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Abstract: Banding the inverse of a covariance matrix has become a popular technique for estimating
a covariance matrix from a limited number of samples. It is of interest to provide criteria to determine
if a matrix is bandable, as well as to test the bandedness of a matrix. In this paper, we pose the
bandedness testing problem as a hypothesis testing task in statistical signal processing. We then
derive two detectors, namely the complex Rao test and the complex Wald test, to test the bandedness
of a Cholesky-factor matrix of a covariance matrix’s inverse. Furthermore, in many signal processing
fields, such as radar and communications, the covariance matrix and its parameters are often complex-
valued; thus, it is of interest to focus on complex-valued cases. The first detector is based on the
complex parameter Rao test theorem. It does not require the maximum likelihood estimates of
unknown parameters under the alternative hypothesis. We also develop the complex parameter
Wald test theorem for general cases and derive the complex Wald test statistic for the bandedness
testing problem. Numerical examples and computer simulations are given to evaluate and compare
the two detectors’ performance. In addition, we show that the two detectors and the generalized
likelihood ratio test are equivalent for the important complex Gaussian linear models and provide an
analysis of the root cause of the equivalence.

Keywords: complex parameter Wald test; complex parameter Rao test; bandedness; complex-valued
covariance matrix; Gaussian linear model

1. Introduction

In statistical signal processing applications, such as radar and communications, the
sample covariance matrix plays an essential role [1]. It is usually estimated from N sample
data vectors [x0 x1 . . . , xN−1], where xn is assumed to be L× 1 identical and independently
distributed (IID). The maximum likelihood covariance matrix estimate is [2]

Ĉ =
1
N

N−1

∑
n=0

xnxH
n , (1)

where H denotes a Hermitian. A good covariance matrix estimate usually requires the
number of samples N to be sufficiently large. For instance, in space–time adaptive pro-
cessing (STAP), it requires N ≥ 2L to have a good clutter covariance matrix estimate of
size L× L [3]. In practice, however, this is not valid due to the nonstationary environment.
For example, the data for a STAP system are often nonstationary due to the heterogeneous
clutter [1]. The number of data that are sufficiently IID (homogeneous) can be relatively
small N ≤ L [3].

Techniques such as thresholding and banding are common ways to achieve better
covariance matrix estimation. The thresholding method sets small elements of the sample
covariance matrix to zero to obtain better estimators [4,5]. Another approach is to band or
taper the sample covariance matrix [6,7]. Rothman et al. [8] proposed a Cholesky-based
covariance regularization method to ensure positive definiteness. In practice, the inverse
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covariance matrix may be of primary interest. When the data are multivariate Gaussian, the
inverse of the covariance matrix can be used to infer the conditional dependence structure
of random variables [9].

Several researchers have investigated different methods for banding the inverse of
the covariance matrix. Wu et al. proposed estimating the covariance matrix by banding
the Cholesky-factor matrix and applying kernel smoothing estimation [10]. Bickel demon-
strated that within the bandable class of covariance matrices, the estimator Ĉ−1 obtained
by banding the Cholesky-factor matrix of the covariance matrix’s inverse is consistent [4,6].
Qian et al. explored adaptive banding covariance estimation for high-dimensional multi-
variate longitudinal data [11]. However, not much work is available to provide a criterion
for deciding if a covariance matrix is bandable. Such a criterion would be useful for decid-
ing if the banding technique is a suitable strategy in covariance matrix estimation tasks.
Moreover, other covariance estimation methods, such as modeling the covariance matrix as
a time-varying autoregressive moving average (ARMA) model [12], also require one to test
if the model has a good fit, which is similar to but distinct from model order estimation
techniques such as the minimum description length (MDL), AIC, BIC, and Bayesian expo-
nential embedded family [13]. Some recent tests for bandedness can be found in [14], where
a method for estimating matrix bandwidth is presented. Peng et al. developed several
tests for sparse high-dimensional covariance matrices [15]. In [9], An et al. proposed test
statistics for detecting band size and applied them to cancer data analysis. In contrast to
these works, we pose the problem as a classical parameter hypothesis testing problem,
which allows us to employ well-established detection theorems and algorithms in statistical
signal processing.

In many practical fields, such as radar and communications, the data and parameters
are often complex-valued [16]; therefore, we consider the bandedness testing problem
for a complex-valued covariance matrix herein. Some general topics related to complex-
valued signal processing can be found in [17,18]. In [19], Kay and Zhu derived the complex
parameter Rao test, which allows one to develop a Rao test for complex parameters in a
complex-valued domain directly. Based on [19], Sun et al. extended the complex parameter
Rao test to include the case of nuisance parameters and also derived the Wald, Gradient,
and Durbin tests for complex-valued parameters in a recently published paper [20]. In the
present paper, we also derive the complex parameter Wald test as a parallel task and apply
it to the problem of testing the bandedness of a covariance matrix.

