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Wilcoxon-Type Control Charts Based on Multiple Scans
Ioannis S. Triantafyllou

Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece;
itriantafyllou@unipi.gr; Tel.: +30-2104142728

Abstract: In this article, we establish new distribution-free Shewhart-type control charts based on
rank sum statistics with signaling multiple scans-type rules. More precisely, two Wilcoxon-type chart
statistics are considered in order to formulate the decision rule of the proposed monitoring scheme.
In order to enhance the performance of the new nonparametric control charts, multiple scans-type
rules are activated, which make the proposed chart more sensitive in detecting possible shifts of the
underlying distribution. The appraisal of the proposed monitoring scheme is accomplished with the
aid of the corresponding run length distribution under both in- and out-of-control cases. Thereof,
exact formulae for the variance of the run length distribution and the average run length (ARL) of the
proposed monitoring schemes are derived. A numerical investigation is carried out and depicts that
the proposed schemes acquire better performance towards their competitors.

Keywords: average run length; Wilcoxon rank sum statistics; nonparametric control charts; Lehmann
alternatives; multiple scans; statistical process control

1. Introduction

Statistical process control is widely implemented to keep track of the quality of a
manufacturing procedure, where in spite of how devotedly it is nourished, an inherent
variability appears in any case. Control charts provide support to the practitioners for
tracking down assignable sources of variability. Generally speaking, if the process has
shifted, a monitoring scheme should hit upon it as fast as plausible and provide an out-of-
control signal.

The majority of control charts are distribution-based tools, even though this presump-
tion is not always met in the real world. To conquer this obstruction and yet preserve the
traditional set-up of the common control charts, plenty nonparametric (or distribution-free)
monitoring schemes have been introduced in the literature. Each one of them uses an
appropriately chosen nonparametric monitoring statistic, while the framework of either Cu-
mulative (CUSUM), Exponentially Weighted Moving Average (EWMA) or Shewhart-type
schemes is followed.

In the last two decades, several EWMA-type distribution-free control charts have been
introduced in the literature. For instance, adaptive nonparametric EWMA charts have
been studied in [1–3], while some nonparametric EWMA-type schemes based on sign and
signed-rank statistics have been proposed in [4–8]. An up-to-date and detailed overview of
distribution-free EWMA charts has been presented in [9].

In addition, CUSUM-type control charts have also attracted a lot of research interest
recently. For example, [10] proposed a nonparametric CUSUM chart for monitoring multi-
variate serially correlated processes, while different approaches under the CUSUM-type
framework have been established and studied in some detail in [10–13]. An up-to-date and
detailed overview of distribution-free CUSUM charts has been presented in [14].

It is widely accepted that Shewhart-type control schemes perform well, especially
under large shifts of the underlying distribution. In this direction, several distribution-
free control schemes based on rank-sum statistics have been proposed in the literature.
For example, three distribution-free Shewhart-type control charts, which exploit run and
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Wilcoxon-type rank-sum statistics to detect possible shifts of the underlying continuous pro-
cess, have been introduced by [15]. A single distribution-free control chart for monitoring
simultaneously the unknown location and scale parameters of the underlying distribution
has been established in [16]. The particular plotted statistic combines the Wilcoxon rank
sum test for location and the Ansari–Bradley test for scale. Moreover, ref. [17] considered
adding runs-rules to enhance the performance of the distribution-free Phase II Shewhart-
type chart based on the well-known Mann Whitney statistic which was introduced by [18].
In some recent advances, a general class of nonparametric Shewhart-type control charts
based on modified Wilcoxon-type rank sum statistics has been introduced in [19], while [20]
generalized the monitoring schemes proposed in [15] by taking into account the ranks
from a larger amount of test observations. For a thorough study and some interesting
perspectives on Nonparametric Statistical Process Control, the interested reader is referred
to [21–25], while some very recent advances on the topic can be found in [26–30].

In the present article, we introduce a new family of nonparametric Shewhart-type
control charts based on ranks with signaling scans-type rules. In other words, the set-
up proposed by [15,20] is enhanced by activating multiple scans in the decision rule. In
Section 2, the setup of the proposed monitoring schemes is presented in detail, while
explicit formulae are derived in Section 3 for determining the average and the variance
of the corresponding run length. In Section 4, several numerical comparisons reveal
the improved capability of the proposed charts in comparison to their competitors. For
illustration purposes, a real-life example is studied in some detail in Section 5. Finally, the
Conclusion section sums up the contribution of the present work, while some prospects are
articulated for future research work.

2. The Proposed Nonparametric Control Charts Based on Rank Sum Statistics and
Multiple Scans

In this section, we introduce a new family of nonparametric monitoring schemes based
on scans. More precisely, we implement two modified Wilcoxon-type rank-sum statistics
and the resulting charts are enhanced by adding multiple scans rules in order to improve
their ability to detect possible changes in the underlying process distribution.

The control limits of the new charts are based on reference observations drawn from
the in-control process. In other words, for constructing the proposed monitoring schemes,
a reference sample of size m, namely m observations, say X1, X2, . . . , Xm with cumulative
distribution function F, is drawn from the process when it is in-control. The control limits
of the proposed control charts coincide to judiciously determined observations of the
corresponding ordered sample X1:m, X2:m, . . . , Xm:m. In order to decide whether the process
is still in-control or not, test samples of size n, say Y1, Y2, . . . , Yn with cumulative distribution
function G, are then collected independently of each other (and of the reference sample). In
statistical terms, our aim is to recognize a possible shift in the underlying distribution from
F to G.

In the proposed framework, the testing procedure is based on the ranks of some test
observations. Indeed, the monitoring statistic of the new charts is computed by the aid
of the ranks of some judiciously determined observations from the test sample. Further
details about the computation of the monitoring statistic shall be given later on.

Moreover, the performance of the proposed schemes is strengthened by applying
multiple scans rules with integer-valued parameters r, k, s. In particular, when the latter
rule is activated, an out-of-control signal is produced upon the completion of the r−th
occurrence of a k−out−s scan, where r, k, s ≥ 1 and k ≤ s. In other words, the proposed
monitoring scheme declares that the underlying process has shifted to an out-of-control
state, when exactly r subsequences of plotting points of length s (at most) are observed
with the number of out of limits points contained in each one of them being at least k.

The general set-up of the proposed family of control charts are detailed in the follow-
ing steps:

Step 1. Draw a reference sample of size m from the in-control process.



Stats 2024, 7 303

Step 2. Determine the control limits of the monitoring scheme by the aid of the
corresponding reference ordered observations.

