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Abstract: The work detailed here is part of an international initiative on the evaluation of dam safety
simulation software for internal erosion performance and best practices. The primary experiments
involve simulating uncertainty in the failure events of two dams with two different models: DL-
Breach and WinDAM C. DLBreach is a physically-based dam/levee breach model developed by Wu.
WinDAM C is also a physically based dam breach model capable of analyzing both dam overtopping
and internal erosion. The dams selected for the analysis include a 1.3 m high dam tested in the lab and
a larger 15.56 m high dam, which suffered a failure in the field. The findings from these experiments
are extended with a further analysis on variance, sensitivity, and optimization. Finally, a regression
model is trained using the results of these simulators as an inquiry into how well such a system can
be captured using machine learning techniques. The results of these experiments, together with the
results of the other members of the initiative, improve our understanding of the influences that users
bring to using these tools.
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1. Introduction

With some 41,000 large earthen dams across the world [1] and around 76,000 earthen
dams of any size in the US alone [2], their impacts on the lives and livelihoods of many
people is significant. The interest in accurately predicting dam breaches and the magnitude
of the resulting breach hydrograph has increased during the past several decades. Some of
the tools include equations based on data from historical events [3,4] and sediment trans-
port models, such as those developed by Fread [5,6]. They have been used to accurately
predict peak discharge and floodplain mapping, but they provide little information about
the timing and physics of breach development or the impact of using different materials
for the construction of the dam. More recently, research has focused on the response of
embankment dams to both overtopping and internal erosion. Several physical model
studies have been conducted. They involve a wide range of dams ranging from relatively
small-scale embankments in the laboratory [7–11], to medium-scale embankments in large
testing facilities [10,12–14], and large-scale embankments [15]. Because of this research, new
computational models of breach erosion processes that more accurately reflect the observed
behavior of cohesive soil embankments have been developed. WinDAM (Windows Dam
Analysis Modules) is a desktop application that includes modules to analyze the overtop-
ping and internal erosion of embankments, embankment breach development, and headcut
erosion of earthen spillways. The individual modules and software as a whole are referred
to as models. The models are tested and refined to improve model performance. On-site
erodibility testing techniques, called a Jet test, have been developed to better quantify the
erodibility of on-site soil materials [16–18]. These tests can be used to better quantify soil
parameters on site.

The development and refinement of various models continues, as noted by several
recent reviews and model evaluation efforts. ASCE/EWRI [19] provides a discussion
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of breach processes and tools available. The CEATI International Working Group on
Embankment Dam Erosion and Breach Modeling [20] applied the HR Breach [21] and
SIMBA [12] models to test cases, including laboratory tests and actual dam failures. HR
Breach was developed by HR Wallingford. The CEATI report indicates that both models
performed well on five of the seven test cases. Zhong et al. [22] discussed the NWS BREACH
model [6], the HR Breach model, and the DLBreach model [23]. HR Wallingford has since
developed EMBREA [24], a successor to HR Breach. Zhong et al. [25] conducted three large-
scale physical model tests at the Nanjing Hydraulic Research Institute (NHRI) in China,
and developed a new model to evaluate the overtopping breach processes of a cohesive
dam. They compared their model with WinDAM and NWS Breach. Sensitivity analysis
shows that all three models are sensitive to soil erodibility, but their proposed model and
WinDAM are more sensitive than the National Weather Service (NWS) BREACH model.

Breach processes associated with overtopping and internal erosion are only imperfectly
understood. To gain more of an understanding, an international group started an initiative
to research how these tools differ in the hands of different modelers. An interesting phase
of the initiative was to have modelers focus on the analysis of just two dams—one from
the lab (P1) and one from an actual failure in the field (Big Bay). These results were then
presented to the initiative and compared with those of the other participants.

