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Abstract: First, we review the solutions of a complex-valued scalar field, termed scalar clouds, with
and without electric charge, when coupled to a rotating Kerr–Newman (electrically charged) or Kerr
(neutral) black hole (BH), respectively. To this aim, we determine the conditions and parameters
that characterize the existence of solutions that represent bound states, with an energy-momentum
tensor that respect the symmetries of the underlying spacetimes, even if the backreaction of the field
is not taken into account at this stage. In particular, we show that in the extremal Kerr scenario the
cloud solutions exist only when the mass of the BH satisfies certain bounds, which are obtained by
analyzing an effective potential associated with the radial dependency of the scalar clouds that leads
to a Schrödinger-like equation. Second, when the backreaction of the field in the spacetime is taken
into account, we present a family of stationary, axisymmetric and asymptotically flat solutions of
the Einstein–Klein–Gordon system that represent genuine rotating hairy black holes (RHBHs) and
provide different values of some global quantities associated with them, such as the Komar mass and
the Komar angular momentum. We also compute RHBH solutions with nodes in the radial part of
the scalar field and also for a higher azimuthal number m.

Keywords: black holes; rotating hairy black hole; neutral scalar clouds; charged scalar clouds

1. Introduction

Black holes (BHs) represent some of the most interesting and relevant astrophysical
objects as predicted by Einstein’s general relativity. Since the first detection of gravitational
waves (GWs) by the LIGO-VIRGO collaboration [1] (today LIGO-VIRGO-KAGRA), such
objects are no longer in the realm of theoretical speculations, but they became an accepted
piece of reality in our universe: the best explanation for the sources of such GWs is provided
by the inspiriling and the merger of two BHs (and sometimes of two neutron stars) followed
by the ringdown of a remaining Kerr BH. This interpretation has been the result of exquisite
simulations developed by the numerical relativity community, specially during the past
two decades. Moreover, the images obtained by the Event Horizon Telescope (EHT) from
the centers of galaxy M87 [2] and our own galaxy [3] are consistent with the hypothesis
of light emitted from accretion discs around BHs located at such centers, which are then
distorted by their corresponding gravitational fields before reaching the telescope.

At a fundamental level, the simplest BHs are characterized by three parameters, their
mass (M), electric charge (Q) and angular momentum (J) (no-hair conjecture) [4,5], and are a
consequence of solving the Einstein field equations in a vacuum or with an electromagnetic
field under suitable symmetries and by imposing regularity and asymptotic conditions.
These studies led to the BH uniqueness theorems [6–13], which several years later were
complemented by several no-hair theorems [14–20], showing that quantities no other than
the above three parameters characterize a BH.

In recent years, the no-hair conjecture has proven to be false when nonlinear field
theoretical models have been considered [21–23]. However, most if not all the hairy
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BH solutions within those models (the majority of which have been obtained in static
and spherically symmetric scenarios) have proven to be unstable with respect to linear
perturbations. Surprisingly, in 2014, Herdeiro and Radu [24,25] discovered numerically
that rotating hairy BH solutions of the Einstein–(complex)Klein–Gordon system could exist
if the assumptions of staticity and spherical symmetry are dropped—conditions that are
required by some of the existing no-hair theorems [19]. These authors also showed that
if the background of a Kerr spacetime was fixed, the solutions of the (complex) Klein–
Gordon system also exist—solutions that are referred to as clouds. This result extends a
previous analysis by Hod for the existence of exact cloud solutions around an extremal
Kerr spacetime [26]. More recently, those solutions have been generalized to include
electric charges [27–32]. Further studies have put forward heuristic analyses that allow us
to understand the existence of such solutions on simple grounds [31–33] and show why the
no-hair theorems cannot be extended precisely when rotation and axisymmetry are taken
into account in the assumptions. These discoveries have also motivated the analysis of
analogue systems in fluids and other media that can mimic scalar clouds around acoustic
horizons [34–36]. Moreover, scalar clouds have also been analyzed in other types of exotic
BH backgrounds [37–40].

In this paper, we report several neutral and electrically charged (numerical) cloud
solutions of the Klein–Gordon equation in the background of Kerr and Kerr–Newman
spacetimes. In addition, we show an important connection between an effective gravita-
tional potential (associated with the clouds and the backgrounds) and the possible values
admitted by the BH parameters for the cloud (bound-state) solutions to exist, notably, in the
extremal BH scenarios. Finally, based on a recent analysis that employs spectral methods [41],
we also report new genuine rotating hairy BH solutions of the Herdeiro–Radu type by
solving numerically the full Einstein–Klein–Gordon system under the assumptions of
axisymmetry, stationarity, circularity and asymptotic flatness by taking into account the backre-
action of the scalar field in the spacetime and by considering nodes in the radial part of the
field and also higher values for the azimuthal number m.

2. Scalar Clouds around Subextremal BHs
2.1. Charged Scalar Clouds

In this and the following section, we consider a (test) massive, complex and charged
scalar field Ψ around a Kerr–Newman (KN) BH, which in Boyer–Lindquist coordinates is
described by the following spacetime metric,

ds2 = −
(

∆ − a2 sin2 θ

ρ2

)
dt2 −

2a sin2 θ
(
r2 + a2 − ∆

)
ρ2 dtdφ +

ρ2

∆
dr2 + ρ2dθ2

+

((
r2 + a2)2 − ∆a2 sin2 θ

ρ2

)
sin2 θdφ2, (1)

where
ρ2 = r2 + a2 cos2 θ, (2)

and
∆ = r2 − 2Mr + a2 + Q2, (3)

where the parameters M, a and Q are the mass, the angular momentum per mass unit and
the electric charge associated with the KNBH, respectively.

In this spacetime we can identify the presence of two horizons located at

r± = M ±
√

M2 − a2 − Q2. (4)

The horizon at r+ ≡ rH corresponds to the BH event horizon, while at r− there is an
inner Cauchy horizon. A particular case obtained from the above scenario is the Kerr BH
associated with a rotating neutral BH, with Q ≡ 0. In this section, we focus only on the
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subextremal BH scenarios where M2 > a2 + Q2 and rH > r−. The extremal ones where
M2 = a2 + Q2 and r+ = r− = M are discussed in subsequent sections.