The Rao test and Wald test are asymptotically optimal detectors for large data records.
The complex parameter Rao test requires a lower computational cost than some other
detectors, i.e., the generalized likelihood ratio test (GLRT) and Wald test. This is because it
does not require the MLEs of unknown parameters under the alternative hypothesis H1.
This property can be desirable in high-dimensional multivariate signal processing [19],
as low latency is a key performance indicator in such systems. The Rao test strikes a
good balance between performance and computational cost. The complex parameter
Rao test proposed by Kay and Zhu has been applied to multiple problems of radar and
communication signal processing [19].

The Wald test is another very useful detector in addition to the Rao test. It is useful
in radar target detection tasks, including but not limited to the detection of point targets,
extended targets, and multiple-input/multiple-output radar targets in homogeneous, par-
tially homogeneous, and heterogeneous environments [21,22]. In general, it is an equivalent
large-data-record test that has the same asymptotically optimal detection performance as
the GLRT and the Rao test. For finite-data records, however, it is not guaranteed to have the
same performance as the GLRT [23–26]. In some cases, compared to the GLRT, the Wald
test might be more robust when a mismatch exists and may have a lower computational
complexity [22]. An example of its application can be found in adaptive detection for
frequency diverse array multiple-input/multiple-output radar [27].

This paper is organized as follows: Section 2 formulates the problem of testing the
bandedness of a covariance matrix; Section 3.1 derives the complex parameter Rao test
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detector for testing the bandedness of the Cholesky-factor matrix; and in Section 3.2, we
derive the general complex Wald test for the complex-valued parameter hypothesis testing
problem. In Section 3.2.3, the complex Wald test for the bandedness testing problem is
derived. Examples and computer simulations for evaluating the Rao and Wald detector’s
performance are given in Section 4. In addition, the equivalence between complex Wald
and Rao tests for the ubiquitous complex Gaussian linear models is proved and analyzed
in Section 4.2. Finally, conclusions are drawn in Section 5.

2. Problem Formulation

Assume that we have N IID observed data vectors, X = [xT
0 xT

1 . . . xT
N−1]

T , where T
denotes transpose and each xn is an L× 1 complex-valued data vector conforming to a zero-
mean multivariate complex Gaussian distribution xn ∼ CN (0, C) for n = 0, 1, . . . , N − 1,
and the xns are mutually independent. In addition, we assume N ≤ L. The L× L covari-
ance matrix C is a Hermitian matrix, so its inverse can be decomposed via the Cholesky
decomposition as

C−1 = DHD, (2)

where D is a lower triangular L× L matrix. And it has a testing model as follows.

D = DB +
M

∑
k=1

bkΦk, (3)

where DB is a known banded lower triangular matrix, with a bandwidth of m, bk’s are
unknown complex-valued parameters, and Φks are known basis matrices.

Specifically,

b1 = [D]m+2,1, Φ1 = em+2eT
1

b2 = [D]m+3,2, Φ2 = em+3eT
2

...
...

bN−m−1 = [D]N,N−m−1, ΦN−m−1 = eNeT
N−m−1

bN−m = [D]m+3,1, ΦN−m = em+3eT
1

bN−m+1 = [D]m+4,2, ΦN−m+1 = em+4eT
2

...
...

bM = [D]N,1, ΦM = eNeT
1

(4)

where M = (N−m−1)(N−m)
2 and ek is an L× 1 vector with its kth element being one and all

other elements being zeros. The objective is to test whether the lower triangular Cholesky
factor matrix D is equal to the banded lower triangular matrix DB. Let b = [b1 b2 . . . bM]T ,
then the detection problem is equivalent to choosing between the following two hypotheses:

H0 : b = 0;

H1 : b 6= 0;
(5)

3. Methods

In this section, we derive the complex Rao test and the complex Wald test for the
hypothesis testing problem stated above.

3.1. The Complex Rao Test for Testing the Bandedness

The Rao test attains asymptotic (as N → ∞) performance as the GLRT, yet it cir-
cumvents the necessity of MLEs under the alternative hypothesis H1. As a result, so its
computation cost can be lower than that of the GLRT, offering a desirable property in
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high-dimensional signal processing, including real-time STAP. Subsequently, we proceed
by applying the complex Rao test theorem introduced in [19] to derive the Rao test statistic.
Let b∗ = [b∗1 b∗2 . . . b∗M]T , where ∗ denotes conjugate, and b = [bT bH ]T , which is a 2M× 1
complex-valued parameter vector. The complex parameter Rao test detector can be formed
according to [19]

TR(X) =
∂ ln p(X; b)

∂b∗

∣∣∣∣H
b=0

I−1(b)
∣∣∣
b=0

∂ ln p(X; b)
∂b∗

∣∣∣∣
b=0

(6)

where,
∂ ln p(X; b)

∂b
=

[
∂ ln p(X; b)

∂b

T ∂ ln p(X; b)
∂b∗

T]T

, (7)

∂ ln p(X; b)
∂b

=
[∂ ln p(X; b)

