiments, leading to consistent airflow and uniform pressure downstream of
the compressor. Under conditions of constant shaft speed, comparative evaluations were
conducted for parameters such as fuel consumption (Qf), temperature in front of the turbine
(Tcomb), and thrust (F).

2.4. Gaseous Emissions Measurements

Measurements of gaseous emissions were performed utilizing the MRU Vario Plus an-
alyzer (Messgeräte für Rauchgase und Umweltschutz GmbH, Neckarsulm-Obereisesheim,
Germany), as depicted in Figure 2. Concurrently, measurements of gas components such as
O2, CO, NO, NO2, NOx, SO2, and CH4 were conducted.
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3. Results
3.1. Experimental Results for the Physical–Chemical Properties of Fuel Blends

The collected measurements for all samples are tabulated and presented in Table 1.

Table 1. Experimental results of the physical–chemical properties of fuel blends.

Sample Flash Point
◦C

Kinematic Viscosity
at 40 ◦C

cSt

Density at 22 ◦C
g/cm3

Low Calorific
Value MJ/kg

Elemental
Analysis

[%]

Ke (Jet-A+5%Aeroshell 500) 42.3 1.39 0.817 42.39

C = 85.17
H = 13.31
N = 0.07
O = 1.45

Ke+10%M 23.7 1.31 0.815 40.15

C = 80.40
H = 13.23
N = 0.06
O = 6.3

Ke+20%M 23.4 1.22 0.812 37.9

C = 75.63
H = 13.14
N = 0.06
O = 11.15

Ke+30%M 23.3 1.14 0.810 35.66

C = 70.85
H = 13.06
N = 0.05
O = 16

M 11.8 0.545 0.792 19.97

C = 37.45
H = 12.48

N = 0
O = 49.94

It is worth mentioning that the low calorific value and elemental analysis were specifi-
cally determined only for Jet-A fuel. As for the tested fuel blends, these parameters were
calculated based on reference values [25–27].

A thorough analysis of the data provided in Table 1 yields several significant conclusions:

• The trend observed in the flash point, kinematic viscosity, and density indicates a
decrease with higher alcohol concentration. This relationship suggests a notable
influence of the alcohol content on these physical properties.

• The decrease in low calorific value with increasing alcohol concentration implies an
undesirable characteristic. This observation warrants further investigation into its
implications for combustion efficiency.

• Elemental analysis indicates that as alcohol concentration increases, carbon and hy-
drogen content decrease, while oxygen content increases. This implies a possible
decrease in the resulting CO2 concentration during the combustion process, ascribed
to a diminished requirement for oxygen.

• Analysis of all investigated fuel blends shows consistent patterns. The kinematic
viscosity at 40 ◦C, flash point, and low calorific value decrease proportionally as the
alcohol percentage increases. This consistency underscores the predictable impact of
alcohol concentration on these properties.

• Elemental analysis further indicates that the increase in alcohol percentage corresponds
to a rise in oxygen content and a decrease in carbon content. These findings enhance
our understanding of the elemental composition changes caused by varying alcohol
concentrations in fuel blends.

• FT-IR spectroscopy emerges as a valuable tool for evaluating chemical modifications
within a substance. The incorporation of alcohols or biodiesel into conventional
aviation fuel leads to alterations in its chemical composition. Figure 3 depicts the FTIR
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spectra for kerosene, Ke+10% methanol, Ke+20% methanol, Ke+30% methanol, and
100% methanol.
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As can be seen in Figure 3, the main differences between the spectra of the regular
aviation fuel (Ke) and the blends are at 3200–3600 cm−1, meaning that hydroxyl (-O-H)
has been brought into the structure. As expected, the higher the alcohol concentration, the
higher the peak. Another important modification appears at 1750 cm−1, representing the
presence of oxygen bonded by a C atom (C-O). At 1450 cm−1, the presence of methylene
groups (–CH2) are shoving a slight decrease compared with Ke. The radiation absorbed
at 1350 cm−1 is showing an increase in methyl groups (–CH3). Another large difference
is shown at 1000 cm−1, representing the C-OH bond. As in the case oh –OH, as the
concentration of the alcohol increases, C-OH increases [28].

3.2. Combustion Reaction Analysis

To understand the properties of the stoichiometric combustion of various fuel blends,
it is essential to grasp their elemental composition. This study specifically targets hydrocar-
bons with the general formula CcHhOoNn [29,30], with specific fractions of gC, gH, gO,
and gN outlined in Table 1.

Determining the necessary oxygen quantity for stoichiometric combustion is crucial for
gaining insights into the combustion process and fostering a comprehensive understanding
of the chemical reactions involved. This is computed using Equation (1).