The first dam, designated P1 and standing at roughly 1.3 m high, is well documented
in the paper “Internal Erosion and Impact of Erosion Resistance” by Gregory Hanson,
Ronald Tejral, Sherry Hunt, and Darrel Temple [10]. This work investigates the failure
conditions surrounding internal breaches using medium-scale models. Given the controlled
nature of these collapses, there is a wealth of data collected to accurately recreate them.
This research was conducted at the United States Department of Agriculture—Agricultural
Research Service’s Hydraulic Engineering Research Unit, which is responsible for much of
the foundational work on earthen embankment safety and maintenance.

The other dam is the Big Bay dam in Mississippi where, in 2004, a piping failure led
to the collapse of the dam and damage to the downstream area. The characteristics of
this breach are estimated by Steven Yochum, Larry Goertz, and Phillip Jones in “Case
Study of the Big Bay Dam Failure: Accuracy and Comparison of Breach Predictions” [26].
This description uses data gathered at the time of the breach and measurements taken
afterwards. Given these circumstances, these measurements may be less accurate compared
to those of the P1 dam in its controlled environment. However, natural variance will also
contribute greatly.

The two models that this paper reports on are DLBreach and WinDAM C. DLBreach,
developed by Dr. Weiming Wu of Clarkson University [23,27], is a command-line applica-
tion designed to analyze earthen dam and levee breaches. WinDAM C, developed jointly
by the USDA and Kansas State University [14], is a GUI desktop application that includes
several hydrologic routing functions, including the analysis of overtopping and internal
erosion breaches. Aside from front-end differences, these simulators also differ in the way
in which they represent their domain data and carry out their simulations.

To automate the processing of multiple simulation jobs, the Dakota suite developed
by Sandia National Laboratories [28] is linked to these simulators via a process outlined
by Mitchell Neilsen and Chendi Cao in “Coupled Dam Safety Analysis using BREACH
and WinDAM” [29]. New parsers have been developed to process the input and output
for DLBreach.

This article presents an uncertainty analysis of DLBreach and WinDAM C for a large-
scale real-world dam (Big Bay) and a medium-scale model dam (P1). This analysis includes
comparing the output distributions from these simulators to one another and to real-world
observations. Additionally, the individual results are ranked based on how well they model
the observed conditions to investigate the per-run relationship between inputs and outputs.
This research is then extended with a variance analysis to determine the significance of the
influence each parameter has on the models. Finally, parameter optimization is used as a
more rigorous approach to evaluating the performance of individual runs. Several methods
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are employed, including traditional techniques and machine learning. While the traditional
approach is used as the basis for evaluation, the results from the machine learning approach
are included to demonstrate its suitability in the field of earthen embankment simulations
given proper care.

2. Materials and Methods
2.1. Dakota

Dakota can be used for a number of simulation experiments, including uncertainty
analysis, parameter optimization, and sensitivity analysis. With the method outlined by
Neilsen and Cao, the analysis driver for a Dakota study can be used to bi-directionally link
Dakota to the models. The driver is a script outlining the steps in a study. Processing before
and after the model execution is achieved by adding custom scripts to the analysis driver.
This additional processing includes conversions between units and deriving secondary
metrics from the outputs of the models. When the models are run, Dakota populates a
template file with the appropriate values to create a configuration file for use by the models.
The results of each run are then aggregated into a single output file.

2.2. Parameters

To describe the dams and their collapse events, three categories of parameters are
presented. One category is dimensional data, such as the length, width, height, and slope
ratios of the dams, as well as the initial dimensions of the breach. Another is soil properties,
such as particle diameter, cohesion, erodibility, and critical shear stress. Finally, there is
the hydrologic data category, such as reservoir volume profiles and inlet/outlet flow over
time. A list of the parameters addressed in this study is presented in Table 1, though
additional parameters were provided to modelers. The parameters are arranged into the
three categories and ordered within each by how many of the models use that parameter.

Table 1. Ranges and averages for dam parameter values.