∂b1

∂ ln p(X; b)
∂b2

. . .
∂ ln p(X; b)

∂bM

]T

, (8)

∂ ln p(X; b)
∂b∗

=

[
∂ ln p(X; b)

∂b∗1

∂ ln p(X; b)
∂b∗2

. . .
∂ ln p(X; b)

∂b∗M

]T

, (9)

are based on Wirtinger derivatives. We can find each element, ∂ ln p(X;b)
∂bk

, as follows. First.

p(X; b) =
N−1

∏
n=0

p(xn; b)

=
N−1

∏
n=0

1
πL det(C)

exp(−xH
n C−1xn)

=
1

πNL ∏N−1
n=0 det(C)

exp(−
N−1

∑
n=0

xH
n C−1xn)

=
1

πNL exp(−
N−1

∑
n=0

xH
n DHDxn)

N−1

∏
n=0

det(DHD).

(10)

Then,

ln p(X; b) = ln(
1

πNL )−
N−1

∑
n=0

xH
n DHDxn + N ln det(DHD), (11)

and
∂ ln p(X; b)

∂bk
= N

∂ ln det(DHD)

∂bk
−

N−1

∑
n=0

∂xH
n DHDxn

∂bk

= N
∂ ln det(DHD)

∂bk
−

N−1

∑
n=0

∂tr(DxnxH
n DH)

∂bk
,

(12)

for k = 1, 2, . . . , M, where

∂ ln det(DHD)

∂bk
= tr(D−1Φk), (13)

and
∂tr(DxnxH

n DH)

∂bk
= tr(xnxH

n DHΦk). (14)

Thus,
∂ ln p(X; b)

∂bk
= Ntr(D−1Φk)−

N−1

∑
n=0

tr(xnxH
n DHΦk), (15)

UnderH0, where b = 0,
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∂ ln p(X; b)
∂bk

∣∣∣∣
b=0

= Ntr(D−1
B Φk)−

N−1

∑
n=0

tr(xnxH
n DH

B Φk) (16)

Also, we have

∂ ln p(X; b)
∂b∗k

= Ntr(D−HΦH
k )−

N−1

∑
n=0

tr(xnxH
n DΦH

k ), (17)

and its value underH0

∂ ln p(X; b)
∂b∗k

∣∣∣∣
b=0

= Ntr(D−H
B ΦH

k )−
N−1

∑
n=0

tr(xnxH
n DBΦH

k ) (18)

We next compute I(b) .

I(b) = E
(

∂ ln p(X; b)
∂b∗

∂ ln p(X; b)H

∂b∗

)
=

[
A B∗

B A∗

]
=

[
M×M M×M
M×M M×M

] (19)

where,

A = E
(

∂ ln p(X; b)
∂b∗

∂ ln p(X; b)H

∂b∗

)
B = E

(
∂ ln p(X; b)

∂b
∂ ln p(X; b)T

∂b

) (20)

For each element [A]k,l and [B]k,l for 1 ≤ k, l ≤ M, we can compute as follows,

Ak,l = −E
(

∂2 ln p(X; b)
∂b∗k ∂bl

)
= E

(
N−1

∑
n=0

tr(ΦlxnxH
n ΦH

k )

)
= Ntr(ΦlD

−1D−HΦH
k )

(21)

UnderH0, where b = 0, we have

Ak,l
∣∣
b=0 = Ntr(ΦlD

−1
B D−H

B ΦH
k ) (22)

In a similar fashion, we have

Bk,l = −E
(

∂2 ln p(X; b)
∂bk∂bl

)
= Ntr(D−1ΦlD

−1Φk)

(23)

and its value underH0 can be found as follows

Bk,l
∣∣
b=0 = Ntr(D−1

B ΦlD
−1
B Φk) (24)

Substituting Equations (16), (18), (19), (22) and (24) in the complex parameter Rao test
Equation (6) yields the complex Rao test statistic. For each unknown parameter, it ne-
cessitates two N × N matrix multiplications along with an inversion operation involving
the Fisher Information Matrix (FIM). The computational complexity scales approximately
in proportion to the number of parameters under scrutiny. Specifically, if there exist M
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unknown parameters, the computational load increases by a factor of M. Although oppor-
tunities for further optimization to mitigate computational demands may exist, exploring
such optimizations lies beyond the scope of this paper.

When the detection problem has M unknown parameters, the complex Rao test statistic
under the null hypothesis H0 can be shown to have a chi-squared distribution with M
degrees of freedom [28].

3.2. Complex Parameter Wald Test

In this section, we present a novel detection theorem referred to as the Complex Wald
test, which is developed in parallel with [20], addressing the general hypothesis testing
problem involving complex-valued parameters. Traditionally, this approach required con-
catenating the real and imaginary parts of the complex-valued data to create an augmented
real vector for conducting Wald test computations in the real-valued domain. However, the
derived Complex Wald test enables direct computation with complex-valued quantities.
Moreover, when the Fisher Information Matrix (FIM) of the unknown parameters exhibits
a specific structure, the Complex Wald Test simplifies to a more streamlined form.

