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Abstract: Walnut shells were used to produce highly microporous activated carbon. The prepared
activated walnut shells were found to be an efficient adsorbent for removing Cr(VI). The study
used the response surface methodology to investigate four independent variables effect: Cr(VI)
concentration, pH, AC-Ws dose, and temperature on the Cr(VI) removal efficiency, which was
studied in the concentration range of 0.1 to 0.3 g/L, 4 to 10, 15 to 35 ◦C and 1 to 5 mg/L, respectively.
Through experiments designed, the optimum conditions were determined to be 4, 0.23 g/L, 298 k,
and 2 g/L, respectively. At these conditions, the efficiency of removal was found to be 93%. The
thermodynamic study of the adsorption process showed a spontaneous and exothermic nature. The
kinetic model that explains the experimental data is the pseudo-second-order model. Furthermore,
the Langmuir isotherm model was estimated to be an excellent representation of the equilibrium data.
Quantum calculations and NCI analyses were also performed to get more light on the adsorption
mechanism of the Cr(VI) atom and its complex form on the prepared AC-Ws surface.

Keywords: adsorption; Chromium (VI); walnut shell; activated carbon; experimental design

1. Introduction

Heavy metals occur naturally present in the earth’s crust in small amounts, but
they become concentrated as a result of industrial activities. Population growth and
industrialization have led to environmental pollution from various pollutants, including
heavy toxic metals such as copper, lead, arsenic, nickel and mercury, produced by industrial
activities. Chromium, recognized for its elevated toxicity and tendency to bio-accumulate
within the food chain [1] is acknowledged as one of the crucial heavy metals essential for
various biological processes.

Chromium is naturally present in water sources in both hexavalent and trivalent
forms. Trivalent chromium Cr(III) serves as a trace element in living organisms, hexavalent
chromium is very toxic, mutagenic, and even carcinogenic even at low concentrations,
making it a hazard for humans and other organisms [2]. Adverse reactions performed in
the presence of Cr(VI) were reported such as lung cancer, damage to the central nervous
system, gastrointestinal and cancer anemia [3]. Hexavalent chromium is discharged in large
amounts each year by industries such as steel, textile, electroplating, and chrome plating,
which release wastewater containing this substance [4]. The maximum concentration of
Cr(VI) allowed by the EPA agency (US Environmental Protection Agency) standards is
0.05 mg/L for drinking water sources, and it’s 0.1 mg/L for surface wastewater intended for
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discharge into the water source. several methods such as adsorption, chemical precipitation
and membrane filtration [5–8] have been considered to achieve EPA standards. In recent
years, a variety of cheap adsorbents, including activated carbon made from bagasse, medlar,
plant seeds, and waste paper [9–11] have been considered for Cr(VI) removal.

Additionally, optimization techniques like Response Surface Methodology (RSM) can
enhance the adsorption process. RSM is a robust experimental design method that uses
mathematical and statistical techniques to analyze the correlation between independent
variables and construct a model for the adsorption process. One significant advantage
of employing RSM is the marked reduction in the number of experiments required to
determine optimal conditions, leading to considerable time and resource savings. Various
technologies, either individually or in conjunction with other methods and techniques,
are used to eliminate Cr(VI). Photocatalysis [12], Electrochemical [13]. Precipitation [14],
Microbial treatment [15], Flotation [16] adsorption [17] and plasma destruction [18] are the
most common methods. Due to complexity and economic reasons, most of the mentioned
approaches are not proper for removing Cr(VI) except adsorption.

Recently, walnut shells have get great attention as an excellent adsorbent material for
removing a variety of contaminants from water, including heavy metals, dyes, and organic
compounds due to their unique properties as a byproduct of the walnut processing indus-
try [19]. Walnut shells surface has various functional groups like hydroxyl, carboxyl, and
phenol groups which increase its adsorptive power [20]. Walnut shells have also several
advantages over other adsorbents because they are abundant, renewable and inexpen-
sive [21,22]. Compared to other types of activated carbon, walnut shell activated carbon
has several advantages [23,24]. It is a sustainable source of activated carbon because walnut
shells are abundant and renewable. Moreover, they contain a high concentration of lignin,
cellulose and hemicellulose, proving additional functional groups for the adsorbent surface.