Parameter Big Bay HERU P1

DLBreach WinDAM C DLBreach WinDAM C

Dam Height (m) 15.51–15.61 (15.56) 1.2–1.4 (1.3)
Crest Width (m) 11.6–12.8 (12.2) 1.78–2.18 (1.98)

Breach Diameter (m) 0.01–0.05 (0.013) -
Breach Height (m) - 0.0–0.6 (0.3) 0.9–1.1 (1.0)

Erodibility (cm3/N·s) 1.5–66 (33) 23–270 (120)
Critical Shear Stress (Pa) 1.0–5.0 (1.5) 0.0–0.16 (0.144)

Manning’s N 0.016–0.035 (0.025) 0.016–0.033 (0.025)
Cohesion (kPa) 5–15 (10) - 4–5.25 (5) -

Particle Diameter (mm) 0.1–0.6 (0.3) - 0.1–0.15 (0.13) -
Friction Angle Tangent 0.577–0.675 (0.6) - 0.577–0.675 (0.625) -

Total Unit Weight (kN/m3) - 18–20 (19) - 17.26–20.5 (18.73)
Shear Strength (kN/m2) - - 10.96–15.03 (13.02)
Reservoir Volume (m3) 13,870,000.0–17,284,449.6 (1,557,724.8) -
Surface Elevation (m) - 0.821–1.003 (0.912)

Due, in part, to natural variance and potential imprecision in measuring, the values
of these parameters are presented as ranges. Alongside these ranges is an estimate of the
average value, which is used as the mode of a triangular distribution. These ranges and
defaults are estimates based on published work [13,17]. To better visualize the difference in
dimensions between the two dams, Figure 1 shows a comparison of their side profiles.
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2.3. Uncertainty Analysis

Using Dakota’s uncertainty analysis option, the experiment can be defined through a
set of input parameters and output metrics. Input parameters are sampled as probability
distributions determined through values specific to the type of distribution being used.
For this experiment, the parameters were assumed to follow a triangular distribution with
lower and upper limits as well as a mode. The output metrics of interest and their observed
measurements are listed in Table 2. For the full study, additional metrics pertaining to
the collapse of the breach roof were also tracked, but are not be included here. One goal
of this experiment is to determine the distributions of these output metrics as output by
the models.

Table 2. Observed measurements of metrics.

Metric Big Bay HERU P1

Peak Flow Rate (m3/s) 3313 2.979
Time to Peak Flow (s) 3300 1560
Max Breach Width (m) 96.15 6.46

In addition to the inputs and outputs, another important aspect is the number of
simulations to run. Enough samples must be obtained such that the apparent distributions
of the metrics are relatively stable. Stability, in this case, means that the numeric charac-
teristics of these distributions are affected little by further simulations. For this study, the
difference between 100 runs and 500 runs showed little improvement in the quality of the
distributions; therefore, batches of 100 runs were used for convenience.

2.4. Variance Analysis

The uncertainty results are evaluated in R for significance using a standard analysis
of variance. Although the whole table was generated in this way, only the p-value was
included as the primary focus. The relationship between inputs and each output metric
was formulated as a linear equation with no covariates. This formulation has limitations,
which will be discussed later.

2.5. Optimization Analysis

The relationships examined in the uncertainty analysis are supplemented by a parameter
optimization study. Four methods of optimization are used here, each with their own benefits
and drawbacks. Three methods present practical approaches for their particular application,
while one represents the kind of naïve approach that researchers might investigate.
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The guidelines of the initiative provide a method for ranking results based on per-
formance functions with the aim of investigating the relationship between inputs and
outputs for any given individual run. These functions use the sum of the squared natural
logarithms of the proportion of simulation values to estimated values. For this article, we
focused on one of these functions, which uses the metrics for peak flow rate, time to peak
flow, and maximum breach width from Table 2. Features of this kind of formulation that
benefit the analysis include making exact matches equal to zero, making all outputs non-
negative, and adjusting the ranges of possible outputs below and above the target value to
be equally weighted. Thus, performance values closer to zero are better. In addition to the
performance function, the average percent error of all output metrics was used for the sake
of comparison.

