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Abstract: Climate change is considered one of the biggest challenges around the globe as it has been
causing alterations in hydrological extremes. Climate change and variability have an impact on
future streamflow conditions, water quality, and ecological balance, which are further aggravated
by anthropogenic activities such as changes in land use. This study intends to provide insight into
potential changes in future streamflow conditions leading to changes in flooding patterns. Flooding is
an inevitable, frequently occurring natural event that affects the environment and the socio-economic
structure of its surroundings. This study evaluates the flooding pattern and inundation mapping of
two different rivers, Wabash River in Indiana and Fountain Creek in Colorado, using the observed
gage data and different climate models. The Coupled Model Intercomparison Project Phase 6 (CMIP6)
streamflow data are considered for the future forecast of the flood. The cumulative distribution
function transformation (CDF-t) method is used to correct bias in the CMIP6 streamflow data. The
Generalized Extreme Value (L-Moment) method is used for the estimation of the frequency of flooding
for 100-year and 500-year return periods. Civil GeoHECRAS is used for each flood event to map
flood extent and examine flood patterns. The findings from this study show that there will be a rapid
increase in flooding events even in small creeks soon in the upcoming years. This study seeks to
assist floodplain managers in strategic planning to adopt state-of-the-art information and provide
a sustainable strategy to regions with similar difficulties for floodplain management, to improve
socioeconomic life, and to promote environmental sustainability.

Keywords: discharge; Civil GeoHECRAS; CMIP6; CDF-t bias correction; flood inundation maps;
floodplain area

1. Introduction

An important long-term shift in the weather and temperatures is referred to as climate
change [1,2]. In recent years, mean surface temperatures have been observed to be higher
than that in previous decades [3]. If the rate of temperature rise remains constant, the
current temperature will rise from 1.5 to 2 ◦C by 2052 [3]. Scientists have corroborated
that extreme events are amplified by anthropogenic activities [4]. These increasing tem-
peratures have led to increased evaporation and evapotranspiration resulting in increased
precipitation. This change alters the hydrological cycle and has affected the surface and
subsurface runoff [5]. The changes in ocean currents and wind patterns also influence the
precipitation shift, which changes the runoff patterns. This may cause an increase in the
frequency and intensity of both floods and droughts [6–8]. The high and low variations
in streamflow are extremely sensitive to the changing climate [9]. It is crucial to predict
the future streamflow to prevent flooding disasters by tracking the continuation of such
extreme events and increased flood frequency. Flooding, droughts, and heat waves are
some of the most prevalent natural disasters in the world [7,8]. Floods, tropical cyclones,
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and droughts are the most frequently observed disasters in the United States. Additionally,
according to research by the United Nations World Water Assessment Programme, almost
30% of the world’s population is impacted by water-related natural disasters, such as
floods and droughts [9]. The frequencies and intensities of extreme rainfall events are
changing and increasing. Extreme or large flooding is more frequent with loss of both life
and property [10]. Many researchers have provided the probable effects of the change in
climate and its impact on the flood risk globally [11]. Many studies have demonstrated the
change in the pattern of streamflow is due to changes and variability in climate. Extreme
unexpected events are being observed frequently with great loss in many parts of the world.
Hence, for the detailed study of such events and to study their pattern, two different study
reaches were selected, i.e., Wabash River in Indiana and Fountain Creek in Colorado.

The Wabash River is known as a state river with a drainage area of 85,237 km2 and has
an increasing trend of streamflow [12]. According to a study on the effect of climate change
on yearly runoff in the Wabash River watershed, there will be a 1.5–2.5% fluctuation in
streamflow for every 1% variation in precipitation [12,13]. This change may be caused due
to storage for the nonlinear precipitation runoff [14]. The streamflow of the Wabash River is
extremely sensitive to the change in temperature and hence the study of its changing flow
patterns is important for the quantification of probable impacts of future climate change
and variability [12]. The quantification of changing streamflow patterns will be useful for
water managers and policymakers for future watershed planning and management [12].

Fountain Creek watershed in Colorado experiences chronic flooding [13]. Numerous
flooding incidents in historically sensitive areas during the previous century indicate the
necessity of a long-term strategy to reduce floods in the future. Pervasive flooding, as
exemplified in the current study reach, is rooted in a changing climate, urbanization, and
improper flood-control infrastructure. Urban development thus often results in increased
surface runoff due to deteriorated pervious surfaces. Moreover, the risks of urban flooding
are exacerbated due to destructive runoff flow velocity along with extreme peak flows [15].
The other factors leading to flash flood events near Fountain Creek are topographic relief
and narrow canyons. One of the larger municipalities in the watershed is Pueblo, which
is mainly impacted by flooding along Fountain Creek. Due to extreme events and a lack
of proper stormwater network and management, several lives and properties are at risk.
This study can be helpful to evaluate the future extent of the flood for better planning
and implementation.