The energy-momentum tensor (EMT) associated with the scalar field Ψ that is studied
in relation with the scalar clouds and rotating hairy BHs is given by

Tab =
1
2

[
(DaΨ)∗(DbΨ) + (DbΨ)∗(DaΨ)

]
− gab

[1
2

gcd(DcΨ)∗(DdΨ) + U(Ψ∗Ψ)
]
, (5)

where the operator
Da := ∇a − iqAa, (6)

is the covariant derivative associated with the gauge field Aa, which for a KNBH is given by

Aa = −Qr
ρ2

[
(dt)a − a sin2 θ(dφ)a

]
, (7)

and the constant q is the electric charge or gauge coupling for the scalar field Ψ. The operator
∇a corresponds to the covariant derivative compatible with the metric, in this case, the KN
metric. For our study, we focus only on the following potential

U(Ψ∗Ψ) =
1
2

µ2Ψ∗Ψ, (8)

which is associated with a massive but free field with mass µ. Neutral scalar clouds around
a Kerr BH are found when Q ≡ 0 ≡ q.

The dynamics of the charged and massive scalar field are provided by the Klein–
Gordon (KG) equation coupled to gravity and the electromagnetic potential:

(∇a − iqAa)(∇a − iqAa)Ψ = µ2Ψ. (9)

Because we are interested in finding bound states for Ψ in the domain of outer commu-
nication (DOC) of the KNBH, including the horizon, we consider the following ansatz with
temporal and angular dependence in the form

Ψ(t, r, θ, φ) = ϕ(r, θ)eimφe−iωt, (10)

where ω is the frequency of the scalar field and m is an integer number. This is the most
general form that we can choose such that the EMT (5) respects the symmetries of the KN
spacetime (see also Section Global Quantities).

We also impose the zero-flux condition at the BH horizon to ensure the existence of
boson clouds [24,25,29,30,32]:

χaDaΨ
∣∣
H+ = 0, (11)

where [42]
χa ≡ ξa + ΩHηa, (12)

is the helical Killing vector field given in terms of the timelike Killing field ξa = (∂/∂t)a

and the axial Killing field ηa = (∂/∂φ)a, which are associated with the time and axial
symmetries of the background spacetime. The parameter ΩH represents the angular
velocity of the BH horizon, which in this case is given by

ΩH =
a

r2
H + a2

. (13)

From (11) and Equations (7), (10) and (12), we obtain the following condition:(
ω − mΩH − q

QrH

r2
H + a2

)
ΨH = 0. (14)
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Assuming that in general ΨH ̸= 0, we conclude that the frequency ω is given in terms
of the BH properties at the horizon:

ω = mΩH + qΦH , (15)

where
ΦH := −Aaχa|H+ =

QrH

r2
H + a2

=
4πQrH
AH

, (16)

is the electric potential at the horizon defined in terms of the helical Killing field, and
AH = 4π(r2

H + a2) is the area of the BH event horizon (cf. Ref. [43]). In the context of a
neutral Kerr BH, the frequency (15) is called the synchronicity condition [24,25] .

When replacing the scalar field ansatz (10) in the KG Equation (9), we find that the
function ϕ(r, θ) is separable and can be written as the product of two functions that depend
on the coordinates r and θ, respectively, which allows us to expand the field Ψ in modes of
the following form

Ψnlm = Rnlm(r)Slm(θ)eimφe−iωt, (17)

where the angular functions Slm(θ) (the spheroidal harmonics) obey the following equation

1
sin θ

d
dθ

(
sin θ

dSlm
dθ

)
+

(
Klm + a2(µ2 − ω2) sin2 θ − m2

sin2 θ

)
Slm = 0, (18)

and Klm are the separation constants (|m| ≤ l) given by

Klm + a2(µ2 − ω2) = l(l + 1) +
∞

∑
k=1

cka2k(µ2 − ω2)k, (19)

which connects the angular and radial parts of the Klein–Gordon equation and ensures
that the angular functions Slm(θ) are regular on the axis of symmetry. The number l is a
non-negative integer, and the integer n (n ≥ 0) labels the number of nodes in the radial
function Rnlm(r). The expansion coefficients ck can be found in Ref. [44].

The functions Rnlm(r) obey a radial Teukolsky equation [45],

∆
d
dr

(
∆

dRnlm
dr

)
+
[
H2 +

(
2maω − Klm − µ2

(
r2 + a2

))
∆
]

Rnlm = 0, (20)

where the function H is defined by

H :=
(

r2 + a2
)

ω − am − qQr. (21)

2.2. Boundary Conditions

In order to solve the Teukolsky radial Equation (20), we impose the following regularity
conditions for the first and second derivatives at the horizon (see Ref. [32] for more details):

R′
nlm(rH) = − 1

2(rH − M)

[
2maω − Klm − µ2

(
r2

H + a2
)]

Rnlm(rH), (22)

and

R′′
nlm(rH) = − 1

2(rH − M)

[
(M − r−)

(
2marH + qQ

(
r2

H − a2))2

(rH − r−)2
(
r2

H + a2
)2 − µ2rH

]
Rnlm(rH)

− 1
4(rH − M)

[
2(1 + maω)− Klm − µ2

(
r2

H + a2
)]

R′
nlm(rH). (23)

These regularity conditions are valid in the subextremal scenarios rH > M > r−. In the
extremal BH cases rH = M = r−, these derivatives blow up, and thus, a different strategy
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is devised to construct cloud solutions numerically [32] (see Appendices A and B). These
remarks apply also for the neutral scalar clouds considered in Section 2.3 below.