To determine the limits of model performance in a more rigorous manner, another
method was employed. Dakota provides a wealth of parameter optimization approaches,
including several gradient-based and derivative-free methods. For this study, the asyn-
chronous pattern search method was used based on the nature of the data. This is a kind of
local search, but starting with a rough estimate can improve this search by reducing the
search time and aid in preventing the search from becoming stuck in a local optimum. The
configuration for this study has a similar format to the uncertainty experiment, but requires
an objective function to optimize on. To achieve this, the performance function from earlier
and the average percent error were added as two options for optimization.

The last two methods utilize machine learning by training regression models to
emulate the results of the original models without having to carry out a full simulation. The
data for this could be drawn from the uncertainty analysis, but instead, new simulations
were run with an even spacing between parameter values. This allowed for the full
breadth coverage of the parameter space at varying resolutions depending on the number
of divisions. As the resolution becomes finer, a better approximation of the underlying
function is presented. Due to the number of parameters, even three values per input can
lead to tens of thousands of simulations. Therefore, three is the upper limit of divisions for
this study.

Using the scikit-learn library for Python, an XGBoost model was trained with cross-
validation. A ratio of 4:1 training vs testing material was used. As will be seen, a model of
sufficient quality can be attained in a relatively short training time.

The first method demonstrates the naïve approach that instead trains a reverse model
where the metrics are the input and parameter values are the output. This method aims to
create a simple function to directly obtain the desired values. However, the issue with this
approach is the assumptions that are required for it to work, as will be discussed.

A more standard approach addresses these issues by using the trained model as a
surrogate in a typical optimization search. A dual-annealing implementation provided by
the ScyPi library was then used for the actual search.

3. Results
3.1. Uncertainty

For the uncertainty analysis, comparisons are drawn both between models and be-
tween the scales of the dams using the observational measurements as a frame of reference.
Figure 2 provides plots of the probability densities of the output metrics. To quantify the
relationships between densities, Table 3 provides the range, mean, median, mode, and
standard deviation for these densities.
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Table 3. DLBreach and WinDAM C probability density characteristics. Mean, median, and mode also
include their percent errors to the observed measurements.

HERU P1
DLBreach WinDAM C

Range Mean Median Mode SD Range Mean Median Mode SD

Peak Flow Rate (m3/s) 1.58–3.93 2.56
(14%)

2.53
(15%)

2.19
(26%) 0.568 2.55–3.25 2.81

(6%)
2.77
(7%)

2.73
(8%) 0.182

Peak Time (s) 155–430 267
(83%)

260
(83%)

245
(84%) 67.2 252–468 347

(78%)
360

(77%)
360

(77%) 47.8

Max Breach Width (m) 4.33–9.05 6.38
(1%)

6.29
(3%)

6.15
(5%) 1.13 9.75–10.2 9.85

(52%)
9.76

(51%)
9.76

(51%) 0.132

Big Bay DLBreach WinDAM C
Range Mean Median Mode SD Range Mean Median Mode SD

Peak Flow Rate (m3/s) 2730–7230 5040
(52%)

5110
(54%)

5280
(59%) 1040 1590–3030 2350

(29%)
2380

(28%)
2460

(26%) 325

Peak Time (s) 1260–2860 1780
(46%)

1690
(49%)

1560
(53%) 337 2160–3960 2920

(12%)
2880

(13%)
2880

(13%) 18.0

Max Breach Width (m) 128–331 235
(144%)

234
(143%)

233
(142%) 45.3 101–104 103

(7%)
103

(7%)
103

(7%) 0.689

When examining the differences between the models, WinDAM tends to more closely
match the observed measurements. This is sometimes even the case when the observed
measurement does not fall within the range of outputs from the model. WinDAM also tends
to have higher average values, particularly for P1 results. In terms of certainty, WinDAM
tends to have narrower ranges and standard deviations. However, there are also similarities
as both models underestimate the peak flow rate for P1 and the time to peak for both dams.
They overestimate the breach width for Big Bay, but WinDAM C is more accurate.
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When comparing scales, WinDAM provides a better estimate of the peak flow rate at
the small scale and better estimates of the time to peak and breach width at the large scale.
DLBreach, on the other hand, only provides a good estimate of the breach width at the
small scale. In general, the percent errors for both models worsen for the peak flow rate,
and they improve for the time to peak flow as the scale increases.