The Federal Emergency Management Agency (FEMA), established in 1968 in the
US, is managing the national flood insurance program for an immediate response, which
aims in decreasing the impacts of flooding disasters. FEMA has been conducting flood
mapping on the areas prone to flooding. FEMA uses HEC-RAS to generate flood inundation
maps using one-dimensional (1D) hydraulic modeling, which is helpful for programs that
analyze flood risk and provide flood insurance [16]. For flood inundation mapping and
additional inundation analysis, this study makes use of Civil GeoHECRAS. Many studies
have utilized Civil GeoHECRAS for hazard, vulnerability, and risk assessment of flood
zones with a conclusion that flood inundation mapping is a crucial step for flood risk
management [17–20].

CMIP6 proposes a scenario model intercomparison project based on the Shared Socioe-
conomic Pathways (SSPs), and Representative Concentration Pathways (RCPs). It provides
a database for relevant water resources questions and integrating multiple SSP scenarios
into hydrological models allows a better understanding of climate and social influences
on the physical processes of hydrological systems [9]. The main goal of this study is to
forecast potential future flood scenarios and analyze flood inundation extents utilizing
the CMIP6 streamflow projection dataset for two different rivers, i.e., Wabash River and
Fountain Creek. By examining the floodplain mapping and computing the severity of
the inundation in both cases, the current flooding scenarios for various return times are
contrasted with the future projected scenarios. By utilizing hydraulic modeling, a 100-year
streamflow projection from CMIP6 was adopted as a design discharge. The novelty of
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the study is to forecast the extent of the floodplain in current and future climates using
streamflow projection data from CMIP6. This study also provides an extensive analysis of
the importance of flood forecast data. The major outcomes of this research work will be
beneficial for offering responses to the inquiries as follows:

1. What effect will climate change have on streamflow in the future, and how would
that modify the frequency of flooding?

2. What changes in flood size and pattern can be expected in the future under the
estimated design discharge?

3. What are the changes in the future flood extent utilizing the CMIP6 climate model
and how does it compare with the FEMA floodplain?

4. What changes in estimated inundation extent correspond to different land uses?

This study anticipates the significance of planning appropriate responses by utilizing
projected future datasets to compare the extent of historical flooding. The region affected
by extreme events is massively understated by current climate indicators. This study
assesses the possibilities for future flooding to determine the extent of agricultural and
urban flooding with an increase in river discharge. The findings of this study will allow
policymakers to implement better water resource management policies and reduce risk by
contemplating the likelihood of potential future flooding escalation.

2. Study Area and Dataset
2.1. Study Area

In the current study, Wabash River in Indiana and Fountain Creek in Colorado are
considered to assess the changes in flooding patterns. A brief description of each reach is
described below:

2.1.1. Wabash River

In this study, river reach from Wabash to Peru in Indiana was taken into consideration.
Wabash River flows westward passing the cities, Huntington, Wabash, Logansport, and
Lafayette, then southward to Terre Haute across Indiana. The total length of the study
reach is 23.87 km. The study’s upstream portion begins at USGS Gage Station 03325000 in
Wabash, which is located at latitude 40.79◦ N and longitude 85.82◦ W. The downstream
portion of the study reach ends at USGS Gage station 033275000 in Peru, which is located at
latitude of 40.75◦ N and longitude of 86.07◦ W (Figure 1). The Wabash River drains a total
area of 85,860 square kilometers. The Wabash River is slow and muddy. The study region is
dominated primarily by agricultural land and residential areas. The summer is warm, wet,
and humid, and the winters are bitterly cold and windy. The highest temperature with an
average high of 28.3 ◦C was recorded in June and the lowest temperature with an average
low of −10 ◦C was recorded in January. The maximum rainfall with an annual average of
979.42 mm is observed in June.

2.1.2. Fountain Creek

Fountain Creek flows from Woodland Park in Teller County to the Arkansas River
near Pueblo in Pueblo County, Colorado. In this study, the river reach from Pinon to Pueblo
was taken into consideration. Fountain Creek is one of the tributaries of the Arkansas River,
which is 119.9 km long with a great elevation difference of 1414.27 m to 4302.25 m, whereas
the total length of the study reach is 17.03 km. The upstream of the study area is located
near USGS Gage Station 07106300 situated at a latitude and longitude of 38.43◦ N and
104.59◦ W, respectively (Figure 2). The downstream portion of the study reach is close to
USGS Gage Station 07106500, which has coordinates latitude and longitude of 38.28◦ N and
104.61◦ W, respectively. Summers are hot and clear, and winters are dry, cold, and cloudy.
The highest temperature with an average high of 33.88 ◦C was recorded in July and the
lowest temperature with an average low of −3.33 ◦C was recorded in December. August is
the month that experiences the most precipitation, with an annual average of 330.71 mm of
rain and 482.6 mm of snow.
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Figure 1. Map of study reach Wabash River in Indiana: (a) Map of United States; (b) location of
Wabash and Miami County (purple) in Indiana; (c) Wabash River crossing Miami and Wabash County;
and (d) study reach with upstream (located at Wabash) and downstream (located at Peru) USGS
gage station.