Step 3. Draw independent test samples of size n from the process.
Step 4. Compute the monitoring rank-based statistic by the aid of test observations.
Step 5. Activate a multiple scan rule with design parameters r, k, s.
Step 6. Declare whether the process is in- or out-of-control, by combining the plotting

statistics and the multiple scan rule defined in the previous steps.
Before providing the primary results for the new family of control schemes, we should

briefly put up some details about the underlying monitoring statistics. Throughout the
lines of the present manuscript, we consider two different scenarios. Each one results in
a slightly different nonparametric monitoring scheme. According to the first idea (see,
e.g., [15]) two specific order statistics, say Xa:m, Xb:m, are used as control limits (say LCL,
UCL), where 1 ≤ a < b ≤ m. Afterwards, after drawing the h− th test sample Yh

1 , Yh
2 , . . . , Yh

n
(h = 1, 2, . . .), the number of test sample observations that fall between successive reference
observations should be determined. The resulting plotted statistic is given as

Wh
1 =

b

∑
i=a+1

Wh
i , (1)

where Wh
i corresponds to the sum of the ranks of those Y′

j s of the h − th test sample, which
lie between Xi−1:m and Xi:m. Note that these ranks are determined via the joint sample of
size m + n.

If we next denote by Mh
i , i = 1, 2, . . . , m the number of the h−th test sample observa-

tions (Yh
j

)
that fall between the (i − 1)−th and i−th order statistic of the reference sample,

it is evident that Wh
1 can be rewritten as (see, e.g., [15])

Wh
1 =

b

∑
i=a+1

Mh
i

(
i +

i−1

∑
j=a+1

Mh
j

)
+

b

∑
i=a+1

Mh
i

(
Mh

0 − 1
)
+

1
2

b

∑
i=a+1

(M h
i +

(
Mh

i )
2
)

, (2)

where Mh
0 = ∑a

i=1 Mh
i corresponds to the number of test observations before Xa:m.

The statistic Wh
1 defined in (1) (or equivalently in (2)) is made use of along with the

statistic Rh = R
(

Yh
1 , Yh

2 , . . . , Yh
n ; Xa:m

)
, which corresponds to the number of observations

of the h − th test sample that lie before the LCL. The process is declared to be in-control, if
the following conditions hold true:

Wh
1 ≤ w and Rh ≤ r1, (3)

where w, r1 are positive design parameters.
Under the first proposed nonparametric monitoring scheme based on Wh

1 , Rh and
the multiple scan-type rule with parameters r, k, s (NMSr,k,s

1 , hereafter), the process is
characterized as out-of-control whenever we observe r subsequences of test samples of
length s (at most), which contain at least k samples having violated at least one condition
stated in (3).

On the contrary, the second scenario, which gives birth to a slightly different nonpara-
metric monitoring scheme, calls for four ordered reference observations, say Xa:m, Xb:m, Xc:m,
Xd:m with 1 ≤ a < b < c < d ≤ m. Recalling the random variables Mh

i and Wh
i defined

earlier, the proposed monitoring statistic is now given as (see [20])

Wh
2 =

b

∑
i=a+1

Wh
i +

d

∑
i=c+1

Wh
i . (4)
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By the aid of Mh
i , i = 1, 2, . . . , m, it is readily obtained that Wh

2 can be expressed as

Wh
2 = 1

2

((
b
∑

i=a+1
Mh

i

)2

−
b
∑

i=a+1
Mh

i +

(
d
∑

i=c+1
Mh

i

)2

−
d
∑

i=c+1
Mh

i

)
+

b
∑

i=a+1
Mh

i

(
Mh

0 + i
)
+

b
∑

i=a+1
Mh

i

(
Mh

0 +
b
∑

i=a+1
Mh

i + Nh
0 + i

)
,

(5)

where Nh
0 denotes the number of test observations between Xb:m and Xc:m.

The statistic Wh
2 defined in (4) (or equivalently in (5)) is made use of along with

the statistics Rh
1 = R

(
Yh

1 , Yh
2 , . . . , Yh

n ; Xa:m

)
and Rh

2 = R
(

Yh
1 , Yh

2 , . . . , Yh
n ; Xc:m, Xd:m

)
which

correspond to the number of test observations that lie before Xa:m and between (Xb:m, Xc:m),
respectively. The process is declared to be in-control, if the following conditions hold true:

Wh
2 ≤ w, Rh

1 ≤ r1 and Rh
2 ≤ r2, (6)

where w, r1, r2 are positive integer-valued parameters.
Under the second proposed nonparametric monitoring scheme based on Wh

2 , Rh
1, Rh

2
and the multiple scan-type rule with parameters r, k, s (NMSr,k,s

2 , hereafter), the process
is characterized as out-of-control whenever we observe r subsequences of test samples of
length s (at most), which contain at least k samples having violated at least one condition
stated in (6).

It is worth mentioning that some distribution-free control charts, which have been
already introduced in the literature, can be considered as members of the new nonpara-
metric family proposed in the present manuscript. More precisely, the nonparametric
monitoring scheme proposed by [15] can be viewed as NMSr,k,s

1 , while the one established
in [20] corresponds to NMSr,k,s

2 withr = k = s = 1. It goes without saying that once the
design parameters of the proposed distribution-free control charts take on different values,
alternative monitoring schemes are built up. Thereof, the new class of nonparametric
schemes can be considered as a generalization of the charts studied in [15,20].

As it is easily deduced from the above argumentation, the proposed control schemes
utilize rank-based statistics to monitor the quality of the underlying process. This is not
new, since several existing control charts are based on Wilcoxon-type or other rank-sum
statistics (see, e.g., [15,18–20]). However, the significant novelty of the present study is in
the implementation of multiple scans-type rules, which contributes to the enhancement of
the performance of the resulting monitoring schemes.

3. Main Results

In this section, we shall provide some general results for the proposed distribution-free
control charts. Two crucial characteristics of the run length of the new monitoring schemes
are studied in some detail. In particular, we provide closed formulae for computing the
average run length and the corresponding variance of the proposed NMSr,k,s

1 and NMSr,k,s
2

for specific values of their design parameters.
The following proposition provides explicit expressions for the average run length

and the corresponding variance of the proposed NMSr,k,s
1 schemes for k = 2.

Proposition 1. The unconditional Average Run Length and the unconditional Variance of the Run
Length of the NMSr,2,s

1 −charts are given by

ARL(r,2,s)
1 =

∫ ∫
. . .
∫

0≤ua≤ua+1≤...≤ub≤1

r·
(

2 − qs−1
1

)
(1 − q1)

(
1 − qs−1

1

) fa:b(ua, ua+1, . . . , ub)duadua+1 . . . dub (7)

and
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Var(r,2,s)
1

=
∫ ∫

. . .
∫

0≤ua≤ua+1≤...≤ub≤1
r·q1·(2q1+q2s−1

1 −qs−1
1 (1−2q1(1−q1)+q1))(

1−q1)2
(

1−qs−1
1 )

2 × fa:b(ua, ua+1, . . . , ub)duadua+1 . . . dub, (8)

respectively, while q1 = q1

(
GF−1(ua), GF−1(ua+1), . . . , GF−1(ub); r1

)
is determined as

q1(va, va+1, . . . , vb; r1) = ∑
(m0,ma+1,...,mb)∈A

n!

m0!