The process of adsorption holds numerous advantages in environmental applications.
Its exceptional ability to effectively remove contaminants such as heavy metals, organic
pollutants, and dyes from both liquid and gas phases stands as its foremost benefit. More-
over, its versatility spans various industries, offering a practical solution for wastewater
treatment, air purification, and soil remediation without disrupting system components.
Additionally, adsorption’s cost-effectiveness, renewability of adsorbents, and low energy
consumption make it an economically viable and sustainable choice. Its ease of integration
into existing systems, environmental compatibility, and capability to handle low pollutant
concentrations further establish adsorption as an efficient, adaptable, and environmentally
friendly method in environmental remediation [25].

The novelty of this study comprises several significant facets. Firstly, it involves pio-
neering the synthesis of an efficient adsorbent derived from walnut shells, presenting a
sustainable solution for environmental remediation. Secondly, the research focuses on opti-
mizing conditions specifically tailored for the removal of Cr(VI), demonstrating a tar-geted
and effective approach to address heavy metal contamination. Furthermore, this study
introduces advanced statistical methodology, such as response surface methodology (RSM),
to comprehensively analyze and optimize multiple factors influencing Cr(VI) removal.
Additionally, it provides an in-depth understanding of adsorption kinetics and thermody-
namics, illuminating the intricate mechanisms involved in chromium removal processes.
Moreover, the study broadens its scope by confirming the Cr(VI) adsorption mechanism
through a theoretical study using quantum calculations. This theoretical approach adds
depth to the understanding of the adsorption process at a molecular level, enhancing the
overall comprehension of the underlying mechanisms.

2. Materials and Methods
2.1. Chemical

Potassium dichromate (K2Cr2O7; 99% purity) was purchased from Sigma-Aldrich
(St. Louis, MO, USA), and 1.5-diphenyl carbazide (C13H14N4O) was provided by VWR
chemicals (Radnor, PA, USA). Potassium hydroxide (KOH, 0.1 mol/L) and hydrochloric
acid (HCl, 0.1 mol/L) were obtained by Fischer Scientific (Hampton, NH, USA).
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2.2. Preparation of Activated Carbon

The prepared adsorbent AC material was obtained from walnut shells using, following
the procedure [26]. After washing and drying of the obtained biosource material, a crushing
step was conducted to achieve a fine texture followed by the sieving of resulted powder
to isolate particles between 0.2 and 2 mm. The selected fraction was mixed with the
phosphoric acid solution (50% weight/volume) under stirring for 15 min. The resulting
powder was then dried for 24 h at 105 ◦C. Carbonization occurred in a SELECTHORN
oven, with a gradual temperature increase until reaching a final temperature of 500 ◦C
for 60 min, at a heating rate of 10 ◦C per minute. Post-cooling, the obtained black carbon
residue underwent multiple washes with 0.1 mol/L HCl and then rinsed to neutralize the
pH of the prepared carbon using distilled water. The neutralized carbon powder was then
dried and ground into fine particles (AC-Ws).

2.3. Batch Adsorption Experiments

The adsorption experiments for synthetic Cr(VI) effluent were conducted in triplicate
batches A 1000 mg/L solution of Cr(VI) was made by mixing 2.828 g of K2Cr2O7 (potassium
dichromate) in distilled water, the solution was then diluting it. On the other hand,
0.1 mol/L NaOH (sodium hydroxide) and 0.1 mol/L HCl (hydrochloric acid) solutions were
used to adjust the solution pH to the desired value. The remaining Cr(VI) concentration in
the filtrate was measured using spectrophotometry (Jenway 6300, Safi, Morocco) at 540 nm
after adding 1,5-diphenylcarbazide reagent, as shown in Figure 1, which causes a pink
color [27,28].
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Figure 1. Specter UV-Visible of complex Cr(VI)-DPC.

Equation (1) was used to determine the percentage removal of chromium hexavalent
(VI) (R%):

Removel(%) =
Ci − Ct

Ci
× 100 (1)

The removal efficiency is R (%), Ci (mg/L) is the starting Cr(VI) concentration, and
Ct mg/L is the Cr (VI) concentration at the instant t (min).