Figure 2. Map of study reach, Fountain Creek in Colorado: (a) Map of United States; (b) location of
Pueblo County (purple) in Colorado; (c) Fountain Creek crossing Pueblo County; and (d) study reach
with upstream and downstream USGS gage station.
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2.2. Dataset

Several research institutes have been assisting in the development of climate datasets
because of the connection between climate change and changes in hydrological and me-
teorological parameters. For the prediction of future flow for the study sites, this study
uses river discharge data from the CMIP6 climate models dataset (downloaded from
https://esgf-node.llnl.gov/search/cmip6/, retrieved on 10 March 2021). The study used
CMIP6 scenarios with a greater number of GCMs for the reduction in uncertainties in the
results [21]. The peak discharge for the study reach was determined using daily discharge
data. The historical daily discharge data were taken from 1950 to 2014 from the USGS gage
station upstream and downstream of the study reach. This current study utilized CMIP6
historical observations with a modeling period from 1950 to 2014. The gridded discharge
data from CMIP6 were extracted at USGS gage stations. SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 were the four scenarios that were taken into consideration for future observation.
The scenarios with two or more GCMs from 2015 to 2100 were adopted to evaluate future
hydroclimatic change. In the current study, three models were opted for from a total of
twelve models, with the remaining nine models being eliminated due to the availability of
only one GCM. The preferred future scenarios consider anthropogenic factors in addition
to socioeconomic changes. The scenarios and ensemble members used in the current study
for each scenario are presented in Table 1.

Table 1. Modeling institution and number of ensemble members of each climate model.

Scenarios Modeling Institution

Models Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

CNRM-CM6 24 6 6 6 5 CNRM-CFRFACS

CNRM-ESM2 5 5 5 5 5 CNRM-CFRFACS

CNRM-CM6-HR 1 1 1 1 1 CNRM-CFRFACS

In this study, for hydraulic modeling, 10 m resolution DEM was extracted from
Geospatial Data Gateway (https://datagateway.nrcs.usda.gov/ accessed on 12 February
2021). The National Land Cover Dataset (NLCD) was utilized to acquire the land-use and
land-cover data for Manning’s n value. To calibrate the model, the cross sections of the
study reach were carefully selected along and between the cross sections of the FEMA
flood extent. No structures such as levees and dams were considered due to the limitation
of the detailed data of those structures. The range and assigned values for Manning’s n
values are provided in Table 2. Different values for Manning’s n were considered for all
the bank lines and centerlines. For the centerlines, Manning’s n considered throughout the
channels in both study areas is 0.03. FEMA provides the flood map based on a 0.1% chance
of flood, i.e., a 100-year flood map, which was utilized in this study for the calibration of
the model. Calibration of the hydraulic models was performed with several assignments of
Manning’s n value within the range provided by NLCD (Table 2). Manning’s n value of the
final calibrated model was utilized for the future flood forecast.

Table 2. Manning’s n values of flow areas utilized for Wabash River and Fountain Creek.

NLCD Code Land Cover Allowable Manning’s Range Assigned Manning’s n
Wabash River Fountain Creek

11 Open Water 0.025–0.050 0.030 0.030
21 Developed, Open Space 0.030–0.050 0.040 0.045
22 Developed, Low Density 0.050–0.120 0.080 0.075
23 Developed, Medium Density 0.060–0.140 0.10 0.120
24 Developed, High Density 0.080–0.200 0.120 0.120
31 Undeveloped, Barren Land 0.025–0.035 0.030 0.035
71 Undeveloped, Grassland 0.025–0.050 0.035 0.045

https://esgf-node.llnl.gov/search/cmip6/
https://datagateway.nrcs.usda.gov/
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Table 2. Cont.

NLCD Code Land Cover Allowable Manning’s Range Assigned Manning’s n
Wabash River Fountain Creek

52 Undeveloped, Shrub/Scrub 0.070–0.160 0.085 0.085
43 Undeveloped, Mixed Forest 0.100–0.160 0.120 0.120
41 Undeveloped, Deciduous Forest 0.100–0.160 0.100 0.100
42 Undeveloped, Evergreen Forest 0.100–0.160 0.140 0.140
82 Agricultural, Cultivated Crops 0.025–0.050 0.035 0.035
81 Agricultural, Pasture/Hay 0.025–0.050 0.040 0.045
90 Wetlands, Forested 0.045–0.150 0.120 0.130

3. Methodology

The current study involves (1) hydraulic analysis to generate flood inundation maps
and (2) statistical analysis for the prediction of future design floods, which can be further
utilized in other studies. Figure 3 shows the schematic diagram to generate existing and
future 100-year flood maps.