(
b

∏
j=a+1

mj!

)(
n−m0−

b
∑

j=a+1
mj

)
!
vm0

a

×
b

∏
j=a+1

(
vj − vj−1

)mj(1 − vb)
n−m0−

b
∑

j=a+1
mj

(9)

where A is the space where the (integer) values of the random vector (M0, Ma, Ma+1, . . . , Mb) should
be in order for at least one condition stated in (3) to be violated and

fa:b(ua, ua+1, . . . , ub) =
m!

(a−1)!(m−b)! u
a−1
a (1 − ub)

m−b,
0 ≤ ua ≤ ua+1 ≤ . . . ≤ ub ≤ 1

(10)

Proof . Let us denote by T1
r,2,sthe waiting time until an out-of-control signal is produced

by the NMSr,2,s
1 −control chart. In simple words, T1

r,2,s corresponds to the run length
of the proposed NMSr,2,s

1 −monitoring scheme. Given Xa:m = xa, Xa+1:m = xa+1, . . . ,
Xb:m = xb, the random variable T1

r,2,s can be viewed as the r−th convolution of the geometric
distribution of order 2/s. It is evident that the probability generating function of T1

r,2,s can
be expressed as

E
(

zT1
r,2,s
)
= (G(z))r, (11)

where G(z) corresponds to the probability generating function of the waiting time until
the occurrence of the first scan, e.g., if we denote by p the success probability of the
aforementioned distribution, then G(z) is given by (see [31])

G(z) =
(pz)2

1 − (1 − p)z − p(1 − p)s−1zs
·
1 −

(
(1 − p)z)s−1

1 − (1 − p)z
. (12)

Therefore, if G′(z) and G′′ (z) express the first and second derivative of G(z), then the
conditional expected value and variance of the run length T1

r,2,s can be determined by the
aid of the following formulae:

E
(

T1
r,2,s|Xa:m = xa, Xa+1:m = xa+1, . . . , Xb:m = xb

)
= r·G′(1)

= r· 2−ps−1

(1−p)(1−ps−1)

(13)

and

Var
(

T1
r,2,s|Xa:m = xa, Xa+1:m = xa+1, . . . , Xb:m = xb

)
= r·

(
G′′ (1) + G′(1)− (G′(1))2

)
=

r·p·(2p+p2s−1−ps−1(1−2p(1−p)+p))(
1−p)2

(
1−ps−1)

2

(14)

respectively. Under the NMSr,2,s
1 −monitoring scheme, the success probability p of the

aforementioned geometric distribution of order 2/s coincides with the probability that the
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set of conditions stated in (3) is not satisfied. However, the latter probability is determined
by the aid of the following multiple sum (see, e.g., [15])

∑
m

n!vm0
a ∏b

j=a+1
(
vj − vj−1

)mj(1 − vb)
n−m0−∑b

j=a+1 mj

m0!
(

∏b
j=a+1 mj!

)(
n − m0 − ∑b

j=a+1 mj

)
!

where m =
(
m0, ma+1, . . . , mb)

T takes on values such that the set of conditions stated in (3)
is not satisfied. We next combine the last expression with Equations (13) and (14) and the
desired results are derived by averaging over the distribution of Xa:m, Xa+1:m, . . . Xb:m. □

The following proposition provides explicit expressions for the average run length
and the corresponding variance of the proposed NMSr,k,s

2 schemes for k = 2.

Proposition 2. The unconditional Average Run Length and the unconditional Variance of the Run
Length of the NMSr,2,s

2 −charts are given by

ARL(r,2,s)
2 =

∫ ∫
. . .
∫

0 ≤ ua ≤ ua+1 ≤ . . . ≤ ub ≤
uc ≤ uc+1 ≤ . . . ≤ ud ≤ 1

r·(2−qs−1
2 )

(1−q2)(1−qs−1
2 )

× fa:b,c:d(ua, ua+1, . . . , ub, uc, uc+1, . . . , ud)duadua+1 . . . dubducduc+1 . . . dud

(15)

and

Var(r,2,s)
2 =

∫ ∫
. . .
∫

0 ≤ ua ≤ ua+1 ≤ . . . ≤ ub ≤
uc ≤ uc+1 ≤ . . . ≤ ud ≤ 1

r·q2·(2q2+q2s−1
2 −qs−1

2 (1−2q2(1−q2)+q2))(
1−q2)2

(
1−qs−1

2 )
2

× fa:b,c:d(ua, ua+1, . . . , ub, uc, uc+1, . . . , ud)duadua+1 . . . dubducduc+1 . . . dud

(16)

respectively, while

q2 = q2

(
GF−1(ua), GF−1(ua+1), . . . , GF−1(ub), GF−1(uc), GF−1(uc+1), . . . , GF−1(ud); r1, r2

)
is determined as

q2(va, va+1, . . . , vb, vc, vc+1, . . . , vd; r1, r2)
= ∑

(
m0, ma+1, . . . , mb, n0,

mc+1, . . . , md
)∈A

n!
m0!n0!

(
∏b

j=a+1 mj!
)(

∏d
j=c+1 mj!

)(
n−m0−n0−∑b

j=a+1 mj−∑d
j=c+1 mj

)
!

×vm0
a

b
∏

j=a+1

(
vj − vj−1

)mj(vc − vb)
n0

d
∏

j=c+1

(
vj − vj−1

)mj

×(1 − vd)
n−m0−n0−∑b

j=a+1 mj−∑d
j=c+1 mj

(17)

where A is the space where the values of the random vector (M0, Ma+1, . . . , Mb, N0, Mc+1, . . . , Md)
should be in order for at least one condition stated in (6) to be violated and

fa:b,c:d(ua, ua+1, . . . , ub, uc, uc+1, . . . , ud)

= m!
(a−1)!(c−b−1)!(m−d)! u

a−1
a (uc − ub)

c−b−1(1 − ud)
m−d,

0 ≤ ua ≤ ua+1 ≤ . . . ≤ ub ≤ uc ≤ uc+1 ≤ . . . ≤ ud ≤ 1.
(18)

Proof . Let us denote by T2
r,2,s the waiting time until an out-of-control signal is produced

by the NMSr,2,s
2 − control chart. In simple words, T2

r,2,s corresponds to the run length
of the proposed NMSr,2,s

2 −monitoring scheme. Given Xa:m = xa, Xa+1:m = xa+1, . . . ,
Xb:m = xb, Xc:m = xc, Xc+1:m = xc+1, . . . , Xd:m = xd, the random variable T2

r,2,s can be
viewed as the r−th convolution of the geometric distribution of order 2/s. Having at hand
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the probability function of T2
r,2,s (see Equations (11) and (12)), we follow similar steps as

before and the conditional expected value and variance of the run length T2
r,2,s are given as

E
(

T2
r,2,s|Xa:m = xa, Xa+1:m = xa+1, . . . , Xb:m = xb, Xc:m = xc, Xc+1:m = xc+1, . . . , Xd:m = xd

)
= r· 2−ps−1

(1−p)(1−ps−1)

(19)

and

Var
(

T1
r,2,s|Xa:m = xa, Xa+1:m = xa+1, . . . , Xb:m = xb, Xc:m = xc, Xc+1:m = xc+1, . . . , Xd:m = xd

)
=

r·p·(2p+p2s−1−ps−1(1−2p(1−p)+p))(
1−p)2

(
1−ps−1)

2

(20)

respectively. Under the NMSr,2,s
2 −monitoring scheme, the success probability p corre-

sponds now to the probability that the set of conditions stated in (6) is not satisfied.
Taking into account that the latter probability can be expressed by the aid of the

following sum (see, e.g., [20])

∑m
n!v

m0
a ∏b

j=a+1(vj−vj−1)
mj (vc−vb)

n0 ∏d
j=c+1(vj−vj−1)

mj

m0!n0!
(

∏b
j=a+1 mj!