Figure 1 shows some solutions to the radial Teukolsky Equation (20) for the integers
n = 0 and l = m = 1, which satisfy the above regularity conditions and vanish asymptoti-
cally. These bound-state solutions are found numerically from a fourth-order Runge–Kutta
integrator accompanied by a shooting method. During the numerical process, we have
fixed the values rH , Q, µ and q for a given set of quantum numbers (n, l, m). The shooting
method allows us to find the optimal value for the (rotation parameter) a such that the scalar
field vanishes exponentially away from the BH. This amounts to finding the corresponding
eigenvalue ω leading to the bound states for the field Ψ in the KN background.
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Figure 1. Radial solutions Rnlm with n = 0 and m = l = 1 associated with charged scalar clouds
(q/µ = 1) around a Kerr–Newman black hole with charge µQ = 0.1 and for different horizon
locations µrH as shown in the Figure.

Figure 2 shows the existence lines associated with the charged scalar clouds around a
KNBH with electric charge µQ = 0.1 and integers n = 0 and m = l = 1, 2, 3. Our results
are compatible with those reported in the past [29].

Figure 3 depicts other solutions for the radial functions when fixing the location of the
event horizon rH but varying the KNBH electric charge Q. We see that when the electric
charge increases, the rotation parameter a decreases. Thus, we conclude that the larger
the electrical charge Q, the slower the BH rotates in order for the scalar field Ψ to keep the
balance around the BH. However, note that when this happens the amplitude of the radial
function also increases. Thus, one cannot find a finite (continuous) smooth radial function
with a ≡ 0 and with a finite charge Q. This is because there exist no regular clouds in the
background of a Reissner–Nordstrom BH with a massive but free scalar field [31].

Figure 4 shows solutions for the radial functions taking q/µ = ±1.0 [46]. It is worth
noting that when one fixes a set of parameters of the system like (rH , Q, n, l, m, µ, q), one
finds that there exist two optimal values of a (as well as M) that allow for the existence of
charged scalar clouds, as shown in Figure 4.

On the other hand, based on the numerical results, we observe a correlation between
the optimal values of the parameter a and the sign of the scalar field charge q/µ. For
instance, taking µrH = 0.40 and q/µ = 1.0, we obtain µa = 0.13884596; however, for
the same value of rH but q/µ = −1.0 (i.e., q with the opposite sign), we find that the
optimal value is µa = −0.13884596 (i.e., a has the opposite sign). This result can be
seen as a consequence of the symmetry of the radial Teukolsky Equation (20) under the
transformation [47] (a, Q, q) → (−a, Q,−q) or (a, Q, q) → (−a,−Q, q).
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Figure 2. Existence lines for charged scalar clouds in KN backgrounds. The (dashed) lines in this M
vs. ΩH diagram indicate the values for the mass M and angular velocity ΩH (in units of 1/µ and µ,
respectively) with electric charge Q = 0.1/µ of the KN metric that allow for the existence of charged
boson clouds in subextremal scenarios (a2 + Q2 < M2). The solid blue line is associated with an
extremal KNBH (a2 + Q2 = M2).
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2.3. Neutral Scalar Clouds

A particular case of the previous scenario corresponds to the neutral scalar clouds
(q = 0) in the background of a Kerr BH (Q = 0), which is described by the metric (1), with

∆K ≡ ∆
∣∣∣
Q=0

= r2 − 2Mr + a2. (24)

In this case, the event horizon (rH) and Cauchy horizon (r−) take the form

rH = M +
√

M2 − a2, and r− = M −
√

M2 − a2, (25)

respectively. For the neutral scalar field Ψ, the Klein–Gordon Equation (9) reduces to

∇a∇aΨ = µ2Ψ, (26)

and the radial Teukolsky equation becomes

∆K
d
dr

(
∆K

dRnlm
dr

)
+
[
H2

K +
(

2maωK − Klm − µ2
(

r2 + a2
))

∆K

]
Rnlm = 0, (27)

where
HK :=

(
r2 + a2

)
ωK − am, (28)

and
ωK :=

ma
r2

H + a2
. (29)

Given the form of the frequencies ωK and ω (15) for the Kerr and KN scenarios, respectively,
we see that the corresponding quantities HK and H (21) that appear in the radial equations
both vanish at their corresponding event horizon rH .

The angular part Slm(θ) of the neutral scalar field Ψ in this case satisfies the same
angular equation associated with the spheroidal harmonics (18) that appears in the KN
scenario, except that ω is replaced by ωK. To solve the radial Equation (27) in this scenario,
we impose the following regularity conditions at the horizon (see Ref. [33] for more details),

R′
nlm(rH) = −

2m2aΩH − Klm − µ2(r2
H + a2)

2(rH − M)
Rnlm(rH), (30)

and

R′′
nlm(rH) = −

[
m2a2(M − r−)− µ2rH M2(rH − r−)

2
]

2(rH − M)M2(rH − r−)
2 Rnlm(rH)

−
[
2
(
1 + m2aΩH

)
− Klm − µ2(r2

H + a2)]
4(rH − M)

R′
nlm(rH), (31)

which can be obtained from Equations (22) and (23) taking Q = 0, respectively.
Figure 5 shows the solutions to the radial Equation (27) for n = 0 (nodeless solutions)

and l = m = 1.
Figure 6 shows the existence lines associated with the neutral scalar clouds around

a subextremal Kerr BH, which are characterized by the integers n = 0 (nodeless) and
m = l = 1, 2, 3. These results are consistent with those of Refs. [24,25] (for more details see
Ref. [33]).
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Figure 5. Radial solutions Rnlm with n = 0 and m = l = 1 associated with scalar clouds around a
Kerr BH with different horizon locations µrH as depicted in the figure.
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Figure 6. Existence (dashed) lines for scalar clouds in Kerr backgrounds. This M vs. ΩH diagram
indicates the values for the mass M and angular velocity ΩH (in units of 1/µ and µ, respectively) of
the Kerr metric that allow for the existence of boson clouds in the subextremal case (|a| < M). The
solid blue line is associated with an extremal Kerr BH (a2 = M2).

We point out that in the Kerr and KN backgrounds considered so far, only the cloud
solutions in the subextremal scenarios have been computed. As we stressed before, from the
regularity conditions, we appreciate that the derivatives of the radial functions blow up at
the horizon in the extremal cases where rH = r+ = r− = M. Thus, the extremal scenarios
require a special analysis that is reported in detail in Ref. [32] and briefly in Section 3 and
Appendices A and B.