Suppose x = [uT vT ]T with x ∈ R2N×1, u ∈ RN×1 and v ∈ RN×1, which is formed
from the observed complex-valued vector x̃ = u + jv, where x̃ ∈ CN×1. Let ξ = [αT βT ]T ,
formed from the unknown complex-valued parameter vector θ̃ = α + jβ, where ξ ∈ R2p×1,
α ∈ Rp×1, β ∈ Rp×1 and θ̃ ∈ Cp×1. We denote the probability density function (PDF) of the
data as px(x; ξ). Then, we have the PDF px̃(x̃; θ̃) ≡ px(x; ξ) ≡ pu,v(u, v; α, β). The real Wald
test without nuisance parameters (parameters that are unknown yet of no interest) [28] is

TW(x) = (ξ − ξ0)
TI(ξ)(ξ − ξ0)

∣∣
ξ=ξ̂1

, (25)

where ξ̂1 is the MLE of ξ underH1, and I(ξ) is Fisher Information Matrix (FIM) of ξ and
can be partitioned as

I(ξ) =
[

Iαα Iαβ

Iβα Iββ

]
(26)

where Iαα, Iββ, Iβα, Iαβ ∈ Rp×p, IT
αα = Iαα, IT

ββ = Iββ, and IT
αβ = Iβα. We next derive the

complex Wald test for the unknown parameter θ̃ by carrying out mathematical operations
with respect to complex-valued quantities.

3.2.1. Complex Wald Test for General Cases

Observe that px̃(x̃; θ̃) is a real function of θ̃, depending on θ̃ and θ̃
∗, where ∗ denotes

complex conjugate. Denote px̃(x̃; θ̃) as px̃(x̃; Θ̃) ≡ px̃(x̃; θ̃, θ̃
∗
), where Θ̃ =

[
θ̃

T
θ̃

H
]T

,

Θ̃ ∈ C2p×1, and (·)H represents Hermitian. Also, the complex partial derivatives of a real
scalar function g(z̃, z̃∗) ≡ f (x, y) are

∂g(z̃, z̃∗)
∂z̃

=
1
2
(

∂ f
∂x
− j

∂ f
∂y

) (27)

and
∂g(z̃, z̃∗)

∂z̃∗
=

1
2
(

∂ f
∂x

+ j
∂ f
∂y

), (28)

where z̃ = x + jy. And, for a real function g of complex vectors z̃ and z̃∗.[
∂g(z̃, z̃∗)

∂z̃

]
i
=

∂g(z̃, z̃∗)
∂z̃i

(29)

[
∂g(z̃, z̃∗)

∂z̃∗

]
i
=

∂g(z̃, z̃∗)
∂z̃∗i

. (30)

With these definitions, we have
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Theorem 1. Complex Wald Test

TW̃(x̃) = (Θ̃− Θ̃0)
H Ĩ(Θ̃)(Θ̃− Θ̃0)

∣∣
Θ̃= ˆ̃Θ1

= TW(x), (31)

where

Ĩ(Θ̃) = E

(
∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

∂ ln px̃(x̃; Θ̃)

∂Θ̃
∗

H)
, (32)

TW̃(x̃) is a complex Wald test statistic, and TW(x) is real Wald test statistic. Note that ˆ̃Θ1 is the

MLE of Θ̃ under H1, and ˆ̃Θ1 =

[
ˆ̃θ1
ˆ̃θ∗1

]
, and ˆ̃θ1 is the MLE of θ̃ under H1; Θ̃0 =

[
θ̃0
θ̃
∗
0

]
, and

θ̃0 is the true value of the unknown parameter underH0. Note that Ĩ(Θ̃) can be used as a FIM for
an unbiased estimation of Θ̃. Also, Ĩ(Θ̃) is a 2p× 2p complex hermitian matrix. Hence, TW̃(x̃)
is real.

Note that no assumption has been imposed on the form of I(ξ).

Proof. Let

T =

[
1
2 Ip

j
2 Ip

1
2 Ip − j

2 Ip

]
(33)

where Ip is a p× p identity matrix. Then,

Ĩ(Θ̃) = T I(ξ) TH (34)

Hence, we have

TW̃(x̃) =
(
Θ̃− Θ̃0

)H
(

TI(ξ)TH
)
(Θ̃− Θ̃0)

=

([
Ip jIp
Ip −jIp

]
(ξ − ξ0)

)H(
TI(ξ)TH

)([ Ip jIp
Ip −jIp

]
(ξ − ξ0)

)
= (2T(ξ − ξ0))

H
(

TI(ξ)TH
)
(2T(ξ − ξ0))

= (ξ − ξ0)
T2THTI(ξ)2THT(ξ − ξ0)

= (ξ − ξ0)
TI(ξ)(ξ − ξ0)

= TW(x)

(35)

3.2.2. Complex Wald Test for Special Fisher Information Matrix

Subsequently, we examine a commonly encountered special form of the FIM in practi-
cal applications.