Figure 3. Schematic representation of the procedures used in the study.

3.1. Statistical Analysis
3.1.1. Bias Correction

The impact of climate change on hydrological and meteorological parameters has
resulted in many research institutes to contribute in the generation of different climate
datasets. CMIP6 climate model dataset acquires hydrological induced dataset which can be
beneficial for the current study. Global time series datasets are available in Global Climate
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Model (GCM) datasets. The netCDF file of global time series data for river discharge
was retrieved from the CMIP6 data. Using the global dataset, the time series of the river
discharge at Wabash River and Fountain Creek were extracted. The purpose of the current
study is to comprehend and assess the rise in river flooding caused by climate change;
therefore, instead of using other concerning parameters such as precipitation, temperature,
and wind speed, the study employs the river discharge data present in the CMIP6 datasets.

The data from the CMIP6 climate model has systematic biases. The bias correction of
the CMIP6 models is important to further utilize the data for robust forecasting [22–24].
The GCMs for all scenarios were ensembled, and bias correction was performed using
the CFD-t statistical technique [25–28]. The correlation between observed and modeled
data was established in bias correction by employing the transformation function “T” as
shown in Equation (1) below [26]. The future bias-corrected data (Fsh) were obtained from
modeled future (Fgf) and historical climate data (Fgh). A range of bias corrections of Fgh
and Fsh was determined. After obtaining the bias-corrected data, the computed CDF was
utilized to predict future flows. The bias correction equations used are as follows:

T(FGh(x)) = Fsh(x) (1)

Let us consider, u = FGh(x), which provides us x = F−1
Gh(u) where uε [0, 1].

Then, Equation (1) can be modified as

T(u) = Fsh

(
F−1

Gh(u)
)

(2)

where T denotes the functional relationship that exists between the modeled and observed
CDF results for the historical period.

The final CDF-t equation after validating Equation (2) is:

Fs f (x) = Fsh

(
F−1

Gh

(
FG f (x)

))
(3)

3.1.2. Flood Frequency Analysis and Future Design Flow

The Generalized Extreme Value (GEV) distribution was determined as being the best-
fit among Gumbel distribution, Log Pearson III, and GEV-Max (L-Moments) distribution
of the data using “Easyfit” software. Pearson Chi-square and Kolmogorov–Smirnov tests
were performed as the fit criteria for fitting the best distribution. GEV obtains a higher
ranking in between other approaches while the software itself performs the tests. For flood
frequency analysis, (GEV) a parametric distribution was used that calculates the cumulative
probability [29]. It is extensively utilized because of its capability to forecast streamflow
and future extremes [24,29–32]. In earlier research, L-moment is used for the calculation of
the parameters in the GEV distribution [24,29]. The GEV distribution for annual maxima is
calculated using the following equation:

GEV (x : µ, σ, k) =
exp {−

[
1 + k

(
x−µ

σ

)
]
− 1

k }if k 6= o

exp {− exp
[
−
(

x−µ
σ

)
]−

1
k }if k = o

(4)

The location, scale, and shape of data are represented in Equation (4) by µ, σ, and k,
respectively. For shape parameter k > 0, µ − σ/k < x < ∞; k = 0, −∞_ < x < ∞; k < 0, ∞_ < x
< µ − σ/k [29]. L-moments, shape, scale, and locations are used for the GEV distribution
parameters.

GEV was implemented in the current study to determine design streamflow at multiple
recurrence intervals. The annual peak was determined for the historical data from 1950 to
2014. Annual peak discharge of each multimodel ensemble scenario (SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP4-6.0, and SSP5-8.5) of the bias-corrected data was calculated from 2015 to
2100. The peak flows for various year return periods was used to determine the peak flow
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in the future. Peak flow was calculated for the CMIP6 climate model as well as observed
data for 100-year and 500-year. For the future streamflow forecast, the Delta Change Factor
(DCF) was used. The DCF method is a statistical downscaling method that is based on the
idea to match the historical gage streamflow data and future streamflow data [33]. A main
advantage of the DCF method is that historical patterns of temporal and spatial variability
from the gridded observations are maintained, and comparison between future scenarios
and historical data is straightforward and can be easily analyzed as shown in Equations
(5) and (6). The streamflow estimated by FEMA using the DCF represents a flood under
stationary conditions. In the current study, for each scenario and return period, DCF is
calculated. In order to leverage the largest possible rise in flood data in the future, a greater
value of DCF is taken into consideration for this study.