3. Effective Potential and Existence of Scalar Clouds

In our previous studies of scalar clouds [32,33], we solved the radial Teukolsky equa-
tion numerically as described before, but we did not use the effective-potential technique in
that equation to analyze more qualitatively the possible values of the frequency ω. In this
section, we proceed to do so.

Using the factorization R̃ = ∆1/2R, the radial Equation (20) can be rewritten as a
Schrödinger-like wave equation (This type of treatment using an effective potential has
been implemented for the analysis of scalar perturbations around a black hole in order to
study superradiant stability; see [48–50] for more details.)

d2R̃
dr2 +

[
ω2 − VKN

eff (r)
]

R̃ = 0, (32)
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where the effective potential VKN
eff is defined as

VKN
eff (r) := ω2 −

H2 +
(
2maω − Klm − µ2(r2 + a2))∆ + M2 − a2 − Q2

∆2 . (33)

In particular, for a Kerr background (Q = 0), the effective potential reduces to

VKerr
eff (r) := ω2

K −
H2

K +
(
2maωK − Klm − µ2(r2 + a2))∆K + M2 − a2

∆2
K

. (34)

In what follows and for simplicity, we focus only on the extremal Kerr BH (rH = M = |a|),
because in this case it turns out that exact cloud solutions exist [26].

In order to determine the existence of clouds in an extremal Kerr BH, we analyze the
behavior of the corresponding effective potential

Vext
Kerr(r) := ω2

K −

[
(r2 + M2)ωK − Mm

]2
+
[
2mMωK − Klm − µ2(r2 + M2)](r − M)2

(r − M)4

=
M(Klm − m2 + M2µ2) + r(Mrµ2 − m2)

M(r − M)2 , (35)

where, in the last step, we used the synchronicity condition ωK = m/2M (29) for the
extremal Kerr BH.

Bound states are associated with the existence of a potential well in Vext
Kerr(r). From (35),

we see that at the horizon the potential has an infinite barrier—with an infinite negative
derivative—(cf. Appendix A).

On the other hand, the potential (35) behaves asymptotically as follows:

Vext
Kerr(r) → µ2 +O

(
1
r

)
when r → ∞. (36)

So, Vext
Kerr(∞) = µ2 is positive. The derivative of the potential falls off as

Vext
Kerr

′(r) →
2M
(
2ω2

K − µ2)
r2 +O

(
1
r3

)
when r → ∞. (37)

This shows that asymptotically the derivative vanishes, but the sign depends on the
value of the frequency ωK. Because the potential has a single critical point associated with a
minimum (see Appendix A), in order to have a potential well we require that asymptotically
Vext

Kerr
′(r) > 0, this means, from Equation (37), that

ω2
K >

µ2

2
. (38)

In this way, the presence of a potential well in the effective potential Vext
Kerr(r) leads to the

existence of bound states (neutral scalar clouds). Thus, using the synchronicity condition for
an extremal Kerr BH ωK = m/2M, the lower bound (38) translates into an upper bound
for the BH mass

µ2M2 <
m2

2
. (39)

Furthermore, bound states require that the configurations vanish exponentially, and thus,
the mass of the scalar field µ and its frequency ωK satisfy the following inequality:

ω2
K < µ2. (40)

Using again the synchronicity condition, we obtain a lower bound for the BH mass:

m2

4
< µ2M2. (41)
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Finally, from (39) and (41), we conclude that scalar clouds exist in an extremal Kerr space-
time when the BH mass satisfies

m
2

< µM <
m√

2
, (42)

or equivalently
1
2
<

ω2
K

µ2 < 1. (43)

The condition (42) was first reported by Hod using a different technique (see Equation (18)
of [26] and also Equation (26) of [51]). For clouds around an extremal KNBH, it is also pos-
sible to obtain a lower and upper bound for the frequency similar to (43) (cf. Appendix B).

For subextremal Kerr or KN BHs, it is difficult to obtain explicit expressions for the
bounds of the frequencies ω. However, numerically, it is possible to corroborate that such
frequencies are indeed bounded when clouds exist.

Figure 7 (right panel) shows the effective potential (33) associated with a charged
scalar cloud (q/µ = 1.0) around an extremal KNBH (M2 = a2 + Q2) with parameters
µa = 0.564755 and µQ = 0.1. The left panel depicts the effective potential (34) for an
extremal Kerr BH (|a| = M) with µa = 0.525508. Both potentials correspond to clouds with
integers n = 0 and m = l = 1.
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Figure 7. Effective potential Veff associated with a neutral scalar field (q = 0) around an extremal
Kerr black hole (a = M = 0.525508/µ) considering quantum numbers n = 0 and m = l = 1 (left
panel). Effective potential when we consider a charged scalar field (q/µ = 1.0) coupled to an extremal
Kerr–Newman black hole (µa = 0.564755) taking integers n = 0 and m = l = 1 (right panel). The
blue horizontal lines indicate the frequencies associated with boson cloud solutions.

Figure 8 plots the effective potentials (similar to Figure 7) but taking n = 0 and
m = l = 2.

In view of these results and the form of the effective potentials for scalar clouds
around extremal BHs as depicted in Figures 7 and 8, we conclude that the frequencies
satisfy the following bounds (In Refs. [52,53], the evolution of a massive scalar field around
a Schwarzschild black hole is analyzed and the authors find quasi-stationary configurations
for the field when the frequencies are bounded in a resonance band, which is similar but
different from the frequency bands reported in this work.)

Max
(

Vmin
eff ,

µ2

2

)
< ω2 < µ2. (44)

where Max
(

Vmin
eff , µ2

2

)
refers to the largest value between the minimum of the effective

potential Vmin
eff given in Equation (A9) of Appendix A and µ2/2. Such a value changes for

different numbers (n, l, m).
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Figure 8. Effective potential Veff associated with a neutral scalar field (q = 0) around an extremal
Kerr black hole (a = M = 1.140939/µ) (left panel). Effective potential associated with charged scalar
clouds (q/µ = 1.0) coupled to an extremal Kerr–Newman black hole (µa = 1.179964) (right panel).
In both cases, n = 0 and m = l = 2. The blue horizontal lines indicate the frequencies associated with
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We can provide more insight about the condition (44) required for the existence of
clouds by considering the following argument for the extremal BH scenarios.