Theorem 2. If the real FIM given by (26) has the special form

I(ξ) = 2
[

E −F
F E

]
, (36)

then
TW(x) = TW̃(x̃) = 2(θ̃− θ̃0)

H Ĩ(θ̃)(θ̃− θ̃0)
∣∣
θ̃= ˆ̃θ1

, (37)

where

Ĩ(θ̃) = E

(
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H)
. (38)
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Note that Ĩ(θ̃) is hermitian and hence the expression is a real number.

Proof. When the real FIM attains the special form, we have

Ĩ(Θ̃) =

[
Ĩ(θ̃) 0

0 Ĩ∗(θ̃)

]
. (39)

And with (31), we have

TW̃(x̃) =
[

θ̃− θ̃0
θ̃
∗ − θ̃

∗
0

]H[ Ĩ(θ̃) 0
0 Ĩ(θ̃)

][
θ̃− θ̃0
θ̃
∗ − θ̃

∗
0

]
= 2 Re

{
(θ̃− θ̃0)

H Ĩ(θ̃)(θ̃− θ̃0)

}
,

(40)

Also, note that (θ̃− θ̃0)
H Ĩ(θ̃)(θ̃− θ̃0) is real. Therefore,

TW̃(x̃) = 2(θ̃− θ̃0)
H Ĩ(θ̃)(θ̃− θ̃0) = TW(x) (41)

3.2.3. The Complex Wald Test for Testing Bandedness

This section delves into deriving the complex Wald test statistic for the aforementioned
problem of testing bandedness. Recall that

ln p(X; b) = ln(
1

πNL )−
N−1

∑
n=0

xH
n DHDxn + N ln det(DHD), (42)

and
∂ ln p(X; b)

∂bk
= N

∂ ln det(DHD)

∂bk
−

N−1

∑
n=0

∂xH
n DHDxn

∂bk

= N
∂ ln det(DHD)

∂bk
−

N−1

∑
n=0

∂tr(DxnxH
n DH)

∂bk
,

(43)

for k = 1, 2, . . . , M, where

∂ ln det(DHD)

∂bk
= tr(D−1Φk), (44)

and
∂tr(DxnxH

n DH)

∂bk
= tr(xnxH

n DHΦk). (45)

We aim to determine the Maximum Likelihood Estimates (MLEs) of bk. Considering that
bk are relatively small, we are interested in testing whether they are equal to zero, and we
approximate D−1 as D−1

B .

∂ ln p(X; b)
∂bk

= Ntr(D−1Φk)−
N−1

∑
n=0

tr(xnxH
n DHΦk)

= Ntr(D−1
b Φk)−

N−1

∑
n=0

tr(xnxH
n (Db +

M

∑
i=1

biΦi)
HΦk)

= Ntr(D−1
b Φk)−

N−1

∑
n=0

tr(xnxH
n DH

b Φk)− b∗k
N−1

∑
n=0

tr(xnxH
n Φk

HΦk)

(46)

therefore
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b̂∗k =
Ntr(D−1

b Φk)−∑N−1
n=0 tr(xnxH

n DH
b Φk)

∑N−1
n=0 tr(xnxH

n Φk
HΦk)

(47)

Up to this point, we have obtained the MLEs of unknown parameters under the alternative
hypothesis. Computation of these MLEs constitutes extra computational cost in the Wald
test compared to the Rao test. To put it simply, for each additional unknown parameter, the
Wald test requires roughly three times the workload of N × N matrix multiplications in
contrast to the Rao test.

Upon substituting the MLEs into both the complex FIM equation and the complex
Wald test equation in (31), we derive the Wald test statistic. It is noteworthy that given the
presence of the unknown parameter within the covariance matrix, the conditions required
for the application of the specialized complex Wald test theorem, as delineated in [19], are
not satisfied in this case due to the absence of the requisite special form in the FIM.

4. Simulations, Results and Discussion
4.1. Simulations and Result Discussion on Complex Rao and Wald Tests for Bandedness Testing

Consider an illustrative example, where we have the N = 4 observed data set
X = [xT

0 xT
1 xT

2 xT
3 ]

T , each xn’s is a 4× 1 complex-valued IID Gaussian vector, xn ∼ CN (0, C).
Also, C−1 = DHD, and D = DB + b1Φ1 with Φ1 = e4eT

1 and

DB =


0.53 0 0 0

−0.26 + 0.25j 0.53 0 0
−0.12 + 0.1j −0.33 + 0.28j 0.51 0

0 −0.17− 0.10j 0.2− 0.27j 0.5

 (48)

We are testing whether the Cholesky factor matrix D is banded and equal to the known
DB. It is equivalent to testing between b1 = 0 versus b1 6= 0. The complex Rao test for this
example can be shown to be (49)