DCF =
Daily maximum from future model

Daily maximum from the Historic model
= ∆Q =

Q f ,max

Qh,max
(5)

where ∆Q is the delta change factor for the peak discharge; Qf,max is the daily maximum
from future model and Qh is the modeled historical peak discharge.

Peak Future Flow = DCF × Existing Peak Flow (6)

3.2. Hydraulic Modelling

The flood map obtained from the current study was compared with the 100-year and
500-year FEMA flood scenarios to study how the future climate may affect flooding. In the
Civil GeoHECRAS 1D hydraulic modeling simulation, the 100-year streamflow projection
from CMIP6 was adopted as a design discharge. Civil GeoHECRAS is used as Hydraulic
modelling tool for floodplain inundation mapping. DEM was used for the terrain data in
the Civil GeoHECRAS 1D simulation model. The reach of the river with upstream and
downstream USGS gage stations was selected for the study. River reach, banks, and cross
sections at intervals and bends were drawn utilizing the tools available in GeoHECRAS.
Each cross-section, the river channel, and banks were provided the default Manning’s n
values based upon the land use on the cross sections. Land use for the Manning’s n was
extracted from National Land Cover Data (NLCD). The Manning’s coefficients considered
for the simulation vary for bank lines, but 0.03 was taken for the river’s centerline. The
calibration of the hydraulic model made utilization of water surface elevations (WSELs)
from FEMA. The modeled cross sections were compared with observed WSEL obtained
from FEMA. The flood inundation maps are prepared for bias-corrected historical data
and future projected data after the calibration of the model. The model’s efficiency was
evaluated using a range of statistical indicators, including Nash–Sutcliffe Efficiency (NSE),
Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Percent Bias
(PBIAS) [34].

Peak streamflow derived from GEV for 100-year and 500-year periods were utilized
in Civil GeoHECRAS for 1D steady flow hydraulic modeling. The river network of both
study reaches were modeled in Civil GeoHECRAS using geometric data and hydraulic
computation. In this study, the ratio of peak flow downstream and upstream was assumed
to remain constant. Among all the DCFs, the highest DCF was selected for the highest
increase in future flood conditions. Spatial flood extents and depth were obtained using
the future peak streamflow.

4. Results
4.1. Hydraulic Modelling and Flood Frequency Analysis

In the current study, data from the USGS gage station, DEM, land use land cover,
and CMIP6 streamflow data were utilized to develop future flood maps. The annual peak
flows obtained from the USGS station are shown in Figure 4. The annual peak flows from
3-GCMs with 75 different streamflow projections from CMIP6 models was used showing
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an increasing trend of streamflow in both the Wabash River and Fountain Creek. Historical
data were utilized for bias correction of multimodel ensembled GCMs for all CMIP6 future
scenarios. The scenarios SSP1-2.6, SSP 2-4.5, SSP3-7.8, and SSP5-8.5 were used in the
current study.

Figure 4. Historical annual peak streamflow dataset of Wabash River (top) and Fountain Creek
(bottom).

For both study reach, the best-fit distribution was established using the Easyfit tool,
which was used to compute design peak flows at varied recurrence intervals for all fu-
ture scenarios. Peak flows at different return periods (2-year, 5-year, 10-year, 50-year,
100-year, and 500-year) with their respective scenarios and observed flow are presented
in Tables 3 and 4 for the Wabash River and Fountain Creek, respectively. In this study, a
100-year return period was considered as design discharge for flood mapping.

The peak discharge for the Wabash River was determined to be 1313 m3/s for SSP1-2.6,
1465 m3/s for SSP2-4.5, 1522 m3/s for SSP3-7.0, and 1511 m3/s for SSP5-8.5. The peak
discharge for Fountain Creek was determined to be 12,865 m3/s for SSP1-2.6, 13,614 m3/s
for SSP2-4.5, 12,444 m3/s for SSP3-7.0, and 14,731 m3/s for SSP5-8.5. In Figure 5a, we can
observe that SSP3-7.0 has higher values for the Wabash River, and in Figure 5b SSP 5-8.5
for Fountain Creek. The DCF was computed for each scenario using the CMIP6 climate
model’s varying return period discharge and the FEMA 100-year flood discharge.
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Table 3. Comparison of peak discharge (CMIP6 scenarios and observed) of all the recurrence intervals
in the Wabash River.

Scenarios
Discharge at Various Return Periods (m3/s)

2 5 10 25 50 100 500

Observed 318 446 556 732 895 1092 1722
SSP1-2.6 522 730 869 1046 1179 1313 1625
SSP2-4.5 461 677 839 1068 1258 1465 2022
SSP3-7.0 498 726 894 1128 1318 1522 2061
SSP5-8.5 685 995 754 1005 1236 1511 2373

Table 4. Comparison of peak discharge (CMIP6 scenarios and observed) of all the recurrence intervals
in Fountain Creek.