The study aimed to determine the stability of the complex formed when chromium
reacts with 1,5-diphenylcarbazide (DPC) over 0–60 min (Figure 2). Results indicate that the
complex between Cr(VI) and DPC is relatively stable. The complex formation time used in
this research was 20 min [29].
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To assess the adsorption capacity of activated carbon concerning chromium (VI), ad-
sorption experiments were conducted in a dark environment. The concentrations 1 and
5 mg/L of the Cr(VI) solutions was used in these investigations, while the material concen-
trations ranged between 0.1 and 0.3 g/L. Adsorption isotherms on AC-Ws were established
at room temperature (25 ◦C) using five Cr(VI) concentrations (1, 2, 3, 4, and 5 mg/L).
The mixture of AC-Ws and chromium was continuously stirred under constant magnetic
agitation for 1 h to attain adsorption-desorption equilibrium.

2.4. Experimental Design

The experimenters’ main aim is to investigate the factors that impact a particular
phenomenon and determine the optimal conditions. Specifically, their goal is to create a
model that maximizes the percentage of chromium VI adsorption by adjusting various
input parameters. To achieve this, they utilized the AZURAD® software to develop a
design for the experiment. The experiment’s design included modeling the percentage
of Cr(VI) adsorption based on four variables: AC-Ws dose (Factor X1), pH (Factor X2),
temperature (Factor X3), and concentration of chromium (VI) (Factor X4). Table 1 displays
the experimental design and its corresponding factors.

Table 1. The quantitative factors of experimental design are the domain of interest.

Factor Name Unit Central Value Range of Variation

X1 Dose of AC-Ws mg 10 5
X2 pH 7 3
X3 T ◦C 25 10
X4 Concentration of Cr (VI) mg/L 3 2

2.5. Computational Methods

Quantum calculations were carried out using the Forcefield code that was imple-
mented in Gaussian 09 [30]. The optimized molecular geometry prepared activated carbon
(AC) surface model was performed using universal parameterization of the force field [31].
To reveal the interaction nature between the AC surface and the chromium (VI) atom,
noncovalent interaction (NCI) analyses have also been carried out using Multiwfn [32] and
the VMD software was used to visualize the NCI analyses [33]. The color map can be used
to show the type of interactions that occur between the adsorbent and the adsorbate. The
colors red, blue, and green correspond to steric repulsions, van der Waals interactions and
hydrogen bonding, respectively [34]. The adsorption energy (Eads) was calculated based on
the optimized structures of the Cr(VI) complex and the AC-Ws surface using the following
equation (Equation (2)):
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Adsorption of Cr(VI) complex on AC surface model

Eads = ECr(VI) + E AC surface − ECr(VI)-AC surface (2)

3. Results
3.1. Characterization of Activated Carbon

An essential step in identifying the kinds and numbers of functional groups present on
the surface of the AC is the Boehm analysis. The assessment of basic groups on the surface,
as shown by AC-Ws (mmol/L), and acidic functional groups, including carboxylic acids,
phenols, and lactones, is made possible by this technique. Important information about
the surface chemistry and possible adsorption mechanisms of the activated carbon can be
obtained by measuring these functional groups [35,36]. In contrast to the bibliographic data
on activated carbon coffee waste [37] and activated carbon capsicum annum L, the AC-Ws
obtained from the activation process with a 1:1 ratio of raw material to H3PO4 primarily
consist of lactones 0.11 mmol/g, phenols 0.22 mmol/g followed by and carboxylic groups
0.75 mmol/g, as shown in Figure 3 [27].
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Figure 3. Functional groups presented on the AC-Ws surface.

Figure 4 shows only the FTIR spectrum of AC. Based on the findings, the peak observed
at 3379 cm−1 in the spectrum is assigned to the extensional vibrations of the hydroxyl
groups bound to the material. This spectroscopic feature indicates the presence and specific
interaction of OH groups in the material’s structure. The distinct peak located at 1568 cm−1

confirms the presence of C=C bonds [38]. Additionally, the band at 1547 cm−1 is assigned
to C-O bonds deformations [39–41]. These observed absorption bands provide compelling
evidence of the characteristic bonds found in walnut shell powder.

