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Abstract: In the cooperative multi-sensor multi-vehicle (MSMV) localization domain, the data incest
problem yields inconsistent data fusion results, thereby reducing the accuracy of vehicle localization.
In order to address this problem, we propose the interval split covariance intersection filter (ISCIF).
At first, the proposed ISCIF method is applied to the absolute positioning step. Then, we combine
the interval constraint propagation (ICP) method and the proposed ISCIF method to realize relative
positioning. Additionally, in order to enhance the robustness of the MSMV localization system, a
Kullback–Leibler divergence (KLD)-based fault detection and exclusion (FDE) method is implemented
in our system. Three simulations were carried out: Simulation scenarios 1 and 2 aimed to assess
the accuracy of the proposed ISCIF with various capabilities of absolute vehicle positioning, while
simulation scenario 3 was designed to evaluate the localization performance when faults were present.
The simulation results of scenarios 1 and 2 demonstrated that our proposed vehicle localization
method reduced the root mean square error (RMSE) by 8.9% and 15.5%, respectively, compared to the
conventional split covariance intersection filter (SCIF) method. The simulation results of scenario 3
indicated that the implemented FDE method could effectively reduce the RMSE of vehicles (by about
55%) when faults were present in the system.

Keywords: cooperative vehicle localization; SCIF; ICP; data incest problem; V2V; FDE; KLD

1. Introduction

High-accuracy localization of vehicles is one of the most important functions in intelli-
gent transportation systems (ITS) and autonomous driving. In recent years, many methods
of high-accuracy vehicle localization have been developed, such as vision-based localiza-
tion methods [1], map-based methods [2,3], vehicle-to-vehicle (V2V)-based methods [4,5],
vehicle-to-infrastructure (V2I)-based methods [6–9], and so on. However, both vision-
and map-based vehicle localization methods have high computation and storage resource
overhead, making them ineffective for multi-sensor multi-vehicle systems (MSMVs) [10].
Furthermore, because V2I-based vehicle localization algorithms rely on the deployment of
infrastructure, such as base stations, the positioning of vehicles using V2I faces certain limi-
tations when compared to V2V-based methods. Cooperative vehicle localization methods
are more effective than traditional vehicle localization methods. Cooperative vehicle local-
ization methods can achieve higher accuracy and robustness, benefiting from data sharing
among vehicles by using different communication techniques. These techniques include
ultra-wideband (UWB) [11], 5G [12], and so on. Furthermore, concerning application sce-
narios, cooperative vehicle localization methods are extensively used in various domains,
including those of autonomous underwater vehicles (AUVs) [13], multiple robots [14],
unmanned aerial vehicles (UAVs) [15], intelligent vehicles (IVs) [16], and so on.

In the field of nonlinear vehicle localization, the particle filter (PF) [17,18] is a famous
technique. However, the main drawback of the PF is its high computational complexity.
A large number of particles are required to accurately estimate the positions of vehicles.

Vehicles 2024, 6, 352–373. https://doi.org/10.3390/vehicles6010014 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles6010014
https://doi.org/10.3390/vehicles6010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0001-5948-8950
https://orcid.org/0000-0002-6683-0010
https://doi.org/10.3390/vehicles6010014
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles6010014?type=check_update&version=1


Vehicles 2024, 6 353

Other methods, such as Huber’s M-estimation-based Kalman filter (HKF) [19] and the
maximum-correntropy-based Kalman filter (MC-KF) [20], have limited localization accu-
racy, which was emphasized in [21]. Moreover, the extended Kalman filter (EKF) has the
ability to operate effectively in nonlinear vehicle localization systems. It is based on linear
approximation [22]. However, the process of linear approximation may lead to a reduction
in localization accuracy. In order to address this problem, the authors of [23] proposed a
cubature Kalman filter (CKF), which was designed based on the spherical–radial cubature
rule. While CKF has the potential to enhance vehicle localization accuracy, its performance
may diverge in the presence of process uncertainties. In order to enhance the vehicle
localization performance when facing uncertain process noise, the improved strong track-
ing seventh-degree spherical simplex–radial cubature Kalman filter (IST-7thSSRCKF) was
proposed in [21]. Moreover, the adaptive cubature Kalman filter (ACKF) [24] was proposed
to correct the uncertainties in the statistical process in nonlinear systems. In addition, the
robust cubature Klaman filter (RCKF) was designed in [25] to enhance the robustness of
vehicle localization systems.