Scenarios
Discharge at Various Return Periods (m3/s)

2 5 10 25 50 100 500

Observed 112 222 335 550 785 1111 2444
SSP1-2.6 2632 4044 5360 7640 9927 12,865 23,385
SSP2-4.5 3033 4694 6153 8544 10,819 13,614 22,866
SSP3-7.0 3188 4835 6198 8307 10,211 12,444 19,275
SSP5-8.5 2854 4462 5975 8614 11,281 14,731 27,218

Figure 5. (a) SSP scenarios of annual peak future streamflow of Wabash River. (b) SSP scenarios of
annual peak future streamflow of Fountain Creek.
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Table 5 compares the DCF values of several SSP scenarios for 100-year and 500-year
flood occurrences. For each scenario, DCF was computed for future CMIP6 model discharge
and FEMA 100-year flood discharge. The DCF values greater than 1 infer a higher risk of
flood in the future. The 100-year DCF value is lower for SSP1-2.6 (1.10) and highest for
scenario SSP3-7.0 in the Wabash River whereas SSP3-7.0 (11.20) was observed to be lower
in Fountain Creek (Table 5). All the scenarios were found to have DCF values greater than
1, suggesting that runoff will increase in the future in both Wabash River and Fountain
Creek. It can be observed in Table 5, that Fountain Creek has the highest DCF value in SSP
5-8.5 scenario. Similarly, for the Wabash River, SSP3-7.0 has the highest DCF in 100-year
(1.28) than that of SSP 1-2.6, SSP 2-4.5, and SSP5-8.5, suggesting an increase in the future
runoffs which may be resulting from future land-use changes, and higher GHG emissions.

Table 5. Comparison of DCF values for future 100-year and 500-year flood scenarios for Wabash
River and Fountain Creek.

Wabash River Fountain Creek

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

100 1.10 1.23 1.28 1.27 11.58 12.25 11.20 13.26
500 1.04 1.29 1.31 1.51 9.57 9.36 7.89 11.14

4.2. Statistical Performance of Hydraulic Modeling

One-dimensional hydraulic modeling in GeoHECRAS was performed after establish-
ing the DCF values and peak discharge for a 100-year and 500-year return period. The
WSEL generated from USGS peak flow data in GeoHECRAS was compared with the FEMA
WSEL for calibrating the 100-year design flood. Calibration of observed and simulated
WSEL was performed to establish a robust hydraulic model using statistical indicators
such as NSE, RMSE, R2, and PBIAS [35]. The simulated and actual WSEL of Wabash River
and Fountain Creek for the chosen cross sections are shown in Figure 6a,b, respectively.
Calibration of observed and simulated WSEL was performed to establish a robust hydraulic
model using statistical indicators such as NSE, RMSE, R2, and PBIAS. The values for NSE,
RMSE, R2, and PBIAS of the calibrated model were found to be 0.94, 0.12, 0.99, and −0.33,
respectively, for Wabash River, and 0.99, 0.17, 0.99, and 0.06 for Fountain Creek. The result-
ing NSE value is close to one, suggesting that the observed and simulated WSEL nearly
match. Furthermore, the RMSE values indicate that the observed and simulated WSEL has
a very small error. The R2 value found indicates that the observed and simulated WSEL are
closely matched with minor dispersion. The negative value of PBIAS indicates that biases
are overestimated. The statistical indicators for the robustness of the calibrated hydraulic
model were judged to be within an acceptable range. The calibrated model was validated,
and a CMIP6 model with a high peak discharge was used to forecast future 100-year and
500-year WSEL, and flood inundation maps were developed.

Figure 6. Cont.
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Figure 6. Calibration plot between FEMA WSEL and simulated WSEL of (a) Wabash River and
(b) Fountain Creek.

4.3. Flood Inundation Mapping

Flood extent maps for the study area of Wabash River and Fountain Creek were
prepared using historical USGS gage data which is demonstrated in Figures 7 and 8 below.
The maps were calibrated using the FEMA flood map for 100-year return period. It is
evident in the flood extent map of Wabash River and Fountain Creek shows the inundation
areas are calibrated close to the FEMA flood maps.

Figure 7. Flood extent comparison between FEMA 100-year and historical (USGS) data for
Wabash River.
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Figure 8. Flood extent comparison between FEMA 100-year and historical (USGS) data for
Fountain Creek.

The calibrated and validated GeoHECRAS model was employed for the generation
of flood inundation maps. The peak discharge with the highest DCF was utilized for the
100-year future flood inundation mapping. FEMA flood maps were compared with the
spatial extent of the flood inundation map derived from the climate model. It was observed
in Figure 9a,b that the spatial extent of the future 100-year map has a higher footprint
than that of the current 100-year FEMA flood map. The future peak discharge and DCF
values were found to be higher than the observed USGS discharge and it can be observed
that more land would be inundated by a future 100-year flood than by the FEMA flood
footprint. This demonstrates the critical urgency for the appropriate study of both study
areas for flood management strategies and future flood studies. Figure 10a,b show the
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comparison of 100-year return period flood inundation maps provided by USGS data and
CMIP6 climate model data for the Wabash River and Fountain Creek.