TR(X) =

Re
{(

4tr(D−1
B Φ1)−∑3

n=0 tr(xnxH
n DH

B Φ1)
)2

tr∗(D−1
B Φ1D−H

B ΦH
1 )

}
2
[
|tr(ΦlD

−1
B D−H

B ΦH
k )|2 − |tr(D−1

B ΦlD
−1
B Φk)|2

]

−
Re
{(

4tr(D−1
B Φ1)−∑3

n=0 tr(xnxH
n DH

B Φ1)
)2

tr(D−1
B Φ1D−1

B Φ1)

}
2
[
|tr(ΦlD

−1
B D−H

B ΦH
k )|2 − |tr(D−1

B ΦlD
−1
B Φk)|2

] (49)

The complex Wald test for this illustrative example can be obtained by using
Equations (31) and (47).

To evaluate the performance of the complex Rao and Wald tests for this example, we
set b1 = 0.5 + 0.5j under the alternative hypothesisH1.

All simulations were conducted using Matlab by MathWorks, Inc., (Portola Valley,
CA, USA). The Receiver Operating Characteristic (ROC) curves, depicting the relationship
between the Probability of Detection (Pd) and the Probability of False Alarm (Pf a), were
generated to characterize the performance of the detectors. The construction of the ROC
curve involved the following steps: for each simulation setup, a substantial number of
Monte Carlo simulation trials were executed. The test statistics were computed under both
scenarios, H1 and H0. Specifically, simulations were run 50,000 times, resulting in a vector
of size 50,000 for the test statistic under H1, denoted as T1, and similarly, another vector of
size 50,000 for the test statistic under H0, denoted as T0. Varying a threshold γ, any element
in T0 greater than γ signified a false alarm trial, while any element in T1 greater than γ
represented a correct detection trial. By systematically varying the threshold γ, a series
of (Pf a, Pd) pairs were obtained, constituting the ROC curve. This curve, encapsulating
the trade-off between Pd and Pf a, was generated as a vector of such pairs by varying the
threshold γ. Figure 1 presents a high-level flowchart outlining the steps involved in the
Monte Carlo simulations for generating the ROC curves for both the Wald and Rao tests.
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Figure 1. Illustration of Monte Carlo Simulation Steps for each simulation setup.

The ROC curves of the derived complex Rao and Wald test is given in Figure 2.

Figure 2. ROC curve of the complex Rao and Wald test detector with b1 = 0.5 + 0.5j.

The results demonstrate that both the complex Rao and Wald tests exhibit commend-
able performance when confronted with limited data records. Notably, the complex Wald
test outperforms the complex Rao test, aligning with expectations given that the latter
generally demonstrates suboptimal performance. This performance disparity is expected
considering that the complex Rao test, while less computationally intensive, as it does not
necessitate the MLEs of the unknown parameters under H1, inherently delivers slightly
inferior performance.

A second illustrative example is presented, where b1 = 0.3 + 0.3j, representing a more
challenging scenario compared to the earlier instance. Figure 3 showcases the performance
of both proposed detectors in this setting. It is evident that in comparison to the prior
example, the detectors’ performance declines due to the smaller magnitude of b1. No-
tably, the complex Wald test exhibits a slight edge over the complex Rao test in this more
challenging scenario.
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Figure 3. ROC curve of the complex Rao and Wald test detector with b1 = 0.3 + 0.3j.

Next, we increase the number of IID samples from N = 4 to N = 10 and set the
b1 = 0.3 + 0.3j.The comparative performance of the two detectors is depicted in Figure 4. A
comparative analysis with Figure 3 reveals a conspicuous enhancement in the performance
of both detectors, attributable to the increased availability of data samples. Notably, it is
discernible that in this scenario, the performance of the two detectors converges signifi-
cantly, indicating that the Complex Rao and Wald tests exhibit asymptotic equivalence as
the dataset size grows.

Figure 4. ROC curve of the complex Rao and Wald test detector with b1 = 0.3 + 0.3j and N = 10.

Both the Complex Rao test statistic and Complex Wald test under the null hypoth-
esis H0 are chi-squared distributed with one degree of freedom, TR(X) ∼ χ2

1 [28]. The
performance of the Rao test and Wald test can be found asymptotically or as N → ∞.
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Estimated probability density function (PDFs), shown as bar plots, for both the Rao test
and the Wald test, and the theoretical asymptotic χ2

1 PDF are shown in Figure 5. Notably,
even with a limited data record of N = 4, the estimated PDFs remarkably align with the
theoretical distribution.

Figure 5. Estimated and theoretical PDFs of the test statistic for N = 4.

The detectors’ performance is also dependent on the base matrix DB. Next, we double
the magnitude of each element of DB; that is,

DB =


1.06 0 0 0

−0.52 + 0.5j 1.06 0 0
−0.24 + 0.2j −0.66 + 0.56j 1.02 0

0 −0.34− 0.20j 0.4− 0.54j 1.0

 (50)

and keep the rest of the setup unchanged with N = 4 and b1 = 0.5+ 0.5j. The two detectors’
performances can be found in Figure 6.