For cooperative vehicle localization in MSMVs, one serious problem is that of data
incest [26], which yields inconsistent fusion localization results. When the same data
are reused multiple times and these data are treated as independent in the data fusion
process, the data incest problem will occur. The data flow of two vehicles when they realize
cooperative localization is shown in Figure 1; the flows of position data of vehicle 1 and
vehicle 2 are denoted by black and blue lines, respectively. After the initialization, data
are processed in an iterative way. At each time step, the position of each vehicle at the last
time step is used to calculate the estimated position (relative position) for the neighboring
vehicles and estimate its position. Each vehicle realizes its own relative positioning update
when it receives the relative position information from its neighbor. If different data are
considered independently of each other, the data incest problem occurs in the second time
step because the position information of each vehicle and the estimated relative position
received from its neighbor are not independent of each other. It should be noted that if there
are more than two vehicles communicating and providing their estimated relative positions
with each other at the same time step, the data incest problem will be more serious.

: Data flow of vehicle 2: Data flow of vehicle 1Legend :
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Figure 1. Flow of localization data in MSMVs.

In order to solve the data incest problem, one famous method is the covariance
intersection (CI) algorithm [27]. Although the CI method can achieve consistent estimation
with unknown correlation fusion resources, pessimistic fusion results cannot be avoided
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because the fusion resources are treated as totally dependent. So, the split covariance
intersection filter (SCIF) [28] was proposed. In the SCIF, the covariance part of each fusion
resource is divided into correlated and absolutely independent parts, which can yield
accurate fusion results. However, the SCIF may yield over-convergence in the fusion results
in cooperative vehicle localization in MSMVs.

On the other hand, the interval constraint propagation (ICP) method can also solve
the data incest problem in MSMVs [29]. Interval constraints on the position of the vehicle
at each time are defined, and the result is determined by calculating the intersection that
satisfies all constraints. However, the ICP method may lose accuracy since it treats all
of the constraints as if they have the same weight. Furthermore, the interval Kalman
filter (IKF) [30] and interval extended Kalman filter (IEKF) [31] were proposed to solve
the incest problem; both the IKF and the IEKF have the same iterative structures as those
of the traditional KF and EKF. However, the inverse of the interval matrix is an NP-
hardness problem.

The fault detection and exclusion (FDE) method can effectively enhance the robustness
of a vehicle localization system [32]. It can improve localization accuracy, particularly in
the presence of sensor faults. Kullback–Leibler divergence (KLD), also known as relative
entropy, is a widely recognized tool for FDE [33]. KLD quantifies the difference in informa-
tion between two probability density functions (pdfs). It can also be seen as the anticipated
logarithm of the likelihood ratio between two sets of data distributions [34]. One example
of the FDE method based on KLD was presented in [35]. At first, decentralized vehicle
localization based on the SCIF is proposed. Then, a KLD-based fault detection and isolation
method was introduced and implemented to enhance the robustness of the system. Another
FDE work based on KLD was outlined in [36], where it was implemented in extended
information filter (EIF)-based positioning systems. Additionally, the discussion of the
results revolved around utilizing a threshold determined by conditional-entropy-based cri-
teria and employing the receiver operating characteristic (ROC) curve. So, the KLD-based
FDE method can effectively enhance the robustness of decentralized cooperative vehicle
localization systems.

Motivated by addressing the drawbacks of the different methods mentioned above
and aiming to enhance the robustness of decentralized cooperative vehicle localization, we
propose a new data fusion method named the interval split covariance intersection filter
(ISCIF); both the ISCIF and the KLD-based FDE method were implemented in the proposed
MSMV decentralized cooperative vehicle localization system. The contributions of this
study are as follows:

• The ISCIF algorithm is proposed and implemented for vehicle localization in MSMVs
in both absolute and relative positioning steps.