The thermogram presented in Figure 5 for the AC-Ws sample reveals distinct phases of
mass reduction. Initially, between 18 and 100 ◦C, a 21.6% mass loss is observed, attributed
to the evaporation of water molecules adsorbed on the surface of the activated carbon. Sub-
sequently, in the temperature range of 100 to 1000 ◦C, there is a substantial 74.4% reduction
in the mass of AC-Ws, primarily indicative of the combustion of the carbonaceous material.
Notably, temperatures exceeding 550 ◦C suggest the feasibility of conducting pyrolysis,
thereby affirming the appropriateness of selecting 500 ◦C as the temperature for the process
of physical activation. This detailed analysis of the thermogram provides valuable insights
into the thermal behavior of the AC-Ws sample, offering a better understanding of the
underlying processes involved in its mass reduction across different temperature ranges.
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Figure 6 depicts the surface morphology of the activated carbon. The surface in Image
(a) showcases numerous pores, dark spots, and cavities, indicating that the adsorbent’s
surface is potentially effective for adsorbing pharmaceutical products. The element nature
and their dispersion on the AC surface were analyzed using EDX analyzer and the obtained
findings were summarized in Figure 6b,c. the EDX analyses confirm the presence of oxygen
(O) and carbon (C) elements, revealing the existence of organic functionalities that serve
as potential adsorption sites. Phosphor element observed on the AC surface was from the
activation procedure through H3PO4.
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The zero point charge (pHpzc) of powdered carbon is a crucial property in adsorption
processes, particularly in the presence of electrostatic forces [42]. It corresponds to the pH
at which the surface of activated carbon powder is neutrally charged. The pHpzc value
for the AC-Ws adsorbent is 4.1. The surface charge is positive for solutions with a pH
below 4.1 and becomes negative for solutions with a pH above this value (see Figure 7).
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Remarkably, pH environments significantly vary for chromium species: H2CrO4 mainly
exists at pH levels below 2, while HCrO4

− and Cr2O7
2− are primarily present in the pH

range of 2 to 6.8. Furthermore, CrO4
2− is predominant in pH environments greater than

6.8 [43,44]. Consequently, both anions, HCrO4
− and Cr2O7

2−, are more adsorbed onto the
activated carbon surface at a pH below the zero point charge (pHpzc).
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Figure 7. Variation of pHf as a function pHi to determine the pHpcz of the AC-Ws.

3.2. Experimental Design

The model enables the representation of the percentage of adsorption for different
input parameter variations. A 2nd-degree polynomial model has been selected, as shown
in the general equation (Equation (3))

Y = b0 + ∑n
i=1 biXi + ∑n

i=1 biiX2
i + ∑n

i=1 ∑n
j=i+1 bijXiXj (3)

where Y is the response variable that we are trying to predict or model, bi is the linear
coefficient, b0 is the constant, bij is the cross-product coefficient, bii is the squared coefficient,
Xj and Xi are the independent variables.

In our case is written as follows (Equation (4))

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b 11 X1
2 + b 22 X2

2 + b33 X3
2 + b44 X4

2 + b12 X1X2 + b13 X1X3 + b14 X1X4
+ b23 X2X3 + b24 X2X4 + b34 X3X4

(4)

To improve the accuracy of coefficient estimation in the polynomial model and make it
more applicable for predictive purposes [45,46], we conducted a comprehensive experimen-
tal design consisting of 27 experiments using a composite matrix. It is worth noting that
Experiment 17 was replicated three times to assess and quantify experimental variability.
Table 2 presents the experimental conditions and corresponding percentages of Cr(VI)
adsorption achieved after one hour of equilibrium time.

Table 2. Shows the experimental design conditions and the amount of Cr (VI) adsorption (Y).

Experiment Mass of AC-Ws
(mg) pH T (◦C) Concentration of

Cr(VI) (mg/L) Y (%)

1 5 4 15 1 95.0
2 15 4 15 1 100
3 5 10 15 1 55.6
4 15 10 15 1 55.6
5 5 4 35 1 88.65
6 15 4 35 1 97.0
7 5 10 35 1 41.5
8 15 10 35 1 45.6
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Table 2. Cont.

Experiment Mass of AC-Ws
(mg) pH T (◦C) Concentration of

Cr(VI) (mg/L) Y (%)

9 5 4 15 5 70.26
10 15 4 15 5 85.56
11 5 10 15 5 30.56
12 15 10 15 5 35.65
13 5 4 35 5 63.0
14 15 4 35 5 80.23
15 5 10 35 5 35.23
16 15 10 35 5 48.6
17 5 7 25 3 55.5
18 5 7 25 3 54.9
19 5 7 25 3 55.3
20 15 7 25 3 60.3
21 10 4 25 3 90.0
22 10 10 25 3 38.0
23 10 7 15 3 50.0
24 10 7 35 3 45.6
25 10 7 25 1 60.0
26 10 7 25 5 40.6
27 10 7 25 3 50.6

3.3. Validation of Model

After conducting 27 experiments to design and measure the quantities of adsorbed hex-
avalent chromium Cr(VI), the model parameters were estimated by multilinear regression.
The resulting Equation (4) illustrates this estimation model.