Figure 6. Complex Rao and Wald test performance with “larger” DB.
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In comparison with Figure 2, it is evident that both detectors’ performances have
degraded due to the larger base matrix. Next, we show the detectors’ performance change
when the base matrix become smaller. We half each element of DB; that is,

DB =


0.265 0 0 0

−0.13 + 0.125j 0.265 0 0
−0.06 + 0.05j −0.165 + 0.14j 0.255 0

0 −0.085− 0.05j 0.1− 0.135j 0.25

 (51)

and keep the rest of the setup unchanged with N = 4 and b1 = 0.5 + 0.5j.The two detectors’
performances can be found in Figure 7. Compared with Figure 2, clearly both detectors’
performances have improved due to the smaller base matrix.

Figure 7. Complex Rao and Wald test performance with “smaller” DB.

4.2. Equivalence Among Complex Wald, Rao Test and GlRT for Linear Model

When the unknown parameter is present in the covariance matrix, the structure of the
FIM does not attain the special form that allows one to use the Reduced Complex Wald
Test and the Reduced Complex Rao Test [19]. One such case is the problem of testing the
bandedness of the covariance matrix discussed above. As a counter example, in this section,
we show the equivalence between the Complex Rao Test and the Complex Wald Test for
an important case of general practical interest—the complex Gaussian linear model. A
large number of signal processing, detection and estimation problems like radar signal
processing and communications can be represented by a linear model, and hence it is of
practical importance to discuss the topic.

4.2.1. Complex Classical Linear Model Testing Problem

First, we apply complex Wald test to the complex linear model problem. Assume the
data are modeled according to [23]:

x̃ = H̃θ̃+ w̃,

where H̃ ∈ CN×p is a known matrix with N > p and full rank, θ̃ is an unknown complex
p× 1 parameter vector, and w̃ is a complex N × 1 random vector with PDF w̃ ∼ CN (0, C̃),
with C̃ ∈ CN×N . The testing problem is equivalent to deciding between two hypotheses:

H0 : θ̃ = 0

H1 : θ̃ 6= 0
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Then, based on the properties of the complex Gaussian PDF

x̃ ∼ CN (µ̃, C̃)

so that µ̃ = H̃θ̃ and C̃(θ̃) = C̃(not dependent on θ̃ or θ̃
∗). The PDF is

p(x̃; θ̃) =
1

πN det (C̃)
exp [−(x̃− H̃θ̃)HC̃−1(x̃− H̃θ̃)].

We have
∂ ln p(x̃; θ̃)

∂θ̃
∗ = −∂(x̃− H̃θ̃)HC̃−1(x̃− H̃θ̃)

∂θ̃
∗

= H̃HC̃−1(x̃− H̃θ̃)

Therefore, the MLE of θ̃ under H1 is ˆ̃θ1 = (H̃HC̃−1H̃)−1H̃HC̃−1x̃. Also we have, as
shown in [23],

Ĩ(θ̃) = H̃HC̃−1H̃,

and the real FIM has the special form

I−1(ξ) =
1
2

[
Re{(H̃HC̃−1H̃)−1} − Im{(H̃HC̃−1H̃)−1}
Im{(H̃HC̃−1H̃)−1} Re{(H̃HC̃−1H̃)−1}

]
.

4.2.2. Generalized Likelihood Ratio Test (GlRT)

The GLRT decidesH1 if

LG(x̃) =
p(x̃; ˆ̃θ1)

p(x̃; θ̃0 = 0)
> γ (52)

We have

2 ln LG(x̃) = 2 ln
p(x̃; ˆ̃θ1)

p(x̃; θ̃0 = 0)

= 2
(

x̃HC̃−1x̃− (x̃− H̃ ˆ̃θ1)
HC̃−1(x̃− H̃ ˆ̃θ1)

)
= 2

(
x̃HC̃−1x̃− x̃HC̃−1x̃

+x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃

+x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃

−x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃
)

= 2x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃ (53)

4.2.3. Complex Rao Test

The complex Rao test is [19]

TR̃(x̃) = 2
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

H

Ĩ−1(θ̃)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

= 2[H̃HC̃−1(x̃− H̃θ̃)]H(H̃HC̃−1H̃)−1[H̃HC̃−1(x̃− H̃θ̃)]

∣∣∣∣
θ̃=0

= 2x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃ (54)

4.2.4. Complex Wald Test

The real FIM of this problem has a special form, so Theorem 2 applies. The complex
Wald test is
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TW̃(x̃) = 2(θ̃− θ̃0)
H Ĩ(θ̃)(θ̃− θ̃0)

∣∣
θ̃= ˆ̃θ1

= 2[(H̃HC̃−1H̃)−1H̃HC̃−1x̃]H(H̃HC̃−1H̃)(H̃HC̃−1H̃)−1H̃HC̃−1x̃

= 2x̃HC̃−1H̃(H̃HC̃−1H̃)−1H̃HC̃−1x̃ (55)

Compared with the results obtained by using GLRT and the complex Rao Test for the same
problem, all three detectors are equivalent in this case. Next, we show the root cause of
this equivalence.