Mo =
32

12gC
+

32
4gH

− 32
32gO

= 2.667gC + 8gH − gO (1)

Mair = 4.35Mo (2)

The resulting CO2 and H2O from the combustion reaction are as follows:

CO2 = 44
gC
12

(3)

H2O = 9gH (4)

The results are presented in Table 2, based on Equations (1)–(4).
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Table 2. Values for 1 kg of fuel blend.

Blend MO [kg] Mair [kg] CO2 [kg] H2O [kg]

Ke+5% Aeroshell 500Oil 3.32 14.45 3.12 1.20

Ke+10%M 3.14 13.66 2.95 1.19

Ke+20%M 2.96 12.86 2.77 1.18

Ke+30%M 2.77 12.07 2.60 1.18

M 1.50 6.52 1.37 1.12

An inverse relationship is observed between the required air quantity and alcohol con-
centration. This trend is attributed to the increase in oxygen content associated with higher
alcohol concentrations. Moreover, there is a proportional decrease in CO2 concentration
noted with increasing alcohol concentration. Indeed, these observations emphasize the com-
plex relationship between alcohol content, oxygen levels, and the resulting concentration
of carbon dioxide during the stoichiometric combustion process.

3.3. Micro Turbo-Engine Test Bench Experiments

As can be assessed in Figure 4, the polar nature of the methanol makes it hardly
miscible with kerosene. Therefore, in order to avoid the separation of the two phases, the
fuel fed to the Jet Cat turbo-engine was constantly stirred.
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mixture after stirring.

3.3.1. Experimental Results

In this segment, we delve into the outcomes of the primary phase of the micro turbo-
engine, emphasizing the initiation process. The startup phase is outlined as the interval
from the initial activation of the starter to the juncture where the engine achieves a steady
operational condition. The primary aim is to evaluate the consistency of the startup
procedure across different fuel blends. Figures 5–7 illustrate the fluctuations in engine
attributes throughout this phase, encompassing rpm versus time, fuel temperature versus
rpm, and fuel flow rate versus rpm. These graphical representations provide insights
into the dynamics and efficiency of the engine during the critical startup period for each
fuel blend.
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Figure 7. Qc (L/h) vs. rpm for different fuel blends during the starting procedure.

Figure 5 shows that as the methanol concentration increases, the starting time increases
too. For the first concentration of methanol (Ke+10%M), the starting procedure is relatively
stable. As the concentration increases, at Ke+20%M, the starting time is lower but the
maximum rpm was hard to maintain, as it can be seen in the summit of the yellow line. As
the engine reached the yield regime, rpm is more oscillating than in the case of Ke. The
starting procedure presents large difficulties in the case of 30% methanol, and maximum
rpm cannot be held by the engine. After reaching yield regime, the rpm oscillations
increased even more.

The fluctuations illustrated in Figure 6 suggest that following the initiation process,
a minor decline in fuel temperature occurs. This phenomenon arises because, during the
activation of the engine using the electric starter, external air is drawn into the combus-
tion chamber.

Additionally, Figure 6 illustrates the ignition delay, which extends as the ethanol
concentration rises. This delay leads to a decrease in temperature in front of the turbine
during the starting procedure, consequently prolonging the entire starting process.

As for the fuel debit, it can be observed in Figure 7 that it increases while the methanol
concentration increases throughout the entire starting procedure. Even more, for Ke+30%M,
an anomaly compared to the engine’s working law can be observed when the max rpm is
attempting to be reached. This can also be assessed from Figure 6 where the combustion
temperature for the blend containing Ke+30%M is very high and very instable during the
entire starting procedure.

During yield regime, both fuel debit and combustion temperature for Ke+30%M show
large oscillations, leading to the conclusion that blends consisting of more than Ke+20%M
in aviation fuel is not a feasible solution for micro turbo-engines.

To evaluate the engine’s combustion stability, a sudden procedure has been operated.
It involved a rapid transition from idle to maximum, followed by a stationary period

of 30 s at the maximum, and then a sudden return to idle.
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Figures 8–10 illustrate the fluctuations in temperature in front of the turbine, fuel flow, and
thrust compared to rpm during this abrupt procedure for all four fuels under consideration.
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As depicted in the aforementioned figures, the engine underwent rapid acceleration,
maintained maximum regime for a brief period, and then promptly decelerated, leading
to a reduction in temperature ahead of the turbine during both acceleration and decelera-
tion phases. Moreover, the temperature decreases as the alcohol concentration increases,
although this does not pose a threat to the engine itself.