We can multiply by R̃ both sides of Equation (32) and integrate from the horizon to
the asymptotic region and find∫ ∞

rext
H

(R̃R̃′)′dr =
∫ ∞

rext
H

{R̃′2 + [Veff(r)− ω2]R̃2}dr, (45)

where a prime denotes the derivative with respect to the coordinate r, and we have omitted
the label KN in the effective potential for brevity. The lhs vanishes∫ ∞

rext
H

(R̃R̃′)′dr = lim
r→∞

[R̃(r)R̃′(r)]− R̃(rext
H )R̃′(rext

H ) ≡ 0, (46)

because the radial function R̃ vanishes on the horizon [54]

R̃(rext
H ) =

√
∆H R(rext

H ) = 0, (47)

and R̃′(r) = R(r) + (r − rext
H )R′(r) is bounded at the horizon. In particular, the term

(r − rext
H )R′(r) is required to be bounded at rext

H even if R′(r) blows up near the horizon as
∼1/(r − rext

H )1−α (0 < α < 1) in order for the kinetic term associated with the scalar field to
be bounded at the horizon [32] (cf. Appendix A). Finally, the first term in (46) also vanishes
because we demand that the field and its derivatives vanish asymptotically. In this way,
Equation (45) reduces to ∫ ∞

rext
H

{R̃′2 + [Veff(r)− ω2]R̃2}dr ≡ 0. (48)

Because the terms R̃′2 and R̃2 are not negative, the only possibility for the integral to vanish
(apart from the trivial case R̃(r) ≡ 0, i.e., Ψ ≡ 0), is that

Veff(r) < ω2, (49)

in some region of the interval of integration. Now, as previously stressed, the effective
potential has a global minimum (see Appendix A), i.e., Vmin

eff ≤ Veff(r) for r ∈ [rext
H , ∞), and

then, if (49) is satisfied clearly,
Vmin

eff < ω2, (50)

and in this way we conclude that ω2 is bounded from below by Vmin
eff as in (44).
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As we stressed before, for the subextremal scenarios, the analysis in terms of the effec-
tive potential turns out to be more involved because the potential depends on a, Q, M, q, ω
and the integers (n, l, m) in a more complicated fashion, and therefore, in order to obtain
the possible bounds for the frequencies, a careful analysis of those potentials is required.
We postpone that study for a future report.

4. Rotating Hairy Black Holes (RHBHs)

In the previous section we studied a test scalar field around a fixed spacetime, which
was associated with a Kerr or KN black hole. In this section, we analyze RHBH solutions for
a non-electrically charged scalar field in a stationary, axisymmetric, circular and asymptotically
flat spacetime by taking into account the backreaction of the scalar field on the spacetime [55].
Thus, given that the spacetime is not fixed in advance due to the contribution of the scalar
field, the Einstein–Klein–Gordon system of equations has to be solved self-consistently
under the hypothesis mentioned above. The latter imply that the metric in Quasi-Isotropic
(QI) coordinates {t, r, θ, φ} have the following form [56]:

ds2 = −N2dt2 + A2
(

dr2 + r2dθ2
)
+ B2r2 sin2 θ(dφ + βφdt)2, (51)

where the metric potentials N, A, B, βφ are functions of the coordinates r, θ, solely.
Following Ref. [41], the Einstein equations lead to the following system of elliptic

partial differential equations:

∆3N +
∂N∂B

B
− B2r2 sin2 θ

2
∂βφ∂βφ

N
= 4πA2N(E + S), (52)

∆3(βφr sin θ)− βφ

r sin θ
− r sin θ

∂βφ∂N
N

+ 3r sin θ(∂βφ∂ ln B) = 16π
NA2 pφ

B2r sin θ
, (53)

N∆2[(B − 1)r sin θ] + [(B − 1)r sin θ]∆2N + 2∂N∂[(B − 1)r sin θ] + ∆2[(N − 1)r sin θ]

= 8πNA2Br sin θ
(

S − Sφ
φ

)
, (54)

N∆2 A + A∆2N − N
A

∂A∂A − 3
4

AB2r2 sin2 θ
∂βφ∂βφ

N
= 8πA3NSφ

φ, (55)

where we have adopted the notation

∆3 ≡ ∂2

∂r2 +
2
r

∂

∂r
+

1
r2

∂2

∂θ2 +
1

r2 tan θ

∂

∂θ
, (56)

∆2 ≡ ∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 , (57)

and
∂u∂v ≡ ∂u

∂r
∂v
∂r

+
1
r2

∂u
∂θ

∂v
∂θ

. (58)

As for the scalar field Ψ(t, r, θ, φ), we also adopt a temporal and angular dependence
of the form [57]:

Ψ(t, r, θ, φ) = ϕ(r, θ)ei(ωt−mφ). (59)

Given the metric (51) and the ansatz (59), the Klein–Gordon equation ∇a∇aΨ = µ2Ψ (free
field) takes the form

∆3ϕ +
A2

N2 (ω + βφm)2ϕ − m2ϕ

r2 sin2 θ

(
A2

B2

)
+

1
N

∂ϕ∂N + ∂ϕ∂ ln B = A2µ2ϕ. (60)
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The source terms that appear on the r.h.s of Equations (52)–(55) are given by the
following expressions [41]:

E =

[
(ω + mβφ)2

N2 +
m2

B2r2 sin2 θ

]
ϕ2

2
+

1
2A2

[(
∂ϕ

∂r

)2
+

1
r2

(
∂ϕ

∂θ

)2
]
+

µ2ϕ2

2
, (61)

pφ =
m
N
(ω + mβφ)ϕ2, (62)