Y = 51.86 + 3.99 X1 − 21.29 X2 − 1.82 X3 − 8.29 X4 + 6.53 X1
2+ 11.92 X2

2 − 4.27 X3
2 − 1.77 X4

2 − 1.45 X1X2
+ 1.10 X1X3 + 2.09 X1X4 + 0.96 X2X3 + 2.08 X2X4 + 2.40 X3X4

(5)

The variance of the experiment was calculated from the triplicate (Experiment 17, 18,
and 19) and showed excellent repeatability of the measurements. Thus, the variability
observed in the outcomes is solely determined by the variability of the factors included in
the matrix, rather than by the experimenter [47].

Table 3 displays the ANOVA results, which indicate that the model’s quadratic, linear,
and interaction terms are statistically significant. Table 3 demonstrates that the estimated
model has a high degree of effectiveness and significance, as indicated by the p-value and
R2. Specifically, the probability value for the model is less than 10−4, which suggests that
the model accurately describes the variation of results for both responses. Additionally, the
small difference of 0.02 between the predicted and the fitted coefficient confirms that the
model has good predictive capacity, as this value is below the threshold of 0.2.

Table 3. ANOVA analysis for the Cr(VI) adsorption percentage and degradation.

Squares
Sum

Freedom
Degrees

Mean
Square Ratio p-Value % R2 R2

Adj

Regression 11.007 14 786.220 8423.78 0.000 *** 0.98 0.96
Residuals 197.687 12 16.474
Lack of fit 197.501 10 19.750 211.608 0.471 **

Error 0.187 2 0.093
Total 11.204 26

Figure 8 illustrates the variability in residuals, representing the difference between
the model-based calculated values (Yi cal) and the corresponding experimental values
(Yi exp), plotted against the response calculated by the model. The residuals exhibit a
random distribution on both sides of the axis, predominantly clustering around zero. This



Clean Technol. 2024, 6 208

pattern suggests that the majority of residuals closely approach zero, validating the model’s
accuracy in representing the experimental data.
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3.4. 3D Surfaces, Contour and Perturbation Plots

The AZURAD software was used to generate iso-response curves that show the
variable’s effect on the removal of Cr(VI). Figure 9a,b illustrates that the adsorption rate
decreases as pH increases, regardless of the temperature. For instance, at pH = 4, the
adsorption rate is 85%, while at pH = 9, it drops to 42.56%. This is because HCrO4 is the
most common chromium form at low pH values. This causes protonation of the AC-Ws
surface with H+ ions, leading to the Colombian attraction between the negatively charged
chromium ions and the positively charged AC-Ws surface. At higher pH levels, the more
prevalent forms of chromium are CrO4

2− and Cr2O7
2−, this means that the surface of

the AC-Ws is less likely to be protonated by OH- ions, resulting in electrostatic repulsion
between the chromium ions and the negatively charged surface of the AC-Ws [48]. The
study illustrated in Figure 9c,d reveals that as the amount of AC-Ws increases, there’s a
slight uptick in removal efficiency. This is assigned to the binding zones presented on the
surface of AC-Ws for complexation, as stated in reference [49]. However, as the Cr(VI)
concentration increases from 1 to 5 mg/L at pH = 4, the data in Figure 9e,f demonstrates
a decline in removal efficiency from 91.07% to 78.95%. This decrease is caused by a low
ratio of adsorbent surface-active sites to total metal ions in the solution at increasing metal
ion concentrations, resulting in a limited number of metal ions that can interact and be
eliminated from the solution.

3.5. Optimization and Validation of Result

To identify the optimized reaction conditions, adjustments were made to the AC-Ws
dosage, pH and concentration of Cr(VI) in the AZURAD@ software (http://www.azurad.fr/,
accessed on 18 November 2023). This was done to obtain the maximum desirability function,
and the outcomes are presented in Figure 10. According to the study, a concentration of
2 mg/L, a pH of 4, an AC-Ws dosage of 0.23 g/L, and a removal effectiveness of 93% were
the most favorable parameters for eliminating Cr(VI). These facts match with previously
published research, specifically for the water pH, as seen in Table 2. The desirability function
of 1.0 indicates that the conditions are favorable for removing Cr(VI) using AC-Ws.