3.2. Variance

Table 4 provides the statistical significance of the parameters for the output metrics.
Significance is defined as a p-value less than 0.05, meaning that there is a less than 5%
chance that the same results would occur otherwise. Of the most significant results, the
soil erodibility, water level, and initial height of the breach highly influence the output
metrics in both models and dams. This is not surprising as these parameters and metrics
were identified as notable in previous phases. There are also some trends specific to certain
models or dams. For DLBreach, soil diameter is relatively significant overall, while dam
height is significant for the peak flow rate and max breach width. For Big Bay, it would
appear that the crest width and initial breach diameter are significant for the metrics.
Finally, there are extremely specific results, such as the dam height being significant for
time to peak flow, in the HERU P1 scenario.

Table 4. Parameter significance for P1 DLBreach, P1 WinDAM C, Big Bay DLBreach, and Big Bay
WinDAM C. “O”, “x”, and “-“ are used to mean the parameter is either significant (p < 0.05), not
significant, or not used for that scenario, respectively.

Peak Flow Rate Time to Peak Flow Max Breach Width

Dam Height O x O x O O x x x O O O
Crest Width x x O O x x O O x O O O

Breach Diameter - - x O - - O O - - x O
Breach Height O O - O O O - O O x - O

Reservoir Volume O O O O O O O O O x x O
Erodibility O O O O O O O O O x O O

Critical Shear Stress x x O x x O x x x x O x
Manning’s N O x O x O x O x O x O x

Cohesion O - x - O - x - O - O -
Particle Diameter O - O - x - x - x - O -

Friction Angle x - O - x - x - x - x -
Unit Weight - x - O - O - x - x - x

Shear Strength - O - - - O - - - x - -

3.3. Optimization

The four optimization methods are evaluated based on their use. The first method is
provided with the uncertainty analysis, and so its focus is on how the relationship between
the inputs and outputs of an individual run can supplement the relationship found as a
whole. The Dakota method by comparison focuses on the absolute limits of the relationship
between the results and the observed measurements. The last two methods utilize machine
learning, and so they focus on the efficiency of obtaining the results.

3.3.1. Ranked Uncertainty Runs

The probability density results provide an idea of the overall behavior of the models.
However, these results are detached from the capabilities of any particular run. That is, it
is not clear how close any single run is to matching the peaks of these distributions, and
more importantly, how close any single run is to matching the observed measurements. For
this purpose, investigating the performance of individual runs is necessary to understand
this relationship.

The performance function provided as part of the initiative is calculated for every
run of each dam/model pair. Table 5 provides the scores for the top five runs. There is a
clear difference between scales and models. These scores show that individual runs for the
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larger dam are significantly closer to the observed measurements. It can also be seen that
WinDAM C generally has a smaller difference. The difference between this observation and
that of the uncertainty run is the difference between the majority of runs collectively being
closer versus the best individual runs being closer. To break down these results, Table 6
provides the percent error of the output metrics for the top-scoring runs. As can be seen,
these errors are quite high, thus explaining some of the higher scores. These values support
some of the earlier observations, but we also see that time to peak in particular is especially
different from the observed measurements.

Table 5. Top five runs for each scenario/model pair based on performance function score.

1st 2nd 3rd 4th 5th

P1 DLBreach 1.45 1.46 1.46 1.49 1.49
P1 WinDAM C 1.28 1.35 1.35 1.36 1.36

Big Bay DLBreach 0.38 0.54 0.60 0.61 0.65
Big Bay WinDAM C 0.19 0.28 0.28 0.29 0.29

Table 6. Percent error of output metrics compared to their measured values for top-ranked runs.