Sφ
φ =

[
(ω + mβφ)2

N2 +
m2

B2r2 sin2 θ

]
ϕ2

2
− 1

2A2

[(
∂ϕ

∂r

)2
+

1
r2

(
∂ϕ

∂θ

)2
]
− 1

2
µ2ϕ2, (63)

S =

[
3
(ω + mβφ)2

N2 − m2

B2r2 sin2 θ

]
ϕ2

2
− 1

2A2

[(
∂ϕ

∂r

)2
+

1
r2

(
∂ϕ

∂θ

)2
]
− 3

2
µ2ϕ2. (64)

The set of the Equations (52)–(55) that are obtained from the algebraic manipula-
tions of the Einstein field equations together with the KG Equation (60) constitute the
so-called Einstein–Klein–Gordon system for the problem at hand. Making use of the KA-
DATH library [58], which implements spectral methods to solve elliptic partial differential
equations, together with suitable boundary conditions (regularity conditions at the event
horizon and asymptotically flat conditions—for more details, see [41]), it is possible to
solve numerically the Einstein–Klein–Gordon system. As in the scalar cloud scenario, we
also impose the zero-flux condition (11) that, as previously mentioned, translates into the
synchronicity condition, which establishes a direct relationship between the frequency of
the scalar field ω and the angular frequency ΩH associated with the black hole:

ω = mΩH . (65)

However, unlike the cloud scenario within a Kerr BH, ΩH is not given in terms of the Kerr
parameters, but ΩH = −β

φ
H is a free parameter, which, together with a location of the event

horizon rH and the amplitude of the scalar field ϕH at rH , leads to a specific RHBH solution.
In order to obtain this kind of solution, the cloud configurations described in Section 2.3
are used as input in the spectral code as an initial guess for the full nonlinear problem.

Figure 9 shows the numerical solutions for the metric potentials N and A, while Figure 10
depicts B and βφ, both for the BH solutions with scalar hair by fixing rH = 0.057648/µ and
taking three different values for ΩH .

Figure 11 shows the corresponding solutions for the scalar field amplitude ϕ(r, θ)
associated with integers n = 0 (no nodes) and m = 1 at the equatorial plane (θ = π/2).
The right panel of this figure also depicts the solutions for m = 2. The profiles of ϕ that
appear in the left panel of Figure 11 together with the corresponding metric potentials
shown in Figures 9 and 10 are examples of the solutions of the full Einstein–Klein–Gordon
system, and as such, they represent black hole solutions endowed with scalar hair [41].
These (numerical) solutions are known in the literature as rotating hairy black holes.

Figure 12 shows the scalar field near the horizon (µrH = 0.057648 and rH = 0.099553/µ)
in order to appreciate more closely the regularity conditions there.
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Figure 9. Solutions for the lapse N and the metric function A (evaluated at the equator θ = π/2) for
integers n = 0 and m = 1, with µrH = 0.057648 and three values for ΩH .
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Figure 10. Solutions for the function B and the shift βφ (evaluated at the equator θ = π/2) for integers
n = 0 and m = 1, with µrH = 0.057648 and three different values for ΩH .
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Figure 12. Amplitude of the scalar field ϕ(r, π/2) associated with Figure 11 but depicted close to the
horizon located at µrH = 0.057648 and µrH = 0.099553, respectively.

Figure 13 displays another family of scalar field solutions ϕ at the equatorial plane
(θ = π/2) associated with the integer n = 0 (no nodes) and m = 2, taking different values
for rH and ΩH .
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Figure 13. Amplitude of the scalar field |ϕ(r, π/2)| for different values of rH and ΩH with n = 0 and
m = 2.

Figures 14 and 15 show the metric potentials N, A, B and βφ for a family of rotating
hairy black hole solutions associated with the numbers n = 0, m = 2 with an event horizon
located at rH = 0.099553/µ and taking three different values for ΩH .
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Figure 14. Solutions for the lapse N and the metric function A (evaluated at the equator θ = π/2) for
integers n = 0 and m = 2, with µrH = 0.099553 and three different values of ΩH .
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Figure 15. Solutions for the function B and the shift βφ (evaluated at the equator θ = π/2) for integers
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Figure 16 depicts the scalar field amplitude ϕ(r, θ) at the equatorial plane for three
hairy black hole solutions with a horizon radius rH = 0.099553/µ and integers n = 1 (one
node) and m = 2. The value of the frequency ΩH for each case is displayed in the figure.
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Figure 16. Scalar field solutions ϕ(r, π/2) associated with a hairy black hole with the event horizon
located at µrH = 0.099553 and with integers n = 1 (one node) and m = 2. The corresponding values
for ΩH/µ are displayed in the figure.

Figures 17 and 18 show the corresponding metric potentials N, A, B and βφ associated
with Figure 16.
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Figure 17. Solutions for the lapse N(r, π/2) and the metric function A(r, π/2) for integers n = 1 and
m = 2, with µrH = 0.099553 and three different values of ΩH .



Particles 2024, 7 17

 0

 2

 4

 6

 8

 10

 12

 0.1  1  10  100

B

µr

ΩH/µ = 0.429601

ΩH/µ = 0.438392

ΩH/µ = 0.439612

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1  1  10  100

β
ϕ
/µ

µr

ΩH/µ = 0.429601

ΩH/µ = 0.438392

ΩH/µ = 0.439612

Figure 18. Solutions for the function B(r, π/2) and the shift βφ(r, π/2) for integers n = 1 and m = 2,
with µrH = 0.099553 and three different values of ΩH .