On the other hand, for the blend consisting Ke+30%M, during the sudden acceleration
period, the stability of the burning process is disturbed, thus leading to the conclusion that
at concentrations higher than 20%, the engine itself might be dangerously affected. The fuel
flow exhibits an anticipated increase during the sudden acceleration sequence, which is
expected. Interestingly, this trend persists with higher alcohol concentrations. This occurs
because the calorific value of the blend decreases as the alcohol concentration increases.
Also, the thrust shows similar behavior due to the same aspects of the blends.

The observations from the above figures indicate that as the concentration of methanol
increases, the stability of the engine at idle and particularly at maximum speed decreases
significantly. Specifically, at a concentration of 30% methanol, the engine no longer oper-
ates stably, exhibiting large fluctuations in rpm, leading to the decision not to experiment
with higher concentrations. Ke+30%M is not a feasible solution for sudden accelera-
tion/decelerations since the engine is unstable and may affect its integrity and leading to
serious working problems.

Figure 11 visually presents the temperature fluctuations in front of the turbine across
all three operating modes and various tested fuel combinations. Upon analyzing Figure 11,
it can be deduced that the engine remained safe and intact since the turbine’s maximum
temperature of 800 ◦C was neither reached nor surpassed. Notably, in the idle mode, the
temperature diminishes with an increase in alcohol concentration, attributed to the inher-
ent instability of the idle regime. At higher regimes, combustion temperatures decrease
significantly as the methanol concentration rises in the tested fuel blends. The temper-
ature variation, correlated with other parameters, influences specific fuel consumption,
combustion yield in the combustion chamber, and thermal yield.
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Figure 12 illustrates the variation in consumed fuel flow in liters per hour, revealing
a noteworthy increase across all three modes and tested fuel blends. Figure 13 depicts
the thrust variation (F) based on the regime and tested blends. It is noticeable that thrust
variations are minimal for regimes 1 and 2 but decrease during regime 3. Moreover, thrust
diminishes with higher alcohol concentrations. The overarching conclusion drawn from
these figures is that the engine’s functionality and integrity were not compromised.
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Figures 14 and 15 are showing the variation in CO and SO2 for all the blends used and
for all three regimes.
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In Figure 14, as alcohol concentration increases, the concentration of CO rises. This 
occurs because alcohol in bringing into the blend more and more oxygen, which is actively 
participating in the burning reaction. Also, as the concentration increases, the required air 
for the stoichiometric reaction decreases, thus the burning is less efficient leading to the 
formation of CO. Also, CO formation is highly dependent on the temperature. Thus, a 
decrease in the temperature in front of the turbine is leading to an increase in CO for-
mation rather than CO2. As expected, CO concentration increases throughout the regimes 
since the fuel flow increases.  

As for SO2 formation, its variation does not depend on alcohol concentration. Indeed, 
as compared to Ke alone, adding alcohol into the blend decreases the SO2 concentration. 
In terms of regimes, it seems that for Ke alone, max regime is the most efficient in terms 
of SO2 production since the burning temperatures are the highest, but for the blends con-
sisting of added alcohol, the idle regime seems to be the most efficient, maybe due to the 
oxygen brought into reaction by the alcohol. 
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In Figure 14, as alcohol concentration increases, the concentration of CO rises. This
occurs because alcohol in bringing into the blend more and more oxygen, which is actively
participating in the burning reaction. Also, as the concentration increases, the required
air for the stoichiometric reaction decreases, thus the burning is less efficient leading to
the formation of CO. Also, CO formation is highly dependent on the temperature. Thus, a
decrease in the temperature in front of the turbine is leading to an increase in CO formation
rather than CO2. As expected, CO concentration increases throughout the regimes since
the fuel flow increases.

As for SO2 formation, its variation does not depend on alcohol concentration. Indeed,
as compared to Ke alone, adding alcohol into the blend decreases the SO2 concentration. In
terms of regimes, it seems that for Ke alone, max regime is the most efficient in terms of SO2
production since the burning temperatures are the highest, but for the blends consisting
of added alcohol, the idle regime seems to be the most efficient, maybe due to the oxygen
brought into reaction by the alcohol.

3.3.2. Jet Engine Performance Analysis

Performance metrics are derived in accordance with the methodology specified in
reference [31]. This involves ascertaining the density of every scrutinized fuel blend,
facilitating the transformation of recorded fuel flow measurements from liters per hour to
kilograms per second utilizing data from engine instrumentation. Subsequently, specific
consumption (S) is computed utilizing Equation (5):

S = 3600·
.

Mf
F

[
kg

N·h

]
(5)

where
.

Mf denotes the fuel flow in kilograms per second. Comprehending the progression
of combustion inside the combustion chamber and assessing the degree of combustion
completeness are crucial. Determining combustion efficiency (ηb) is critical in this context.
It is represented by Equation (6), offering a quantitative assessment of the combustion
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process’s effectiveness. This efficiency serves as a valuable indicator for assessing engine
performance and combustion dynamics.