The study aimed to determine the optimal parameters for Cr(VI) removal using the AC-
Ws adsorbent, and the results showed that the response surface methodology was effective
for this purpose. The study utilized numerical optimization to set the pH, AC-Ws dosage,
and Cr(VI) concentration, to achieve the highest removal efficiency. The optimal conditions

http://www.azurad.fr/
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were found to be a pH of 4, an AC-Ws dosage of 0.23 g/L, and a Cr(VI) concentration of
2 mg/L, which resulted in a removal efficiency of 93%. These results meet with previous
investigations(as shown in Table 2). The desirability function of 1.0 indicated that the
conditions were suitable for removing Cr(VI) using AC-Ws. Figure 10 presents the optimal
values for each variable and the desirability function.
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3.6. Kinetics Study

Adsorption kinetics were utilized to investigate the adsorption mechanism of various
models, including diffusion control, chemical reaction, and mass transfer coefficient. These
models are represented by PFO (pseudo-first-order) (Equation (6)) and PSO (pseudo-second-
order) (Equation (7)). The linearized form of these models is provided below [44,45]:

log
(
qe − qt

)
= log

(
qe
)
− K1 t

2.303
(6)

t
qt

=
1

K2q2
e
+

t
qe

(7)

With qe (equilibrium adsorption capacity); qt (adsorption capacity) and time (t), respec-
tively, K1 (min−1) and K2 (g/mg·min) are the PFO and PSO rate constant is, respectively,
calculated in [50–52].

The models used in this study were evaluated based on the parameters illustrated in
Table 4 and Figure 11. The kinetic data obtained from the experiment were analyzed using
the determination coefficient R2 and equilibrium adsorption capacity. The outcomes demon-
strated that compared to the FSO model, the PSO model suited the experimental data better
and had a higher R2 value. Furthermore, it was discovered that the estimated qe values
for the PSO model and the observed qe values agreed rather well, indicating a superior
fit compared to the PFO model. Based on these findings, the PSO model was considered
appropriate for explaining the adsorption mechanism and it was determined that the
chemisorption mechanism governed the adsorption process, as previously reported [53].

Table 4. Kinetic models parameters for Cr(VI) adsorption by AC-Ws.

Concentration of
Cr(VI) (mg/L)

Pseudo First-Order Pseudo Second-Order

Qe.exp (mg/g) Qe,cal
(mg/g)

K1
(min−1) R2 Qe,cal

(mg/g)
k2 × 10−2

(g/mg·min) R2

1 3.212 2.6 0.0599 0.952 20.94 3.584 0.995
2 6.645 6.223 0.0598 0.894 44.2 7.692 0.992
3 9.748 7.261 0.0391 0.961 22.66 10.75 0.991
4 12.944 10.185 0.0414 0.937 12.11 14.705 0.993
5 14.905 11.634 0.0598 0.959 16.814 19.607 0.995
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Figure 11. PSO kinetic modelling was applied to Cr(VI) adsorption on AC-Ws.

3.7. Equilibrium Study

Freundlich and Langmuir isotherms were used to analyze the equilibrium. Equations (8)
and (9) reflect the linearized versions of these models [54]:

Ce

qe
=

1
qmKL

+
1

qm
Ce (8)

log(qe
)
= log(Kf) +

1
n

log(Ce) (9)

The parameters for the Langmuir isotherm model include the equilibrium capacity qe,
the concentration Ce, the Langmuir constant qm, for the maximum monolayer adsorption
capacity, and the Langmuir constant KL associated with the free energy of adsorption. Ad-
sorption intensity and capacity are additionally affected by the constants Kf and n. Table 5
presents the experimental isotherm parameters, which were determined at constant pH = 4
with starting Cr(VI) concentrations ranging from 1 to 5 mg/L at four different temperatures.

Table 5. Hexavalent chromium isotherm constants at various temperatures.