Global Quantities

Because the spacetime is stationary and asymptotically flat and the matter sector of the
theory has some symmetries, it is possible to establish three global quantities. The first one
is associated with the invariance of the action functional of the Einstein–KG system with
respect to a global phase transformation of the form Ψ → Ψ′ = eiσΨ, where the parameter
σ is a constant. This symmetry leads to the local conservation of the boson current ∇a ja = 0,
where ja is defined by

ja =
i

2h̄
(Ψ∗∇aΨ − Ψ∇aΨ∗). (66)

The local conservation of ja leads to the conservation for the total boson number given by [41]:

Q :=
∫

Σt
−na ja√γd3x , (67)

where Σt represents a spatial hypersurface with 3-metric γij, and γ = A4B2r4 sin2 θ is its
determinant (cf. Equation (51)). The vector na is the timelike normal to Σt. More explicitly
(cf. Equation (32) of [41]),

Q =
2π

h̄

∫ ∞

rH

∫ π

0

1
N
(ω + mβφ)ϕ2 A2Br2 sin θdrdθ. (68)

Figure 19 shows the total particle number Q for two sequences of RHBHs as a function
of the angular frequency ΩH . To obtain each sequence, we proceed as follows: We start
with an approximate solution of the system in terms of a scalar cloud solution in the Kerr
background and then, by using the KADATH spectral solver, we compute the numerical
solution for the full Einstein–Klein–Gordon system for a given rH . Then, by changing the
value ΩH , we can compute different sequences of RHBHs.

We also compute the Komar mass, which is a global quantity associated with asymptot-
ically flat spacetimes and in the presence of a timelike Killing vector field ξa = (∂/∂t)a:

MK := − 1
8π

∮
S
∇aξbdSab. (69)

The Komar mass represents physically the total energy of a self-gravitational “isolated”
system in general relativity, which is the analogue of the total mass of a similar system
in the Newtonian theory. In the latter case, such a mass can be calculated as the flux of
the gravitational force-lines (per mass unit) at spatial infinity through a 2-sphere. For a
thorough discussion about the Komar mass and the Komar angular momentum introduced
below, see Ref. [59].
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Figure 19. Boson number Q (Noether charge) as a function of the angular frequency ΩH for two se-
quences of hairy black holes with horizons located at µrH = 0.057648 (left panel) and µrH = 0.099553
(right panel), respectively. For the first family of solutions, we have taken the azimuthal number
m = 1, and for the second, m = 2. Both families correspond to the nodeless solutions (n = 0).

This quantity can be expressed as a sum of two terms of the form [60,61]

MK = MHt + MΣt , (70)

where the term MHt can be interpreted as the contribution to the total mass due to the
presence of a BH while MΣt is the contribution to the total mass due to the hair in the form
of a non-trivial scalar field outside the BH.

The two terms can be written explicitly as (see Equation (36) of [41])

MHt =
r2

H
2

∫ π

0

(
∂r N − B2r2 sin2 θ

∂rβφ

2N
βφ

)
B sin θdθ

∣∣∣
rH

, (71)

and (cf. Equation (38) of [41])

MΣt = 2π
∫ ∞

rH

∫ π

0

[
2ω

N
(ω + mβφ)ϕ2 − Nµ2ϕ2

]
A2Br2 sin θdrdθ. (72)

Moreover, because the spacetime under study is asymptotically flat, one can also
compute the total mass from the ADM mass formula [59–61]. For the spacetime metric (51),
the ADM mass takes the following explicit form [41]:

MADM = − 1
8

∫ π

0

[
∂

∂r
(A2 + B2) +

B2 − A2

r

]
Br2 sin θdθ

∣∣∣
r→∞

. (73)

Figure 20 depicts the Komar mass (69) as a function of the BH angular frequency
ΩH for two sequences of RHBHs characterized by rH = 0.057648/µ, n = 0, m = 1 and
rH = 0.099553/µ, n = 0, m = 2, respectively.

Figure 21 shows the relative mass contributions MHt /MADM and MΣt /MADM for
the family of RHBHs associated with the values µrH = 0.057648 and µrH = 0.099553,
respectively, as a function of ΩH . We appreciate that both quantities add up to unity (up
to the numerical precision of the spectral code) and that MΣt /MADM and MHt /MADM
decreases and increases with ΩH , respectively, to the point that, for ΩH ≈ µ, the scalar field
contribution almost disappears. On the other hand, the scalar field contributes more to the
total mass for lower values of ΩH .

The third global quantity of interest that is associated with the axial Killing vector
ηa = (∂/∂φ)a and the axisymmetry of the spacetime is the Komar angular momentum. This
quantity is given by an integral similar to the Komar mass (69) but replacing ξa = (∂/∂t)a

with ηa = (∂/∂φ)a:

JK :=
1

16π

∮
S∞

∇aηbdSab. (74)
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Like the Komar mass, the Komar angular momentum can be split into two contributions
with similar interpretations [59–61]:

JK = JHt + JΣt . (75)

These two terms are given by (See Equations (44) and (46) of [41].)

JHt =
r4

H
8

∫ π

0

∂rβφ

N
B3 sin3 θdθ

∣∣∣
rH

, (76)

and
JΣt = 2πm

∫ ∞

rH

∫ π

0

1
N
(ω + mβφ)ϕ2 A2Br2 sin θdrdθ. (77)

From (68) and (77), we see that the angular-momentum contribution due to the scalar field
and the boson number has the following relationship:

JΣt = mQh̄. (78)

This means that JΣt is an integer multiple of the boson number Qh̄, something that was
remarked by Schunck [62] in the context of rotating boson stars.
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Figure 20. Komar mass as a function of the BH angular frequency ΩH , taking µrH = 0.057648, m = 1
(left panel) and µrH = 0.099553, m = 2 (right panel). Both sequences correspond to hairy solutions
with no nodes (n = 0).
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Figure 21. Relative mass contributions MHt /MADM and MΣt /MADM as a function of ΩH . In these
plots, the event horizon is located at µrH = 0.057648 (m = 1) (left panel) and µrH = 0.099553 (m = 2)
(right panel), respectively. Both panels correspond to scalar field solutions with n = 0.