ηb =

( .
Mf +

.
Ma

)
cp3_comb·T_comb −

.
Ma·cp_comp·T_comp

.
Mf·LCV

(6)

where LCV—lower calorific value, cp—specific heat capacity, and Tcomb represents the
temperature in front of the combustion chamber that was recorded.

The thermal efficiency of an engine, an essential metric for performance evaluation, is
calculated as the ratio between the net rate of useful work output and the rate of thermal
energy available from the fuel consumed by the engine.

Equation (7) encapsulates this parameter, offering a quantitative gauge of the engine’s
efficiency in converting thermal energy from fuel combustion into useful work output. It
stands as a pivotal metric for evaluating the overall performance and energy conversion
efficiency of the engine under investigation.

ηT =

( .
Ma +

.
Mf

)
· v2

e

2 ·
.

Mf · LCV
=

( .
Ma +

.
Mf

)
·
(

F.
Ma+

.
Mf

)2

2 ·
.

Mf · LCV
(7)

Figure 16 displays the variation in specific consumption across all the examined
fuel blends.

Fire 2024, 7, 155 15 of 18 
 

 

3.3.2. Jet Engine Performance Analysis 
Performance metrics are derived in accordance with the methodology specified in 

reference [31]. This involves ascertaining the density of every scrutinized fuel blend, facil-
itating the transformation of recorded fuel flow measurements from liters per hour to kil-
ograms per second utilizing data from engine instrumentation. Subsequently, specific 
consumption (S) is computed utilizing Equation (5): 

S = 3600 ∙
Ṁf
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Figure 16. Variation in the fluctuations in specific consumption among all the tested fuel blends.
The specific consumption of the turbo-engine indicates an increase, as anticipated, owing to the
lower calorific value of methanol compared to that of Jet-A. The reduced calorific value and the fuel
blends exhibit higher specific consumption, in comparison to Jet-A, indicating that the inclusion of
methanol in aviation fuel would require larger fuel tank capacities to accommodate the greater fuel
consumption associated with methanol utilization.

This observation underscores the potential implications for aircraft design and fuel
storage considerations in the context of introducing methanol as an aviation fuel.

Figure 17 illustrates the combustion efficiency as a function of operating regime and
methanol concentration in the fuel blends.
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The burning efficiency is lower in the case of the blends compared to that of Ke alone
and decreases as the alcohol concentration increases for all three regimes.

The thermal efficiency values computed using Equation (7) are presented in Table 3. It
should be noted that thermal efficiency was determined solely for the maximum operat-
ing regime.

Table 3. Calculated thermal efficiency obtained at maximum regime for all tested blends.

Fuel Ke+5%Aeroshell 500 Oil Ke+10%M Ke+20%SM Ke+30%M

ηb [%] 5.197 5.149 5.524 5.346

ηb Upon analyzing Table 3, it becomes evident that the thermal efficiency values are
notably low in comparison to those reported in the literature. This discrepancy is attributed
to the distinct operating procedures of the turbo-engine under consideration, which differ
from those employed in traditional airplane turbo-engines. Notably, the thermal efficiency
is lower for the fuel blends than for Ke (kerosene) alone, and it demonstrates an increase
with higher alcohol concentrations in the blends. This observation underscores the influence
of fuel composition on the thermal efficiency of the turbo-engine, emphasizing the need
for specific considerations and adjustments when assessing efficiency in non-standard
engine configurations.

4. Conclusions

• Experimental assessments conducted on the Jet CAT P80®micro turbo-engine demon-
strate that the inclusion of methanol in conventional fuel does not jeopardize the perfor-
mance of the turbo-engines. The calorific value of the fuel blends experiences a decrease
with increasing methanol concentration, resulting in a corresponding rise in specific fuel
consumption. The lower percentage of carbon content in methanol, used for blending
with Ke (kerosene), contributes to reduced CO2 emissions upon combustion.
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• Concerning engine performance, there is a proportional increase in fuel-specific con-
sumption with higher methanol percentages in the tested blends, a trend attributed to
their respective calorific values.

• The concentrations of CO and SO2 vary primarily with operational regimes and secon-
darily with alcohol concentrations. However, further investigations are warranted to
explore the formation of additional gaseous pollutants such as NOx, volatile organic
compounds (VOC), and CO2.

• The key finding is that the tested fuel blends, namely, Ke+10%M, Ke+20%M, and
Ke+30%M, are deemed suitable for aviation applications utilizing micro turbo-engines.
Throughout the experiments, the integrity of the engine remained intact, affirming
their viability for practical aviation use.
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