Figure 9. Comparison between FEMA 100-year and CMIP6 100-year flood extent footprint of
(a) Wabash River; (b) Fountain Creek.

Figure 10. Comparison of 100-year return period flood inundation maps provided by USGS data and
CMIP6 climate model data of (a) Wabash River and (b) Fountain Creek.

4.4. Change in Flood Inundation in Different Land Use

From the current study, it is evident that discharge will increase in the future, which
will have flooding impacts on different land use. Numerous variables including hydrologi-
cal parameters, morphological characteristics, land use, and the chosen numerical model,
affect the calculation of flooding areas in a basin. Each basin is different, thus it must be
carefully analyzed while taking into consideration all of the aforementioned aspects [36].
Land use changes with time, and with increased urban development, more impervious
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surfaces will increase replacing open space and barren lands. This leads to more surface
runoff and flash floods. An increase in inundation extent can be observed in 100-year
future predicted floods. In both the study reaches, if the land use remains the same, the
increase in the inundation area is very high. Comparatively, the current 100-year flood is
less disastrous than the expected future 100-year design flood.

The changes in the area according to the land use for both study areas, Wabash
River and Fountain Creek, are demonstrated in Tables 6 and 7, respectively. In both
cases, developed land is more at risk than open space or cultivated land. This can have
a direct impact on property, human life, and the environment. The increased percentage
is significantly higher for the developed area, which demonstrates the requirement of
strategic planning by considering climate change and anthropogenic activities.

Table 6. Table demonstrating increase in flooding areas of different land use for the Wabash River.

Landcover USGS (m2) CMIP100 (m2) Increased Area Inundation (m2) Increased Area in %

Open water 2,018,309 2,055,998 37,689 2
Developed, Open Space 848,607 1,564,773 716,166 84

Developed, Low intensity 1,215,620 2,511,186 1,295,566 107
Developed, Medium Intensity 717,037 1,694,066 977,029 136

Developed, High Intensity 317,210 662,397 345,187 109
Barren Land 143,231 245,720 102,489 72

Deciduous Forest 2,291,621 2,998,358 706,737 31
Evergreen Forest 8212 8353 141 2

Mixed Forest 87,684 112,572 24,888 28
Shrub 26,019 26,372 353 1

Grass Land 60,005 100,019 40,014 67
Pasture land 484,971 803,936 318,965 66

Cultivated land 21,868,034 27,952,907 6,084,873 28
Woody Wetlands 86,984 91,802 4818 6

Herbaceous Wetlands 220,566 227,493 6927 3

Table 7. Table demonstrating increase in flooding areas of different land use for Fountain Creek.

Landcover USGS (m2) CMIP100 (m2) Increased Area Inundation (m2) Increased Area in %

Open water 193,720 228,412 34692 18
Developed, Open Space 11,778 227,038 215,260 1828

Developed, Low Intensity 98,767 741,759 642,992 651
Developed, Medium Intensity 298,917 1,629,601 1,330,684 445

Developed, High Intensity 700,020 1,652,178 952,158 136
Barren land 4581 4584 3 0

Shrub 635,661 2,187,830 1,552,169 244
Grassland 744,647 4,938,172 4,193,525 563

Cultivated land 86,263 527,411 441,148 511
Woody wetlands 359,852 502,750 142,898 40

Herbaceous Wetlands 5,101,881 6,459,130 1,357,249 27

5. Discussion

A river’s surge over its typical flow depth is seen to have an impact on human
habitation areas. Rivers are becoming narrower and settlement areas are growing as a
consequence of increased human activity. Increased civilization has led to urbanization
and industrialization, which have altered the environment and contributed to flooding in
various parts of the world. Flooding has been a recurring natural disaster in many areas
which has been causing loss of human life, and destruction of habitat, environment, and
economical status. With the increasing population density near water bodies and changing
climate, flood vulnerability can be expected soon in the upcoming years. Future floodplain
management is essential to protect life and property for which future flood mapping can
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be an effective tool. In this study, two different rivers, i.e., one slow-moving large Wabash
River and one fast-moving small fountain creek were considered. As observed from the
findings of the current study, populations residing near the water bodies are vulnerable to
changes in streamflow causing severe damage to their day-to-day activities.

For the determination of a suitable probability distribution method, the Easyfit tool
was utilized. Kolmogorov–Smirnov and Pearson Chi-Square tests were used to determine
the distribution that well-suited the data. The best-fit distribution data were determined by
GEV Max (L-Moment). The proper distribution of the data for the flood frequency analysis
must be determined to avoid possible errors [37].