Figure 22 depicts the Komar angular momentum (74) for two sequences of RHBH solu-
tions with different values of ΩH but keeping a fixed µrH = 0.057648 and µrH = 0.099553,
respectively.
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5. Conclusions

Following a series of studies of boson clouds (bound states of a scalar field around
Kerr and Kerr–Newman black holes) and rotating hairy black holes, we have extended
our previous analysis by computing solutions with different quantum numbers (n, l, m).
Moreover, we have found a correlation between an effective potential acting on the radial
function associated with the cloud solutions and their frequency ω. In particular, in the
extremal Kerr BH scenarios, this relationship leads to a very specific interval of values for
the BH mass M for which clouds exist. This is, in addition, corroborated by our numerical
analysis and is consistent with the same interval found previously by Hod [26]. We thus
conjecture that a similar correlation between ω and the corresponding effective potential
holds for other kind of clouds and BH backgrounds, like subextremal Kerr and KN black
holes. These results will be useful for the analysis of rotating hairy BH solutions in exact
extremal scenarios, i.e., those where the surface gravity vanishes, that we plan to study in
the future with the formalism and tools outlined in Section 4.
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Appendix A. Scalar Clouds around an Extremal Kerr Black Hole

In Ref. [32], we analyzed the existence of scalar clouds when the scalar field Ψ is
coupled to an extremal Kerr black hole (a = M). For this scenario, we assumed the
following form for the radial part of the scalar field (see Equation (17)) in order to deal with
the divergences of the derivatives when rH = M (cf. Equations (30) and (31)):

Rnlm(r) = (r − M)αLnlm(r), (A1)

where the function Lnlm(r) is smooth, notably at the event horizon rH = M, with Lnlm(rH) ̸= 0,
and its derivatives at rH = M are used to find the numerical solutions for Lnlm(r) [32]. The
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exponent α that appears in Equation (A1) is determined from the regularity conditions and
obeys the following quadratic algebraic equation,

α2 + α + 2m2 − 2µ2M2 − Klm = 0, (A2)

where the optimal solution leading to well-behaved clouds at the horizon is (for more
details, see Section V in [32])

α =
−1 +

√
1 + 4[Klm + 2(µ2M2 − m2)]

2
. (A3)

such that
0 < α. In particular, a real-valued exponent is found if the following condition holds:

Klm > 2(m2 − µ2M2). (A4)

We emphasize that even when 0 < α < 1, which leads to a radial derivative that
blows up at the horizon, the physical (coordinate-independent) quantities that depend
on this derivative (notably, the kinetic term of the scalar field gab∇aΨ∗∇bΨ ) turn out to
be bounded at the horizon due to the contribution of the grr component that multiplies
the square of the radial derivative [32]. Such values of α appear, for instance, in clouds
with l = m = 1 and l = m = 2 [32]. Something similar occurs when dealing with clouds
around an extremal KN, except that the expression for α becomes more complicated (see
Equation (99) of [32]).

Moreover, if condition (A4) holds, the effective potential Vext
Kerr(r) (35) is positive when

approaching the horizon at rext
H = M, and an infinite barrier develops. Furthermore, the

potential Vext
Kerr(r) has a single critical point, which is located at

r̃ =
2Klm M − 3m2M + 2µ2M3

m2 − 2µ2M2 . (A5)

The first and second derivatives for the effective potential (35) are given by

Vext
Kerr

′(r) =
2Klm M − (r + 3M)m2 + 2µ2M2(r + M)

M(M − r)3 , (A6)

and

Vext
Kerr

′ ′(r) =
6Klm M − 2(r + 5M)m2 + 4µ2M2(r + 2M)

M(r − M)4 , (A7)

respectively. From (A7), we find

Vext
Kerr

′ ′(r̃) =
(
m2 − 2µ2M2)4

8M4(Klm − 2m2 + 2µ2M2)
3 , (A8)

which is positive if the condition (A4) holds. We thus conclude that, in such a case, the
effective potential has a global minimum at r̃ given by

Vext
min := Vext

Kerr(r̃) =
4µ4M4 + 4µ2M2(Klm − m2)− m4

4M2(Klm − 2m2 + 2µ2M2)
. (A9)

Appendix B. Scalar Clouds around an Extremal Kerr–Newman Black Hole

In Ref. [32], we also analyzed charged scalar clouds around a KNBH in subex-
tremal and extremal scenarios, but as stressed in Section 3, we did not use the effective-
potential technique to find the possible values for the frequency ω. For the extremal case
(M2 = a2 + Q2), the explicit form of the effective potential (32) is
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Vext
KN(r) := ω2 −

(r − M)2(2amω − µ2(a2 + r2)− K
)
+
(
am + qQr − ω

(
a2 + r2))2

(r − M)4 , (A10)

with the following asymptotic behaviors:

Vext
KN(r) → µ2 +O

(
1
r

)
when r → ∞, (A11)

Vext
KN

′(r) →
2
√

a2 + Q2
(
2ω2 − µ2)− 2qQω

r2 +O
(

1
r3

)
when r → ∞. (A12)

The numerical analysis shows that the effective potential (A10) has a global minimum
for r > rH , like in the extremal Kerr scenario. This feature can be appreciated from
Figures 7 and 8 (right panels), but we do not include here the explicit expressions associated
with this minimum. In order to have a potential well in this scenario, we require that
asymptotically Vext

KN
′(r) > 0, which using Equation (A12) leads to the following condition

0 < −2
√

a2 + Q2
(

µ2 − 2ω2
)
− 2qQω, (A13)

or equivalently

0 < ω2 − qQ
2M

ω − 1
2

µ2. (A14)

The last inequality can be also written as(
ω − qQ

4M

)2
>

1
2

µ2 +
q2Q2

16M2 . (A15)

Finally, we obtain the following conditions for ω:

ω >
qQ +

√
8µ2M2 + q2Q2

4M
, or ω <

qQ −
√

8µ2M2 + q2Q2

4M
. (A16)

The first condition corresponds to a positive frequency. For instance, when Q ≡ 0, it
corresponds to the positive frequency found previously for the extremal Kerr scenario
where ω2 > µ2/2. In summary, if the frequency ω of the scalar field Ψ satisfies the
inequality (A14), we find that

Vext
KN

′(r → ∞) > 0, (A17)

and given that the effective potential Vext
KN(r) has an infinite barrier at the event horizon,

we conclude that there exists a potential well, which leads to the existence of electrically
charged scalar clouds.
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