)(
∏d

j=c+1 mj!
)(

n−m0−n0−∑b
j=a+1 mj−∑d

j=c+1 mj

)
!

×(1 − vd)
n−m0−n0−∑b

j=a+1 mj−∑d
j=c+1 mj ,

where m =
(
m0, ma+1, . . . , mb, n0, mc+1, . . . , md)

T takes on values such that the set of con-
ditions stated in (6) is not satisfied, formulae (17) and (18) lead effortlessly to the results we
are chasing for. □

Having at hand the results proved in Propositions 1 and 2, the unconditional in-control
Average Run Length and Variance of the in-control Run Length of both proposed monitor-
ing schemes are readily obtained by substituting F = G in the corresponding formulae.

In Table 1, we present the in-control ARL values of NMSr,2,s
1 −monitoring schemes

under different choices of design parameters. Note that calculations for building up all
entries of Table 1 were carried out by the aid of Proposition 1.

Based on Table 1, the practitioner can choose the appropriate design for constructing
a distribution-free control chart that achieves a pre-determined in-control level of perfor-
mance (ARL0). For example, let us assume that a reference sample of size m = 200 is
available and we draw independent successive test samples of size n = 5. Our aim is
to construct a monitoring scheme that achieves an in-control Average Run Length equal
to 370 (approximately). Based on Table 1, our goal shall be met, if we construct any of
the following:

• An NMS2,2,3
1 − chart with design parameters a = 30, b = 32, w = 44, r1 = 2. In

other words, the practitioner should select the 30th and the 32nd ordered refer-
ence observations as the control limits and determine the remaining parameters as
w = 44, r1 = 2. The resulting NMS2,2,3

1 −chart achieves an in-control ARL equal
to 379.95.

• An NMS2,2,4
1 −chart with design parameters a = 27, b = 29, w = 45, r1 = 2. In

other words, the practitioner should select the 27th and the 29th ordered refer-
ence observations as the control limits and determine the remaining parameters as
w = 45, r1 = 2. The resulting NMS2,2,4

1 −chart achieves an in-control ARL equal
to 356.25.

• An NMS2,2,5
1 −chart with design parameters a = 24, b = 26, w = 30, r1 = 2. In

other words, the practitioner should select the 24th and the 26th ordered refer-
ence observations as the control limits and determine the remaining parameters as
w = 30, r1 = 2. The resulting NMS2,2,5

1 −chart achieves an in-control ARL equal
to 370.99.
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In addition, a parallel computational effort has been made for illustrating the in-
control performance of NMSr,2,s

2 −control charts. More precisely, Table 2 displays the
in-control ARL values under the NMSr,2,s

2 −framework for several designs, which achieve
the traditional ARL target values, e.g., 370 or 500.

Table 1. In-control Average Run Length of NMSr,2,s
1 − charts for several designs.

Reference Sample Size m

50 100 200

ARLo (n, r) (a, b, w, r1) Exact ARLin (a, b, w, r1) Exact ARLin (a, b, w, r1) Exact ARLin

370 (5, 1)
(10, 12, 36, 2)
(16, 18, 39, 3)
(9, 11, 37, 2)

394.99
377.46
386.65

(11, 13, 22, 2)
(24, 26, 49, 3)
(17, 19, 37, 2)

390.87
366.74
366.47

(27, 29, 54, 2)
(30, 32, 61, 2)
(37, 39, 40, 3)

377.11
383.71
380.68

(5, 2)
(9, 11, 19, 2)
(5, 7, 10, 2)

(8, 10, 17, 2)

361.66
352.83
356.36

(11, 13, 19, 2)
(20, 22, 43, 2)
(17, 19, 41, 2)

385.57
392.72
345.39

(30, 32, 44, 2)
(27, 29, 45, 2)
(24, 26, 30, 2)

379.95
356.25
370.99

(5, 3)
(8, 10, 11, 3)
(9, 11, 19, 2)

(11, 13, 25, 2)

399.43
381.55
359.55

(10, 12, 18, 2)
(12, 14, 23, 2)
(18, 20, 37, 2)

374.94
349.00
355.98

(35, 37, 30, 2)
(31, 33, 30, 2)
(28, 30, 30, 2)

362.63
370.13
385.39

500 (5, 1)
(10, 12, 42, 2)
(9, 11, 41, 2)
(9, 11, 38, 2)

467.68
502.58
479.25

(15, 17, 31, 2)
(17, 19, 37, 2)
(16, 18, 45, 2)

476.19
473.51
509.30

(43, 45, 40, 3)
(37, 39, 40, 3)
(27, 29, 55, 2)

482.39
493.21
486.36

(5, 2)
(10, 12, 22, 2)
(7, 9, 14, 3)

(9, 11, 20, 2)

514.80
483.21
508.85

(20, 22, 42, 2)
(19, 21, 43, 2)
(10, 12, 20, 2)

462.81
516.85
517.35

(27, 29, 44, 2)
(24, 26, 45, 2)
(21, 23, 31, 2)

506.04
475.79
500.53

(5, 3)
(9, 11, 19, 2)
(8, 10, 16, 3)
(8, 10, 17, 2)

524.48
524.94
504.54

(12, 14, 24, 2)
(13, 15, 26, 2)
(12, 14, 24, 2)

503.69
517.25
503.69

(31, 33, 30, 2)
(28, 30, 30, 2)
(25, 27, 30, 2)

509.32
486.52
508.66

Each cell contains the in-control ARL values attained for NMSr,2,3
1 − (upper entry), NMSr,2,4

1 − (middle entry) and
NMSr,2,5

1 −(lower entry) charts.