This study utilizes the CMIP6 model for the streamflow future projection. Future
streamflow was evaluated using the different emission scenarios of CMIP6 streamflow
projection with their different SSPs and forcing levels. This will help us in the study of
climatic and societal change with an extensive array of streamflow [38]. After bias correction
and downscaling, the CMIP6 climate model dataset reveals an increase in the flood flow
regime in the future (2015–2100) compared with the historical period (1950–2014). Increases
in the values were seen for both the annual peak discharge and the monthly peak discharge.
This outcome is consistent with earlier studies, which also included an examination of
flood change based on precipitation and temperature datasets. There is evidence for an
ascending tendency for the yearly peak flow in the near term and a little descending trend
for the long term [39]. In the current study, we can observe an increase in peak flow in
the future aligning with the studies and always showcasing the increasing trend on future
peak flow.

In the current study, it can be observed that all the DCF values that are greater than
1 suggest that there is an increment in the future design flow in all scenarios. The highest
DCF was used to predict the maximum flooding extent in both the study reaches [40,41].
In past literature on climate science, max DCF was used. An increased DCF in the future
results in an increased design flood for both the study reaches. The maximum DCF value
with the highest probability of a rise in the future design flood is shown in Scenario SSP
5-8.5; therefore, the highest DCF was considered for the estimation of the future design
flood. DCF was calculated and floodplain maps were prepared for the selected future
scenarios using the Civil GeoHECRAS 1D model. Higher values for future floods were
observed in both the study reaches than that of FEMA. A very large increase in streamflow
is observed for Fountain Creek in comparison to the Wabash River. This demonstrates
that the regular flash floods that happen in the Fountain Creek watershed can result in
significant flooding events with significantly increased hazards. There is a significant
human population in the study reach the region, which puts it at risk of flooding [15,42,43].

Researchers have previously found that climate change impacts and changes in land
use may alter the risk of the extent of the floodplain [21,24]. Comparatively, the increase
in streamflow for the Wabash River is less than that of Fountain Creek. However, this
does not imply that the streamflow will not rise in the future. The agricultural region is
more vulnerable to flooding in the future than it is today along the Wabash River. Local
authorities can utilize the current study’s findings of projected future flood inundation
maps to help them plan for probable future flood dangers. The massive change in flood
inundation areas from present and future forecasted floods can be observed. To reduce the
flood hazards due to the changing climate, planners and engineers should take projected
streamflow into account. This demands the requirement of proper management of floods
to minimize future hazardous situations. Policymakers, engineers, climatologists, and
managers of water resources can consider the area underwater in the future when planning
and building infrastructure that will help mitigate the unanticipated risk of floods and
floodplains caused by climate change.

6. Conclusions

Changing climate in the current and future conditions have a great risk of hydrological
extremes which are increasing and are predicted to increase continuously in the coming
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future. Different agencies are applying multiple approaches designed for the mitigation of
hydrological extremes but climate change as the key factor is being missed while developing
strategies. To maximize the performance of hydraulic structures built for a certain life
span of the design period, future streamflow forecasts were used. This will help in the
minimization of the casualties that may occur in life, and environmental and financial
sectors due to the failure of hydraulic structures. The results may not be similar for all
the watersheds, but this kind of study can be beneficial for the study in other watersheds
as well.

The following significant points serve as a summary of this study:

1. The best-fit distribution was found as GEV-Max (L-Moments) using the simple fit
program, which conducts both Pearson Chi-square and Kolmogorov–Smirnov tests;

2. The peak flow was calculated using GEV-Max (L-Moments) for a 100-year return period;
3. Different multimodal climate scenarios were ensembled and compared with historical

data for bias correction;
4. All the calculated DCFs were more than 1 suggesting an increase in future design flow

with non-stationary behavior in both the study areas;
5. Future scenario SSP 5-8.5 is predicted as a maximum increase in peak flow for a

100-year return period;
6. GeoHECRAS 1D steady modeling was utilized for floodplain mapping simulation,

demonstrating that the projected 100-year scenario exceeds the FEMA 100-year
peak flow;

7. The urban settlements along the creek are at higher risk than other land use.

A design flood is considered for the design of hydraulic structures. This study high-
lights the significance of climate data and flood design patterns in the future. This study
demonstrates how past and future CMIP6 climate data may be used to look forward to
streamflow in the future. Thus, observed streamflow was used for developing floodplain
inundation maps. The design of the structures considering the forecasted streamflow
will help reduce the risk of future flooding. The results from this study can be useful to
policymakers in the future when a climate change factor is needed for flood extent analysis.
The framework applied in this study of Wabash River and Fountain Creek for the future
flood forecasting can be used for other research as per the requirements.
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