Peak Flow Rate Time to Peak Breach Width

HERU P1 DLB 77.6 263 37.6
HERU P1 WDC 15 233 34.1

Big Bay DLB 21.6 15.6 25.1
Big Bay WDC 12.3 14.6 6.3

While the model outputs are the main interest in such an investigation, it is also useful
to investigate the inputs. By examining where these values lie in their ranges and how they
compare to the provided inputs, we can complete our understanding of how these models
function in comparison to the system they are modeling. Table 7 provides the percent error
of the inputs compared to their provided values. Of particular interest here is how far off
certain parameters, such as the reservoir volume for the Big Bay scenarios, are from their
provided values. This might suggest that the measurements are off, or that the models do
not accurately reflect the impact of these parameters in their equations.

Table 7. Percent error of input parameters compared to their estimates for top-ranked results.

HERU P1 DLB HERU P1 WDC Big Bay DLB Big Bay WDC

Dam Height 4.6 0 0.3 0.4
Crest Width 2 0.5 0.8 0.8
Erodibility 46.9 10.8 45.2 35.8

Critical Shear Stress 41.3 4.2 152 50
Manning’s N 2 8.4 24.4 1.6

Reservoir Contents 1.6 4.9 933.6 818
Breach Height 2.6 66.3 73

Breach Diameter 119.2 11.5
Cohesion 12 19

Particle Diameter 5.4 8
Friction Tangent 2.4 2.7

Unit Weight 0.4 3.7
Shear Strength 104.3

While looking at the single best scores for each scenario provides an idea of the upper
limit of performance, extending the view reveals additional patterns. Here, we focused on
the distributions of input parameters and output metrics formed from those runs, which
scored in the top 25%. Comparing these distributions to those of the full set of runs we
see that, on average between the four scenarios, the range of values for erodibility is about
30% that of the provided range. Other parameters, such as crest height and width, as well
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as water levels, use around 60% of their ranges. These are generally much narrower than
the other parameters, which use 90–100% of their ranges. This could further support some
of the variance and sensitivity results in suggesting that those parameters with narrower
ranges have a greater influence. Of course, there are other factors that could explain this
clustering effect, such as the sizes of the provided ranges and the number of runs performed
for each scenario.

3.3.2. Pattern Search

As outlined earlier, an asynchronous pattern search was used for a more rigorous
optimization method. Table 8 provides the results from this experiment. Provided are the
average percent errors and performance function scores for the results of each parameter
set found. Additionally, a set of percent error calculations using only the performance score
metrics is included to allow a better comparison between the two optimized sets.

Table 8. Dakota optimization experiment results. Each column represents the results from a different
set of inputs to their respective model.

Using
Given Values

Best
Avg. Error

Best
Perf1 Score

HERU P1 DLB
Average error 50.77 46.51 55.13

Perf. metrics error 37.03 29.96 51.08
Perf. Score 1.72 1.96 1.46

HERU P1 WDC
Average error 30.24 18.72 29.66

Perf. metrics error 44.92 41.21 42.48
Perf. Score 1.35 0.65 0.67

Big Bay DLB
Average error 89.05 58.81 57.03

Perf. metrics error 80.82 41.53 18.82
Perf. Score 1.164 0.69 0.35

Big Bay WDC
Average error 89.05 58.81 57.03

Perf. metrics error 80.82 41.53 18.82
Perf. Score 1.16 0.69 0.35

It is important to note that the estimates provided with the initial data result in neither
the best performance score nor average percent error. This matches the results found earlier
with the density graphs, and provides another metric for quantifying those differences.

What these results demonstrate is that the choice of which output metrics to optimize
clearly matters. What is harder to determine is the effect that the formulation of the objective
functions has on the parameters that are found. A better comparison could be performed if
the average percent error of the performance function metrics was used as the alternative
objective function instead of the average error of all output metrics.

Aside from comparing the outputs, we can also compare the different sets of param-
eters that were found. The parameters that are most similar between the two suggested
sets include dam height, erodibility, water level, Manning’s coefficient, particle diameter,
and friction angle. From this, and the earlier variance evaluations, we can infer there are
likely two reasons for this pattern. For one, those parameters with a strong influence will
greatly change the results for any small change in the parameter value. Therefore, to obtain
optimal results, regardless of the differences in the two objective functions, these values
are limited to a small range of possibilities. On the other hand, if a parameter has little to
no influence, then there is no reason to change its value. What we are left with are likely
parameters that have a medium effect on the results and thus can be tweaked to optimize
for one objective over another.