Based on Table 2, one may investigate the in-control performance of the proposed
nonparametric schemes. For instance, let us assume that, having at hand m = 100 reference
observations, we aim at constructing a monitoring scheme with an in-control Average Run
Length equal to 500 (approximately). If we draw successively test samples of size n = 5, it
seems that our requirement could be satisfied if we construct any of the following:

• An NMS3,2,3
2 − chart with design parameters a = 12, b = 14, c = 22, d = 24,

w = 39, r1 = 2, r2 = 1 (with exact in-control ARL equal to 493.02);
• An NMS3,2,4

2 −chart with design parameters a = 13, b = 15, c = 22, d = 24,
w = 39, r1 = 2, r2 = 1 (with exact in-control ARL equal to 484.68);

• An NMS3,2,5
2 −chart with design parameters a = 12, b = 14, c = 23, d = 25,

w = 26, r1 = 2, r2 = 2 (with exact in-control ARL equal to 511.04).

The out-of-control performance could be evaluated via the corresponding ARL that
the control chart attains. If the process shifts out-of-control, the out-of-control ARL of the
proposed charts depends on both the in-control and out-of-control distributions F and G. If
we assume that G belongs to the so-called Lehmann alternatives (see [32]), the out-of-control
distribution function takes on the form G = Fγ for some fixed, positive number γ > 0.
Table 3 provides the out-of-control ARL values delivered by the NMSr,2,3

1 −, NMSr,2,4
1 −

and NMSr,2,5
1 −monitoring schemes under the Lehmann-type alternatives for γ = 0.9.

Since all designs displayed in Table 3 are the same as the ones appearing in Table 1, the
practitioner could now investigate both the in- and out-of-control performances of the
proposed nonparametric control charts by the aid of Tables 1 and 3.



Stats 2024, 7 309

Table 2. In-control Average Run Length of NMSr,2,s
2 − charts for several designs.

Reference Sample Size m

50 100 200

ARLo (n, r) (a, b, c, d, w, r1, r2) Exact ARLin (a, b, c, d, w, r1, r2) Exact ARLin (a, b, c, d, w, r1, r2) Exact ARLin

370 (5, 1)
(6, 8, 15, 17, 32, 2, 2)
(5, 7, 14, 16, 29, 2, 2)
(5, 7, 13, 15, 24, 2, 2)

378.89
367.01
389.21

(16, 18, 20, 22, 23, 2, 2)
(14, 16, 20, 22, 23, 2, 2)
(8, 10, 18, 20, 20, 2, 2)

372.91
380.82
363.57

(13, 15, 30, 32, 15, 2, 2)
(12, 14, 28, 30, 15, 2, 2)
(11, 13, 25, 27, 22, 2, 2)

355.45
384.88
373.20

(5, 2)
(6, 8, 13, 15, 16, 2, 2)
(6, 8, 16, 18, 32, 2, 2)
(6, 8, 15, 17, 27, 2, 2)

382.10
363.38
368.12

(13, 15, 22, 24, 39, 2, 1)
(12, 14, 22, 24, 24, 2, 2)
(11, 13, 21, 23, 23, 2, 2)

377.02
381.07
359.54

(10, 12, 28, 30, 11, 2, 2)
(10, 12, 36, 38, 13, 2, 2)
(10, 12, 30, 32, 13, 2, 2)

364.96
385.78
388.40

(5, 3)
(5, 7, 15, 17, 18, 2, 2)
(5, 7, 15, 17, 22, 2, 2)
(5, 7, 15, 17, 24, 2, 2)

374.41
374.20
380.89

(13, 15, 22, 24, 23, 2, 2)
(12, 14, 22, 24, 39, 2, 1)
(11, 13, 24, 26, 26, 2, 2)

374.79
361.81
383.59

(11, 13, 26, 28, 11, 2, 2)
(10, 12, 28, 30, 11, 2, 2)
(12, 14, 20, 22, 13, 2, 2)

366.81
388.65
367.68

500 (5, 1)
(5, 7, 13, 15, 22, 2, 2)
(5, 7, 13, 15, 24, 2, 2)
(5, 7, 12, 14, 22, 2, 2)

479.21
504.69
486.43

(16, 18, 25, 27, 27, 3, 2)
(12, 14, 20, 22, 23, 2, 2)
(10, 12, 20, 22, 23, 2, 2)

509.69
509.92
492.51

(12, 14, 30, 32, 15, 2, 2)
(13, 15, 23, 25, 16, 2, 2)
(8, 11, 21, 23, 19, 2, 2)

484.80
493.11
490.41

(5, 2)
(6, 8, 14, 16, 19, 2, 2)
(6, 8, 15, 17, 32, 2, 2)
(6, 8, 15, 17, 34, 2, 2)

499.74
516.71
499.40

(12, 14, 23, 25, 25, 2, 2)
(11, 13, 21, 23, 23, 2, 2)
(11, 13, 24, 26, 27, 2, 2)

484.34
478.38
518.66

(10, 12, 37, 39, 13, 2, 2)
(10, 12, 30, 32, 13, 2, 2)
(11, 13, 31, 33, 17, 2, 2)

503.88
495.89
486.75

(5, 3)
(5, 7, 14, 16, 17, 2, 2)
(5, 7, 15, 17, 24, 2, 2)
(5, 7, 15, 17, 26, 2, 2)

509.29
482.47
516.10

(12, 14, 22, 24, 39, 2, 1)
(13, 15, 22, 24, 39, 2, 1)
(12, 14, 23, 25, 26, 2, 2)

493.02
484.68
511.04

(12, 14, 31, 33, 13, 2, 2)
(12, 14, 16, 18, 13, 2, 2)
(12, 14, 33, 35, 14, 2, 2)

488.98
476.48
489.10

Each cell contains the in-control ARL values attained for NMSr,2,3
2 − (upper entry), NMSr,2,4

2 − (middle entry) and
NMSr,2,5

2 −(lower entry) charts.

Table 3. Out-of-control Average Run Length of NMSr,2,s
1 − charts for several designs.

Reference Sample Size m

50 100 200

ARLo (n, r) (a, b, w, r1) Exact ARLout (a, b, w, r1) Exact ARLout (a, b, w, r1) Exact
ARLout

370 (5, 1)
(10, 12, 36, 2)
(16, 18, 39, 3)
(9, 11, 37, 2)

150.31
170.29
139.57

(11, 13, 22, 2)
(24, 26, 49, 3)
(17, 19, 37, 2)

184.88
178.44
140.31

(27, 29, 54, 2)
(30, 32, 61, 2)
(37, 39, 40, 3)

176.45
154.21
228.70

(5, 2)
(9, 11, 19, 2)
(5, 7, 10, 2)

(8, 10, 17, 2)

156.26
169.77
139.71

(11, 13, 19, 2)
(20, 22, 43, 2)
(17, 19, 41, 2)

218.61
167.78
143.53

(30, 32, 44, 2)
(27, 29, 44, 2)
(24, 26, 30, 2)

203.20
191.78
201.31

(5, 3)
(8, 10, 11, 3)
(9, 11, 19, 2)

(11, 13, 25, 2)

269.67
170.21
154.83

(10, 12, 18, 2)
(12, 14, 23, 2)
(18, 20, 37, 2)