• The proposed ISCIF method can avoid the inverse of the interval matrix compared
with the IEKF.

• A KLD-based FDE method is implemented to reduce the RMSE of the localization
results when faults are present in the system.

• Based on the simulation results, our proposed method can achieve better accuracy
than that of the SCIF. In addition, the implemented FDE method can achieve better
accuracy when faults are present in the system.

This paper is organized as follows: Section 2 presents the related techniques and the
proposed ISCIF method. Section 3 shows the system model and MSMV vehicle localization
by using our proposed method. Section 4 presents the KLD-based FDE method. In Section 5,
we present the simulation results. Finally, Section 6 gives the conclusions and the directions
of future work.
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2. Related Techniques and the Proposed ISCIF
2.1. Interval Analysis

Interval analysis is a numerical method that can represent values as intervals by using
lower and upper bounds. The notation [] can be used to represent an interval. For example,
an interval [x] can be denoted as:

[x] = [x, x] = {x ∈ R, x ≤ x ≤ x} (1)

where x and x are the lower bound and upper bound, respectively.
In addition, a box (also named an interval vector) is represented by the Cartesian

product of n intervals:

[X] = [x1]× [x2]× · · · × [xn] (2)

Moreover, the basic operations of an interval or a box have been defined in [37,38]. For
example, these operations include calculating the width and midpoint of an interval, the
addition and subtraction rules, the intersection rules of intervals or boxes, and the inclusion
functions of the intervals and boxes.

Furthermore, the inclusion function of f : Ra → Rb is defined as [ f ] to realize
arithmetical operations and elementary functions in the function f (). The inclusion function
is also suitable for the box [A].

f ([A]) ∈ [ f ]([A]), ∀[A] ∈ Ra (3)

2.2. Interval Constraint Propagation (ICP)

One interval constraint satisfaction problem (ICSP) can be solved with the ICP method,
and the result should satisfy all of the constraints. Considering one box [X] that includes n
variables and m relations linking these variables, the ICSP can be denoted by

f j(x1, x2, · · · , xn) = 0, j = 1, 2, · · · , m (4)

Especially in the vehicle localization domain, considering the relative positioning
stage, when m vehicles provide a relative position for vehicle i, the ICSP of vehicle i can be
solved by using the ICP method (as shown in Equation (5)). More details on ICP methods
were proposed in [29].

P1 : [XR
i ] =

{[
x1

i (t)
][

y1
i (t)

]}⋂
· · ·

⋂{[
xm

i (t)
][

ym
i (t)

]} (5)

where [XR
i ] represents the result of the ICP method. xm

i (t) and ym
i (t) are the estimated

relative position of vehicle i provided by vehicle m on the x and y coordinates, respectively.

2.3. Interval Kalman Filter (IKF) and the Proposed Interval Split Covariance Intersection Filter

For the relative localization stage of the target vehicles, the relative position provided
by their neighbors is no longer an unbiased estimate. The reason is that the relative position
information data are based on the observers’ positions (these positions are not true values, as
they also have unknown errors). So, in order to effectively reduce the bad influence caused
by uncertain errors, the IKF was proposed in [39]. The IKF method has the same statistical
assumptions about noise and recursive structures as those of the traditional KF algorithm. The
prediction and correction steps of the IKF are defined by Equations (6) and (7), respectively.
It should be noted that all of the calculations in the traditional KF have been replaced by
interval-based calculations. 