This also provides another method of comparing models and the effects of embank-
ment size. Once again, we see some of the same patterns present in the uncertainty and
rankings analyses. Generally, it would seem that WinDAM C produces lower average
percent errors and better performance scores. This is expected at this point, but something
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else that also appears in these results, and perhaps is clearer here, is the difference in scales.
At the small scale, different parameters are changed between functions. For WinDAM, the
percent error and performance scores are generally worse at the smaller scale. Some of this
difference may be due to differences in the error of measurement between the two models.

3.3.3. Regression Models

During the investigation, multiple methods for optimization were explored. While
the use of Dakota is presented here as the final result, the findings from the other methods
may still be of interest. In particular, there is the question of whether machine learning
is suitable for this field. If care is taken to formulate the problem in a suitable manner,
then it would appear that machine learning is capable of capturing some of the underlying
features of these systems.

As outlined in the methodology, both methods used regression models trained on
regularly spaced samples of the parameter space. Figure 3 shows the graphs for the fit
of regressions models trained on the performance scores for each of the four scenarios.
Provided in the caption are the mean squared errors and R2 values. As can be seen, there is
a strong relationship between the predicted value and actual value suggesting promising
results for an optimization search.
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Table 9 provides the percent error of output metrics for the parameters suggested by
the reverse, surrogate, and Dokota methods. Only Big Bay is shown here as these last two
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methods are meant as a simple demonstration. While the results for the reverse function
shown here appear relatively similar to the other two methods, it should be noted that this
was a kind of best-case scenario. Other attempts of using this method are fraught with
complications that will be discussed later. Instead, the similarity between the results of the
surrogate model with dual-annealing vs the original models with the Asynch pattern search
are of greater interest. It should be noted that pattern search is a local method while dual-
annealing is a global method, which can contribute to some of the poorer performances of
the Dakota results.

Table 9. Big Bay metric percent errors for the parameter sets achieved by three different optimiza-
tion methods.

Reverse Dual-Annealing Dakota

DLBreach
Peak Flow 5.9 23.5 19.7

Time to Peak 6.1 3.6 36.2
Breach Width 49.5 40.3 97.8

WinDAM C
Peak Flow 17 4.6 7.7

Time to Peak 23.6 34.5 1.8
Breach Width 6.6 7.6 7.2

4. Discussion

The results from these experiments are meant to be interpreted in conjunction with
the work performed by the other modelers, but there are still some conclusions that can be
drawn from this work alone. While the patterns within the data have been highlighted,
their potential causes have not been addressed.

The designers of these models have to make decisions on how to abstract the features
of the complex systems they wish to model. How the models are used plays a part in
guiding how these decisions are made. For instance, WinDAM C is used by professionals
to design and test safe embankments. When the matter of liability is involved, it is safer to
assume that something will fail sooner and “worse”. Given a scatter plot of embankment
qualities to failure statistics, a prediction function designed to encompass these points will
be closer to some than others. This relationship may then explain some of the discrepancies
seen in the uncertainty results.

Important decisions like this are not limited to the designers; both modelers and data
gatherers are subject to this process. As an example, modelers are provided a single input
to represent the height of a dam, but earthen dams are not always perfectly uniform across
their crest. Another example is the materials used for the dams; both models assume a
homogeneous soil, but some dams are made with different layers or with a unique core.
One way of addressing these differences in our models is the processes demonstrated here.
This does not perfectly replicate the effects of a slump in a dam or a core of a different
material, but we hope that the distributions of the results approximate reality in some way.
For data gatherers, one of the decisions they make is when to start measuring time. The
models also have their own start time, and the discrepancy between these two starting
points can explain some of the high errors for the time-related metrics. Regardless of how
they perform individually, there is also the question of how the models and dams compare.

The results seem to suggest that, in a number of ways, WinDAM C more closely
matches the measured values for these failure events. Furthermore, the scale of the dam
also contributes to accuracy as Big Bay produced better results for some metrics while P1
did so for others. Seeing as there are only two examples though, it is difficult to determine
if the results both between models and between scales are typical.