218.44
204.18
162.56

(35, 37, 30, 2)
(31, 33, 30, 2)
(28, 30, 30, 2)

199.73
203.92
212.75

500 (5, 1)
(10, 12, 42, 2)
(9, 11, 41, 2)
(9, 11, 38, 2)

168.03
177.79
160.72

(15, 17, 31, 2)
(17, 19, 37, 2)
(16, 18, 45, 2)

187.42
177.64
185.83

(43, 45, 40, 3)
(37, 39, 40, 3)
(27, 29, 55, 2)

283.86
293.25
185.91

(5, 2)
(10, 12, 22, 2)
(7, 9, 14, 3)

(9, 11, 20, 2)

214.42
269.29
195.31

(20, 22, 42, 2)
(19, 21, 43, 2)
(10, 12, 20, 2)

195.63
211.75
256.27

(27, 29, 44, 2)
(24, 26, 45, 2)
(21, 23, 31, 2)

266.64
252.35
266.16

(5, 3)
(9, 11, 19, 2)
(8, 10, 16, 3)
(8, 10, 17, 2)

234.39
317.09
209.56

(12, 14, 24, 2)
(13, 15, 26, 2)
(12, 14, 24, 2)

254.65
262.87
254.65

(31, 33, 30, 2)
(28, 30, 30, 2)
(25, 27, 30, 2)

279.25
263.34
183.99

Each cell contains the out-of-control ARL values attained for γ = 0.9 by NMSr,2,s
1 − (upper entry), NMSr,2,s

1 −
(middle entry) and NMSr,2,s

1 −(lower entry) charts.

Based on the numerical results displayed in Table 3, one may draw interesting con-
clusions. For instance, let us consider the same case study mentioned earlier, namely let
us assume that the practitioner works with a reference sample of size m = 50 in order
to reach an in-control ARL equal to 370. Then, under the Lehmann alternatives with pa-
rameter γ equal to 0.9, the NMS1,2,4

1 −, NMS2,2,4
1 − and NMS3,2,4

1 −monitoring schemes
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appearing in Tables 1 and 3, achieve an out-of-control ARL equal to 203.2, 191.78 and
201.31, respectively.

A similar numerical investigation has been carried out for the class of NMSr,2,s
2 −charts.

More precisely, in Table 4, the out−of−control ARLs of the NMSr,2,3
2 −, NMSr,2,4

2 − and
NMSr,2,5

2 −monitoring schemes are provided for the same designs displayed in Table 2.

Table 4. Out-of-control Average Run Length of the NMSr,2,s
2 charts for several designs.

Reference Sample Size m

50 100 200

ARLo (n,r) (a, b, c, d, w, r1, r2) ARLout (a, b, c, d, w, r1, r2) ARLout (a, b, c, d, w, r1, r2) ARLout

370 (5, 1)
(6, 8, 15, 17, 32, 2, 2)
(5, 7, 14, 16, 29, 2, 2)
(5, 7, 13, 15, 24, 2, 2)

105.60
103.45
95.35

(16, 18, 20, 22, 23, 2, 2)
(14, 16, 20, 22, 23, 2, 2)
(8, 10, 18, 20, 20, 2, 2)

71.18
72.84
88.00

(13, 15, 30, 32, 15, 2, 2)
(12, 14, 28, 30, 15, 2, 2)
(11, 13, 25, 27, 22, 2, 2)

122.89
135.70
134.31

(5, 2)
(6, 8, 13, 15, 16, 2, 2)
(6, 8, 16, 18, 32, 2, 2)
(6, 8, 15, 17, 27, 2, 2)

200.58
209.25
199.96

(13, 15, 22, 24, 39, 2, 1)
(12, 14, 22, 24, 24, 2, 2)
(11, 13, 21, 23, 23, 2, 2)

210.98
199.23
188.61

(10, 12, 28, 30, 11, 2, 2)
(10, 12, 36, 38, 13, 2, 2)
(10, 12, 30, 32, 13, 2, 2)

239.00
252.42
241.62

(5, 3)
(5, 7, 15, 17, 18, 2, 2)
(5, 7, 15, 17, 22, 2, 2)
(5, 7, 15, 17, 24, 2, 2)

224.42
229.70
225.92

(13, 15, 22, 24, 23, 2, 2)
(12, 14, 22, 24, 39, 2, 1)
(11, 13, 24, 26, 26, 2, 2)

225.89
209.33
216.79

(11, 13, 26, 28, 11, 2, 2)
(10, 12, 28, 30, 11, 2, 2)
(12, 14, 20, 22, 13, 2, 2)

256.99
258.45
241.00

500 (5, 1)
(5, 7, 13, 15, 22, 2, 2)
(5, 7, 13, 15, 24, 2, 2)
(5, 7, 12, 14, 22, 2, 2)

122.03
119.63
104.97

(16, 18, 25, 27, 27, 3, 2)
(12, 14, 20, 22, 23, 2, 2)
(10, 12, 20, 22, 23, 2, 2)

179.45
97.57

100.74

(12, 14, 30, 32, 15, 2, 2)
(13, 15, 23, 25, 16, 2, 2)
(8, 11, 21, 23, 19, 2, 2)

172.33
154.18
176.00

(5, 2)
(6, 8, 14, 16, 19, 2, 2)
(6, 8, 15, 17, 32, 2, 2)
(6, 8, 15, 17, 34, 2, 2)

273.54
283.85
258.56

(12, 14, 23, 25, 25, 2, 2)
(11, 13, 21, 23, 23, 2, 2)

(11,13,24,26,27,2,2)

249.89
236.14
262.64

(10, 12, 37, 39, 13, 2, 2)
(10, 12, 30, 32, 13, 2, 2)
(11, 13, 31, 33, 17, 2, 2)

327.24
304.58
311.87

(5, 3)
(5, 7, 14, 16, 17, 2, 2)
(5, 7, 15, 17, 24, 2, 2)
(5, 7, 15, 17, 26, 2, 2)

294.09
281.34
294.85

(12, 14, 22, 24, 39, 2, 1)
(13, 15, 22, 24, 39, 2, 1)
(12, 14, 23, 25, 26, 2, 2)

287.25
268.90
248.36

(12, 14, 31, 33, 13, 2, 2)
(12, 14, 16, 18, 13, 2, 2)
(12, 14, 33, 35, 14, 2, 2)

323.14
302.00
309.04

Each cell contains the in-control ARL values attained for NMSr,2,3
2 − (upper entry), NMSr,2,4

2 − (middle entry) and
NMSr,2,5

2 −(lower entry) charts.

If we consider the same case study mentioned earlier, namely let us assume that the
practitioner works with a reference sample of size m = 100 in order to reach an in-control
ARL equal to 500. Then, under the Lehmann alternatives with parameter γ equal to 0.9, the
NMS3,2,3

2 −, NMS3,2,4
2 − and NMS3,2,5

2 − monitoring schemes appearing in Tables 2 and 4,
achieve an out-of-control ARL equal to 287.25, 268.90 and 248.36, respectively.