[
x̂−k

]
= [A][x̂k−1] + [B][Uk−1][

P−
k
]
= [A][Pk−1][A]T + Q

(6)
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[Kk] =

[
P−

k
]
[H]T

(
[H]

[
P−1

k

]
[H]T + R

)−1

[̂xk] =
[̂
x1

k
]
+ [Kk]([Zk]− [H]

[̂
x−k

]
)

[Pk] = (I − [Kk][H])
[
P−

k
] (7)

Since the result of the inverse of the interval matrix is an approximate solution [40],
the possible fusion result may be lost and the fusion result’s accuracy may be reduced. We
would like to solve this problem by proposing the ISCIF. In our proposed ISCIF, the interval
covariance matrix is replaced by an ordinary matrix, which benefits from the optimization
operation between the split covariance matrices in the traditional SCIF. The estimates to be
fused in the ISCIF are denoted as ([X], PI + PD), where [X] is in the interval form of the state
vector, which can be provided by the interval analysis technique. PI is the degree of the
independent covariance matrix, and PD is the maximum degree of the possible correlated
covariance matrix. It should be noted that the covariance matrix is always divided into
independent and correlated parts, making it similar to that in the traditional SCIF. So, with
two input estimates to be fused—([A], PAI + PAD) and ([B], PBI + PBD)—the ISCIF method
with the fusion result ([C], PCI + PCD) can be denoted by Equation (8):

P1 = PAD/w + PAI

P2 = PBD/(1 − w) + PBI

P−1
C = P−1

1 + P−1
2

[C] = PC

(
P−1

1 [A] + P−1
2 [B]

)
PCI = PC

(
P−1

1 PAI P−1
1 + P−1

2 PBI P−1
2

)
PC

PCD = I − PCI

(8)

The weighting coefficient w can be determined by minimizing the trace or determinant
of the output covariance matrix PC in each time step, and it belongs to the interval [0, 1].

3. Cooperative Vehicle Localization with MSMVs by Using the ISCIF
3.1. System Model

We use the general system model proposed in [10], in which there are N vehicles and
multiple sensors. The V2V communication technique is employed, and we assume that
vehicles in the system can communicate with their neighbors within their communication
range. Moreover, our system model has the following assumptions.

(1) Each vehicle in the system is equipped with sensors that can provide absolute
positioning data (provided by GPS), relative positioning data (provided by LiDAR), and
motion state data (provided by an IMU sensor).

(2) Data sharing can be guaranteed when vehicles can perceive and communicate
with their neighbors. In this study, we concentrate on the topic of localization with highly
redundant relative position data. We assume that each vehicle can be observed by at least
two neighbors at each time.

(3) The decentralized manner is employed in our system model, and this is illustrated
in Figure 2. In this figure, we assume that vehicle i has two neighbors, and each vehicle has
its own data fusion center. Furthermore, each vehicle can timestamp its data with a global
system time.

In addition, our cooperative localization architecture is shown in Figure 3. First, each
vehicle predicts its state vector by using the motion data. Then, the absolute positioning
step is executed by using data provided by the GPS sensor. When each vehicle receives its
relative position information provided by its neighbor, the state is updated in the relative
positioning step. The details of different steps are presented in the following section.



Vehicles 2024, 6 357

GPS
Absolute positioning data 

Relative positioning data for
other vehicles

Neighbor 2Vehicle iNeighbor 1

LiDARLiDAR LiDAR

GPSGPS

Data
sharing

Data
sharing

Data
sharing

Data
sharing

IMU

Motion data 

IMU IMU

Figure 2. Decentralized cooperative localization architecture.

Start

State vector
prediction

Absolute
positioning

Relative
positioning

 Receiving 
relative position

data 

Yes

No

Figure 3. Flowchart of cooperative localization.

3.2. Prediction of the State Vector

The state vector of vehicle i at time t is represented as

Xi(t) = [xi(t), yi(t), θi(t)]
T (9)

where the xi(t) and yi(t) are the coordinates of the vehicle on the x and y axes, respectively.
θi(t) is the direction of the vehicle.

Using the kinematic bicycle model, the prediction equations are defined as
xi(t) = xi(t − 1) + ∆di(t)cos

(
θi(t − 1) +

∆di(t)
2

)
yi(t) = yi(t − 1) + ∆di(t)sin

(
θi(t − 1) +

∆di(t)
2

)
θi(t) = θi(t − 1) + ∆θi(t)

(10)

where ∆di(t) is the moving distance from time t − 1 to time t, and ∆θi(t) is the difference
in the directional angle of the vehicle from time t − 1 to time t.