4.2.5. The Root Cause of the Equivalence

First,
∂ ln px̃(x̃; θ̃)

∂θ̃
∗ = Ĩ(θ̃)( ˆ̃θ− θ̃) (56)

where θ̃ is the true value. Because the complex FIM is not dependent on the true value of
the unknown parameters, Ĩ(θ̃) = Ĩ( ˆ̃θ1), we have

∂ ln px̃(x̃; θ̃)

∂θ̃
∗ = Ĩ( ˆ̃θ1)(

ˆ̃θ− θ̃) (57)

So, by integrating with respect to θ̃
∗, it produces

ln px̃(x̃; θ̃) = −( ˆ̃θ− θ̃)H Ĩ( ˆ̃θ)( ˆ̃θ− θ̃) + c( ˆ̃θ) (58)

since the constant of integration must be c( ˆ̃θ) = ln px̃(x̃; ˆ̃θ).
The GLRT becomes

LG(x̃) =
p(x̃; ˆ̃θ1)

p(x̃; θ̃0)
=

p(x̃; ˆ̃θ1)

p(x̃; ˆ̃θ1) exp
[
−( ˆ̃θ1 − θ̃0)H Ĩ( ˆ̃θ1)(

ˆ̃θ1 − θ̃0)
] (59)

Thus,
2 ln LG(x̃) = 2( ˆ̃θ1 − θ̃0)

H Ĩ( ˆ̃θ1)(
ˆ̃θ1 − θ̃0) (60)

This explains why the GLRT and the complex Wald test coincide for the complex linear
model. Furthermore, to establish the equivalence between the complex Rao test and the
Generalized Likelihood Ratio Test (GLRT), we use Equation (56)

( ˆ̃θ− θ̃) = Ĩ−1(θ̃)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗ (61)

Specially,

( ˆ̃θ1 − θ̃0) = Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

(62)

By substituting (62) to (60), we have

2 ln LG(x̃) = 2

(
Ĩ−1(θ̃0)

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

)H

Ĩ( ˆ̃θ1)

(
Ĩ−1(θ̃0)

∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

)

= 2
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣H
θ̃=θ̃0

Ĩ−1(θ̃0)Ĩ( ˆ̃θ1)Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

= 2
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣H
θ̃=θ̃0

Ĩ−1(θ̃0)
∂ ln px̃(x̃; θ̃)

∂θ̃
∗

∣∣∣∣
θ̃=θ̃0

(63)

where we have used the property of Ĩ(θ̃) = Ĩ(θ̃0) = Ĩ( ˆ̃θ1). This completes the proof that the
complex Rao test and the GLRT are equivalent for the complex linear model. Consequently,
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it also proves the equivalence among the aforementioned three detectors for the complex
linear model. In summary, the equivalence stems from the fact that the complex FIM of
the linear model Ĩ(θ̃) = H̃HC̃−1H̃ does not depend on the true value of θ̃. In particular,
we have Ĩ(θ̃) = Ĩ(θ̃0) = Ĩ( ˆ̃θ1), and hence the complex Rao test and Wald test are both
equivalent to the GLRT without extra constraints.

5. Conclusions

The utilization of banding techniques has gained prominence in the estimation of
covariance matrices, particularly in scenarios with limited sample sizes within high-
dimensional signal processing. Before adopting such techniques, assessing the matrix’s
‘bandability’ becomes crucial. To this end, we have derived both the complex Rao test and
the complex Wald test, specifically tailored for evaluating the bandedness of the Cholesky
factor matrix within the inverse of the covariance matrix. The computational cost of the Rao
test is comparatively lower, while implementing the complex Wald test demands obtaining
maximum likelihood estimates under the alternative hypothesis. Consequently, the latter
proofs more challenging to derive and incur higher computational expenses. We present
examples and simulations to assess the performance of these proposed detectors. In our
evaluations, the Wald test exhibits slightly superior performance in cases with smaller
‘signal’ magnitudes and significantly outperforms the complex parameter Rao test as the
tested parameter grows larger. However, as the sample size increases, the performance gap
between the two detectors diminishes. Notably, both detectors demonstrate asymptotic
optimality with a substantial volume of available data.These derived detectors can serve as
a preparatory step before implementing banding techniques for covariance matrix estima-
tion. Furthermore, they extend applicability beyond bandedness assessment by enabling
tests for zero elements within a matrix, achieved by appropriately modifying the basis
matrix Φk. Moreover, our investigation reveals the equivalence between the complex Rao
test, Wald test, and GLRT within the general complex Gaussian linear model, shedding
light on the underlying mechanisms of this equivalence. In our forthcoming research, we
aim to delve deeper into the computational costs associated with these two detectors.
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