In terms of the variance analysis, the results from this portion are complicated by
several factors. For a start, while the distributions of the metrics closely resemble normal
distributions, they contain anomalous features, which may prevent them from being true
normal distributions. Since an ANOVA of this type typically requires a normal distribution,
it is uncertain the degree to which these “bumps” affect that. Some of these bumps may
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be caused by violations of relationships between the input parameters. Factors such as
erodibility and cohesion are not fully independent, and unrealistic combinations of values
for these are likely to skew the results. These dependent relationships also bring to question
the linear function used in the analysis. To improve this, a proper function formulated
from the interactions of these parameters would have to be used instead. This, of course,
requires knowledge of the domain. Finally, ANOVAs performed in this way assume that
the independent variables are categorical, which the input parameters are not. Together,
the covariate and continuous natures must be addressed for more accurate results.

Moving on to the optimization results, the dual-annealing technique demonstrates
the efficacy of the surrogate model technique for this domain. However, as employed
here, it comes at the cost of the work to train the model. More practical methods exist,
including those implemented in Dakota, if parameter optimization is the only desire. More
importantly, it demonstrates that the behavior of the models can be replicated with these
techniques. This suggests that it may be feasible to train regression models’ historical
and laboratory data to attempt to capture the intricacies that may be lost in our manually-
developed models.

The inverse function approach on the other hand demonstrates the issues with the
poor adaptation of machine learning techniques. The goal with this approach is to obtain
a simple model that can be fed the desired output metrics and receive input metrics as
a result. In order for such a method to work as intended, there needs to be a one-to-one
relationship between inputs and outputs for the original function such that it is reversible.
Such a relationship does not exist for the models trained here. Additionally, we desire
the inputs to be within the ranges that are provided, but this method does not have that
constraint. Simply clamping to the nearest limit may not necessarily work either depending
on the complexity of the underlying function. Finally, this method shows the kind of pitfall
that is perhaps most dangerous: it works for one scenario. This can encourage developers
to pursue ill-fit options.

5. Conclusions

To summarize, from the uncertainty results and simulation run rankings, we can see
that, generally, WinDAM C is more performant for the metrics of interest. Additionally,
Big Bay, being representative of the kinds of dams whose data these models were built
upon, provides better results in the optimizations. The variance seems to correlate with
the known behavior in that parameters such as erodibility and the amount of water have a
great influence. Finally, while it may be intentional for the purposes of safety, the accuracy
of these models can be rather low. In addition to the margin of error used for safety, a
major contributing factor is their simplicity: dams crests are uniform and breaches are
straight channels.

Going forward, there are two areas that stand out as potential refinements of this
work, the first being a more consistent experimental design. Primarily, it would benefit
the comparisons between models and scales, as well as other elements of the analysis,
if the parameters used in these simulations were limited to a select subset, which has
shown significance in the variance analysis, and which can also be used by all dam/model
pairs. From there, a far greater number of simulation iterations may be beneficial for
confirming the distributions found here. While something like 500 simulation runs were
tested, they showed little difference from the 100 runs. If there are any benefits to be gained,
it is likely that the number of runs needs to be in the thousands. From there, the central
limit theory will hopefully ensure we obtained well-formed normal distributions. For the
optimization sections, the choice of optimization functions is also inconsistent. Perhaps a
better comparison might be made between the Perf1 score and the average percent error of
only the Perf1 metrics.

The other area of interest might be in exploring the further application of regression
models. The use of surrogate models is a known technique and something Dakota is even
capable of. The fit of the regression models on just these summary metrics shows promise,



GeoHazards 2024, 5 362

but these alone have limited use. Perhaps a more useful application would be training
models to accurately recreate the overtime characteristics, such as how the flow rate and
breach develop. Supplementing this training with training on data taken from the field may
further aid in improving the accuracy. Hopefully, these kinds of models might improve our
own understanding of the underlying systems.
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