Generally speaking, the proposed control charts seem to provide a reliable framework
for monitoring the quality of a process. Due to their nonparametric nature, the new
schemes can be implemented in any case, even if the distribution of the underlying process
is unknown. An additional advantage of the proposed schemes is that, due to the large
number of their design parameters, the new charts are flexible in the sense that it is quite
feasible to determine appropriately the values of their parameters in order to achieve a
pre-specified level of in- or out-of-control performance. However, one may also argue
that the large number of the design parameters of the proposed frameworks make their
implementation quite complex (and that is also true). Moreover, a clear drawback of the
nonparametric monitoring schemes, which are established throughout the lines of the
present manuscript, is that due to the discrete nature of the rank-based monitoring statistics
that are used therein, it is sometimes time consuming to determine the appropriate design
that reaches the desired level of in- or out-of-control performance.

4. Numerical Comparisons

In this section, we carry out extensive numerical experimentation to shed light on
the efficacy of the new control charts and their robustness features under out-of-control
situations. The computations are accomplished with the aid of theoretical results proved
in the previous section. All numerical computations have been accomplished through
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appropriate numerical approximations to the corresponding integral by using suitable
adaptive algorithms, which recursively subdivide the integration region as needed. The
Mathematica notebook to support this paper is available upon request.

A common approach of weighing two different control charts is to determine a com-
mon in-control ARL and then to examine the corresponding out control ARLs. Traditionally,
whenever a new control chart is established as a generalization of some existing ones, di-
rect comparisons against them are highly recommended. Therefore, we next compare
the performance of the NMSr,2,s

1 − and NMSr,2,s
2 −charts monitoring schemes to the ones

established in [15,20], respectively.
Note that the nonparametric chart, which has been established by [15] (Competitor

1, hereafter), is a Shewhart-type one that exploits run and Wilcoxon-type rank sum statistics
to detect possible shifts of a monitored process. Moreover, the monitoring scheme pro-
posed by [20] (Competitor 2, hereafter), combines the reference and test data in order to
identify whether the observations of the test samples tend to take on significantly smaller
(or significantly larger) values compared to the corresponding reference observations. Com-
petitor 2 utilizes a rank-based statistic, which is computed by the aid of the ranks from the
observations that lie in two different intervals.

Table 5 offers several numerical comparisons between the NMS1,2,3
1 −, NMS1,2,4

1 − and
NMS1,2,5

1 − schemes and the nonparametric chart introduced in [15] (Competitor 1).

Table 5. ARL values of the NMS1,2,s
1 − control charts against competitive schemes under Exponential

distribution and several shifts θ (m = 100, n = 5).

Exponential Distribution (λ)

Shift
NMS1,2,3

1 −Chart
a = 15, b = 17,
w = 31, r1 = 2

NMS1,2,4
1 −Chart

a = 17, b = 19,
w = 37, r1 = 2

NMS1,2,5
1 −Chart

a = 16, b = 18,
w = 45, r1 = 2

Competitor 1

0.0 476.19 473.51 509.30 512.40

0.1 380.01 372.38 400.43 459.48

0.2 300.41 290.08 311.85 410.87

0.3 235.09 223.71 240.44 366.38

0.4 181.99 170.70 183.43 325.81

0.5 139.26 128.80 138.38 289.01

0.6 105.26 96.06 103.19 255.80

0.7 78.53 70.78 76.03 226.00

0.8 57.79 51.52 55.34 199.46

0.9 41.92 37.04 39.80 176.02

1.0 29.98 26.32 28.29 155.51

1.1 21.15 18.51 19.91 137.79

1.2 14.73 12.92 13.90 122.71

1.3 10.16 8.98 9.66 110.15

1.4 6.98 6.26 6.73 99.99

1.5 5.12 4.42 5.03 92.12

We assume that a reference sample of size m = 100 is available, while test samples
of size n = 5 are then drawn from the process in order to decide whether it is in- or
out-of-control. All competing schemes are designed such that an in-control ARL near
to 500 is achieved. The design parameters of Competitor 1 have been copied by them
(see Table 8 therein). More precisely, the parameters of the latter chart are determined as
a = 18, b = 20, w = 78 and r0 = 2, and its exact in-control ARL equals to 512.4.

Throughout the lines of Table 5, the in-control distribution of the underlying process
is assumed to be the Exponential distribution with parameter λ = 2. The out-of-control
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performance of the competing schemes is evaluated by the corresponding ARLs under
several shifts θ in the process.

For example, let us consider the case where the process mean has shifted θ = 0.5 units. As
it is easily observed by the aid of Table 5, the proposed CC2,3

1 −, CC2,4
1 − and CC2,5

1 −monitoring
schemes achieve an out-of-control ARL equal to 139.26, 128.80 and 138.38, respectively, while
the corresponding ARL value for Competitor 1 is much larger and more precisely equal
to 289.01.

In what follows, we investigate the out-of-control performance of the class of NMSr,2,s
2 −

control charts and provide several numerical comparisons versus the monitoring scheme
introduced by [20]. As mentioned earlier, since the proposed NMSr,2,s

2 − monitoring scheme
bubbles up as a generalization of the control chart introduced by [20], it is of great interest
to make direct comparisons between them and investigate whether the proposed scheme
outperforms the existing one.

We next assume that a reference sample of size m = 50 is available, while the in-
control process distribution is supposed to be the Exponential with parameter λ = 2 and
the shifts we are wishing to capture are created by a change in the parameter λ. Test
samples of size n = 5 are then drawn from the process in order to decide whether it
is in- or out-of-control. Both competing schemes are designed such that an in-control
ARL near to 370 is achieved. To provide a fair comparison between the proposed charts
and the one established by [20] (Competitor 2), we used a design given by the authors
themselves. More precisely, the design parameters of the chart of [20] are determined as
a = 6, b = 8, c = 10, d = 12, w = 32, r1 = 3 and r2 = 2 (see Table 7 therein) and its exact
in-control ARL equals to 388.4.

As it is readily deduced, the NMSr,2,s
2 −control chart is, under Exponential distribution,

superior to Competitor 2 in all the cases examined. For instance, if the process mean of
the underlying in-control distribution has shifted 0.5 (1) units, the NMS1,2,3

2 −, NMS1,2,4
2 −

and NMS1,2,5
2 − monitoring schemes achieve (see Table 6) an out-of-control ARL equal to

118.48 (29.27), 115.18 (28.95) and 117.40 (27.95), respectively, while the corresponding ARL
value for Competitor 2 is larger and more precisely equal to 167.41 (54.3).