Temperature
Langmuir Model Freundlich Model

Qm (mg/g) RL R2 KF 1/n R2

293K 38.46 0.641 0.99 22.13 0.42 0.96
303K 41.56 0.472 0.98 32.25 0.312 0.95
313K 48.23 0.373 0.99 41.65 0.224 0.97
323K 52.42 0.308 0.99 57.81 0.202 0.94

The Langmuir and Freundlich models offer precise depictions of Cr(VI) adsorption on
AC. The coefficient of determination (R²) was used to determine the most appropriate model
for representing the experimental data. Figure 12 and Table 5 show that the Langmuir
model is the most appropriate. It has a coefficient of determination greater than or equal to
0.99, and the RL (separation factor) values fall within the range of 0 to 1, indicating favorable
adsorption conditions. According to the Langmuir model, the adsorption of Cr(VI) occurs
as a monolayer, implying a uniform surface area of the adsorbent and negligible interactions
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between adsorbed molecules. Furthermore, the theoretical Langmuir adsorption capacity
of the composites closely matches the experimental results.
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Table 6 compares the AC-Ws adsorption capacity for Cr(VI) to that of other adsorbents.
The data shows that AC-Ws have a higher adsorption capacity than other adsorbents. The
difference in adsorption capacity is assigned to the specific characteristics of the adsorbents,
such as surface area, functional groups, and structure.

Table 6. AC-Ws adsorption capacity along with other adsorbents.

Adsorbent Qmax (mg·g−1) pH Reference

Walnut Shell AC-Ws 59.76 4 This study
Palm Kernel Shell 8.2 4 [55]

ACSBB 52.5 4 [56]
Palm shell AC 12.6 4 [57]

Coconut Shell charcoal 10.8 4 [58]
Almond Shell 2.4 4 [59]

3.8. Adsorption Process Thermodynamics

To study the thermodynamic properties of the process, the thermodynamic adsorption
was conducted at optimal conditions at various temperatures (from 20 to 50 ◦C with an
interval of 10 ◦C). we determined the thermodynamic constants such as entropy change
(∆S◦), enthalpy change (∆H◦), and Gibbs free energy change (∆G◦) using the following
equations (Equations (10)–(12)) [60].

K =
qe
Ce

(10)

∆G
◦
= −RTln K (11)

LnK =
∆S

◦

R
− ∆H

◦

RT
(12)

where K (L/g) is the equilibrium constant, the adsorption capacity is qe (mg/g) the equi-
librium concentration of Cr(VI) is Ce (mg/L) R is the universal gas constant and the
temperature is T (K).

The thermodynamic properties of the adsorption process are listed, along with their
numerical values. A negative ∆H◦ headlight the exothermicity of the process, a positive
∆S◦ suggests an increase in randomness at the solid/solution interface, and a negative ∆G◦
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means that the process is spontaneous and becomes more favorable at higher temperatures
as the negative ∆G◦ value increases with temperature (Table 7).

Table 7. Cr(VI) adsorption thermodynamic characteristics on AC-Ws.

T (K) ∆G (kJ·mol−1) ∆S (J·mol−1·K−1) ∆H (kJ·mol−1)

293 −36.20

212.45 −28.596676
303 −41.99
313 −43.77
323 −45.56

3.9. Mechanism of Adsorption of Cr(VI) on AC-Ws Surface

The way that Cr(VI) sticks to activated carbon (AC-Ws) is affected by many things,
like the stuff the AC-Ws are made of, the shape of the Cr(VI) molecules, and the way they
come together. The FT-IR test of AC-Ws has bumps at 3444.1 cm−1, which means that the
O-H bits are being pulled and stretched. [61]. These groups were detected by FT-IR peaks at
1071.43 cm−1, 1467.83 cm−1, 1641.62 cm−1, 2871.04 cm−1 and 2915.56 cm−1. Additionally,
the surface contains specific functional groups, including C-H, -OH, -COOH, and -CH,
as confirmed by Boehm titration, which identified several adsorption sites such as C=C,
P-O-C, P=O bonds, and acid phosphate ester bonds. To grasp how hydrogen bonding
works and which functional groups act as hydrogen donors or acceptors, the functional
groups present on AC-Ws were examined first. If the hydrogen donor comes from the
AC-Ws, the adsorption capacity could significantly shift at a pH of around 4, specifically
if the carboxyl group loses its proton. Nevertheless, the adsorption capacity didn’t alter
much at this pH. Evidence that the additive donates hydrogen during adsorption is shown
by the considerable reduction in adsorption ability as the pH comes closer to 9.6 (refer to
Table 2). Additionally, since the chemical properties of the phenolic groups on the AC-Ws
and the additive are alike, the hydrogen atom of the phenolic group on the AC-Ws has
the possibility of donating hydrogen to the oxygen atom of the additive at pH 9.6. see
Figure 13.
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3.10. Reusing Test of AC-Ws