In addition, it is of some interest to compare the proposed monitoring schemes with
other existing nonparametric control charts. More precisely, we next consider well-known
rank-based monitoring frameworks and appraise their out-of-control performance versus
the behavior of the proposed methods. Table 7 displays several numerical comparisons of
the new control charts against four well-known distribution-free schemes. More specifically
the NMS1,2,4

1 −chart and the NMS1,2,4
2 −chart are compared to the so-called W-CUSUM

and W-EWMA control charts established by [33], to the Wmin-chart (see, [18]), as well
as to the Mann–Whitney-based chart (MW chart hereafter) instituted by [19]. Note that
the comparisons are made under the assumption that the underlying process is normally
distributed with parameters 0 and 1.

The design parameters for all competitors were determined suitably so that the result-
ing rules achieve an in-control average run length approximately equal to 500. Then, the
ARLout values under specific mean shifts of the underlying distribution were calculated.

Table 7 offers enough numerical evidence that the proposed monitoring schemes
outperform their competitors. Indeed, the out-of-control ARLs of the NMS1,2,4

1 −chart and
the NMS1,2,4

2 −chart are smaller than the corresponding ones of the competitive charts.
That practically means that the proposed charts are capable of detecting the distribution
shift faster than the remaining monitoring schemes. For instance, if the distribution shifts
0.25 units, then the NMS1,2,4

1 −chart (NMS1,2,4
2 −chart) needs only 77.44 (93.12) test samples

to detect the change, while the competitors seem to be much slower at detecting the shift.
As we readily observe in the 2nd line of Table 7, the Wmin-chart achieves an ARLout equal to
100.82, while the corresponding ARLout for the MW-chart, the W-CUSUM and W-EWMA
control charts are 428.03, 333.45 and 321.52, respectively.
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As it is readily concluded from the above numerical investigation, the proposed
schemes offer a competitive way to monitor the quality of the underlying process, no
matter which specific distribution rules the process. In other words, the new control charts
seem to detect faster possible shifts of the distribution process than their competitors in all
cases considered. That seems to be a general conclusion, not only because the numerical
comparisons provided in the above tables are based on both symmetric and non-symmetric
distributions, but also due to the flexibility of the proposed frameworks which allows us
to determine appropriately their design parameters in order to reach the desired level of
performance under any requirements.

Table 6. ARL values of the CC2,v
2 − control charts against competitive schemes under Exponential

distribution and several shifts θ (m = 50, n = 5).

Exponential Distribution (λ)

Shift
NMS1,2,3

2 −Chart
(a = 6, b = 8, c = 15, d = 17, w = 32,

r1 = 2, r2 = 2)

NMS1,2,4
2 −Chart

(a = 5, b = 7, c = 14, d = 16,
w = 29, r1 = 2, r2 = 2)

NMS1,2,5
2 −Chart

(a = 5, b = 7, c = 13, d = 15,
w = 24, r1 = 2, r2 = 2)

Competitor 2

0.0 378.89 367.01 389.21 388.40

0.1 305.33 295.83 311.58 333.57

0.2 244.12 236.62 247.39 284.41

0.3 193.56 187.74 194.75 240.55

0.4 152.13 147.69 151.92 201.67

0.5 118.48 115.18 117.40 167.41

0.6 91.39 89.01 89.85 137.46

0.7 69.80 68.14 68.09 111.48

0.8 52.77 51.69 51.09 89.17

0.9 39.50 38.85 37.96 70.21

1.0 29.27 28.95 27.95 54.30

1.1 21.49 21.40 20.42 41.13

1.2 15.65 15.72 14.83 30.39

1.3 11.33 11.51 10.74 21.82

1.4 8.17 8.41 7.78 15.15

1.5 5.91 6.18 5.67 10.09

Table 7. ARL values of six different control charts under the N(0,1) distribution.

Shift NMS1,2,4
1 −Chart NMS1,2,4

2 −Chart Wmin MW W-CUSUM W-EWMA

0.0 473.51 501.92 501.66 502.48 498.64 502.94

0.25 77.44 93.12 100.82 428.03 333.45 321.52

0.50 19.87 21.88 25.59 292.77 107.19 103.15

1.00 3.27 3.46 3.52 86.57 13.04 14.29

1.50 1.32 1.33 1.33 28.52 6.25 7.52

5. An Illustrative Real-Life Example

For illustration purposes, let us assume that we wish to establish nonparametric
control charts using the data given in Tables 6.3 and 6E.7 of the classical textbook [34]. In
this particular application, piston rings for an automotive engine are produced by a forging
process and the aim is to monitor the inside diameter of the rings by exploiting quality
control techniques.

Twenty-five samples, each of size five, were taken when the process was thought to be in-
control. Traditional Shewhart X− and R− charts were constructed using the aforementioned
data and no indication of an out-of-control condition was provided. Therefore, these data
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may be used as reference data (Phase I data) and the control limits needed for establishing an
on-line process control, can be computed by the aid of these 125 (25× 5) observations.

In order to monitor the process, we apply one of the proposed schemes, e.g., the
NMS1,2,3

1 −chart. The design parameters of the underlying monitoring scheme are deter-
mined as m = 125, n = 5, a = 71, b = 73, w = 400 and r1 = 4. Therefore, our interest
focuses on the interval created by the 71st and 73rd ordered observations of the reference
sample, and the number Mi (for all i = 72, 73) of observations of the test sample that fall
between two successive observations of the reference sample has to be calculated. For
example, M72 denotes the number of Y−observations that lie between X71:125 and X72:125.
Based on quantities M72, M73 the value of Wh

1 is determined by the aid of (2) for each
test sample drawn from the production. The process will be declared in-control if the
plotting statistic Wh

1 of the test sample is equal to or less than 400 and simultaneously at
most four observations of the test sample (collected from the future production process) lie
before the order statistic X71:125 = 74.003. On the other hand, the process will be declared
out-of-control if we observe subsequent test samples of length s = 3 (at most), which
contain at least k = 2 samples having violated at least one condition stated before.

Fifteen additional samples from the piston-ring manufacturing process (see [34], Table
6E.7) were collected after the control charts were established. Figures 1 and 2 provide plots for
both plotting statistics (Wh

1 and Rh) for all forty samples (reference and test).
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It is not difficult to see that, while the Phase I samples are not creating an out-of-
control signal (as expected), the distribution-free scheme signals on the 5th sample in the
prospective phase (Phase II) or on the 30th overall since the 2-out-of-3 rule is activated.
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6. Discussion

In the present article, a new class of distribution-free Shewhart-type control charts
based on ranks and scans is introduced. The monitoring statistics correspond to rank-based
statistics, while the decision whether the process is in- or out-of-control is made by utilizing
multiple scan rules. The run length of the proposed nonparametric control charts is studied
for both in- and out-of-control circumstances. Based on the numerical investigation carried
out, we deduce that the new schemes are capable of quickly detecting possible shifts of
the underlying distribution process. Is it highly recommended that the practitioner uses
the tables displayed in previous sections of the present manuscript in order to build up
the appropriate design for meeting his/her requirements. It is of some interest for future
research, to implement scans- or runs-type rules to alternative nonparametric control charts
for improving their capabilities.
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