Financial and ecological considerations associated with adsorbent materials have
emphasized the significance of recycling bio-sorbents. As demonstrated in Figure 14, there
is a decline in the adsorption capacity between the first and last cycles. Specifically, the
adsorption capacity of AC-Ws decreased from 52.58 by 15.33 mg/g of Cr(VI) due to the
reduction of its specific surface. Nevertheless, the remarkable adsorption and regeneration
performance of AC-Ws highlights its potential for use in ecological applications, particularly
in wastewater treatment.
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3.11. Mechanistic Study

Physical and chemical adsorption are the two main categories into which adsorption
methods onto activated carbon can be generally divided. The basis for each category is
the type of contact and the target pollutant’s affinity for particular functional groups [62].
For instance, a chemical reaction or the bonding of the adsorbate and functional groups
embedded on the surface of the adsorbent mediate chemical adsorption [63]. Quantum cal-
culations were used to investigate the mechanism of adsorption processes of the chromium
(VI) complex on the prepared activated carbon (AC) surface. As seen in Figure 15, the
modified chitosan and alginate were combined to create this prepared model for the syn-
thesized components.

The adsorption energy of both forms of chromium, Cr(VI) single atom and Cr(VI) com-
plex, on the AC surface was calculated using Equation (1), and the optimized structures are
illustrated in Figure 16. The adsorption energies are 0.51 and 24.72 kcal/mol for the Cr(VI)
single atom and Cr(VI) complex, respectively. The adsorption energy values are a tool to
explain the nature of the adsorption process. In the case of physiosorption, the value of Ea
is less than 1.673 kcal/mol, while in chemisorption higher than this limit [14,64,65]. These
findings indicate that the adsorption of a Cr(VI) single atom will be through physisorp-
tion while the Cr(VI) complex will be adsorbed by strong interaction which is confirmed
by the larger positive adsorption energy and can be explained by the possible hydrogen
interaction between hydrogen atoms on the Cr(VI) complex and the oxygen atoms on
the prepared AC surface [66]. The suggested mechanism for the adsorption of the Cr(VI)
complex onto the prepared AC surface is carried out in three steps [63]. Diffusion of the
Cr(VI) complex from the solution to the outside surface of the adsorbent is the initial phase.
The penetration of the Cr(VI) complex into the inside of the adsorbent is the second process,
which is slower than the first and is governed by the rate of diffusion. Finally, the final
adsorption equilibrium phase constitutes the third stage.
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Non-covalent interactions (NCI) investigations were undertaken to reveal the nature
of the interaction between the Cr(VI) single atom and Cr(VI) complex on the synthesized
AC surface, and the findings are shown in Figure 17. In the case of the Cr(VI) single atom,
a green surface was located between chromium and the AC-Ws surface confirming that
the adsorption process will be performed through the vdW interactions. The presence of
a blue surface between oxygen on the AC-Ws surface and hydrogen atoms on the Cr(VI)
complex confirms the presence of a strong interaction through hydrogen bonds. The green
surface between the Cr(VI) complex and the prepared AC surface indicates that the vdW
interactions will be used for the adsorption process. Based on the previous discussion, it is
possible to conclude that the picked-up results assist us in understanding the adsorption
process of the presented material due to the fact they are in good agreement with the offered
experimental data.
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4. Conclusions

The study aimed to create a low-cost and environmentally friendly adsorbent using
walnut shell activated carbon (AC-Ws) prepared by the chemical activation method. Char-
acterization results confirmed the successful synthesis of AC-Ws, which was then applied
to remove Cr(VI) presented in aqueous solutions by optimizing the adsorption process
using central composite design (CCD) and RSM methodology. The optimal conditions for
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adsorption were found to be at pH 4, AC-Ws dosage of 0.23 g/L, a temperature of 25 ◦C,
and a Cr(VI) concentration of 2 mg/L. The elimination efficiency and desirability function
under these circumstances were 93% and 1.00, respectively. The adsorption process was
described well by Langmuir and PSO models for isotherm and kinetics, respectively. Ther-
modynamic analysis showed that the adsorption process is spontaneous and exothermic.
In conclusion, the synthesized AC-Ws is an efficient material for treating hazardous heavy
metal wastewater before its release into the environment. Quantum simulations and NCI
studies were carried out to shed further light on the Cr(VI) atom’s adsorption mechanism
and its complex shape on the produced AC-Ws surface. The results obtained are in good
accord with reported experimental results.
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