The function form of the prediction model can be denoted asxi(t)
yi(t)
θi(t)

 = f

xi(t − 1)
yi(t − 1)
θi(t − 1)

,
[

∆di(t)
∆θi(t)

] (11)
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We can assume that the motion measurements follow a zero-mean Gaussian distribu-
tion with the covariance matrix QU

i (t). Since ∆di(t) and ∆θi(t) are independent of each
other, the covariance matrix can be defined as

QU
i (t) =

[
σ2

∆di(t)
0

0 σ2
∆θi(t)

]
(12)

It is assumed that Qi(t) characterizes the motion model’s error covariance matrix and
that QiI(t) is the independent component of Qi(t). By adding Gaussian white noise to the
motion model, the total covariance Pi(t) and the independent component PiI(t) of the state
of vehicle i at time t can be updated by

Pi(t) =Fi(t)Pi(t − 1)Fi(t)T

+ Bi(t)QU
i (t)Bi(t)T + Qi(t)

(13)

PiI(t) =Fi(t)PiI(t − 1)Fi(t)T

+ Bi(t)QU
i (t)Bi(t)T + QiI(t)

(14)

where Fi(t) and Bi(t) are the Jacobian matrix, and they are calculated by:

Fi(t) =


1 0 −∆di(t)sin

{
θi(t − 1) + ∆θi(t)

2

}
0 1 ∆di(t)cos

{
θi(t − 1) + ∆θi(t)

2

}
0 0 1

 (15)

Bi(t) =


cos

{
θi(t − 1) + ∆θi(t)

2

}
− 1

2 ∆di(t)sin
{

θi(t − 1) + ∆θi(t)
2

}
sin

{
θi(t − 1) + ∆θi(t)

2

}
1
2 cos

{
θi(t − 1) + ∆θi(t)

2

}
0 1

 (16)

3.3. Absolute Positioning

For each vehicle i, the absolute measurement provided by the GPS sensor can be
denoted as Zi(t) =

(
xG

i , yG
i
)
, which satisfies the following equations:

Zi(t) = Hi(t)Xi(t) + Ri(t) (17)

where

Hi(t) =
[

1 0 0
0 1 0

]
(18)

Ri(t) is the Gaussian white noise, which follows N
(
0, σi(t)2). Furthermore, the abso-

lute localization measurement provided by the GPS at each time is completely independent
of any existing estimates or measurements. So, absolute positioning with the GPS mea-
surement by using the ISCIF can be degenerated into the fusion method proposed in [28],
which can be denoted as follows:

K = Pi(t)HT
i (HiPi(t)HT

i + σi(t)2)−1

Xi(t) = Xi(t) + K(Zi(t)− HiXi(t))

Pi(t) = (I − KHi)Pi(t)

PiI(t) = (I − KHi)PiI(t)(I − KHi)
T + Kσi(t)2KT

PiD(t) = Pi(t)− PiI(t)

(19)
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3.4. Relative Positioning

[X j
i (t)] is the box of the relative position data for vehicle i received from vehicle j. The

relative positioning between vehicles is shown in Figure 4. The green arrow in Figure 4
represents the relative direction between vehicle i and vehicle j, and the yellow dot lines
represent the direction of vehicle j. By using the relative data measured by vehicle j, it can
be denoted in the coordinate system of vehicle j as follows:

[X j
i (t)] =

[cos]([θj(t)]) −[sin]([θj(t)]) 0
[sin]([θj(t)]) [cos]([θj(t)]) 0

0 0 1


[∆xj

i(t)]
[∆yj

i(t)]
[∆θ

j
i (t)]

+

[xj(t)]
[yj(t)]
[θj(t)]

 (20)

where the functions [sin] and [cos] are the inclusion functions. The box of the relative

estimate [∆X j
i (t)] =

{
[∆xj

i(t)], [∆yj
i(t)], [∆θ

j
i (t)]

}T
is the relative data of vehicle i in the

coordinate system of vehicle j at time t. It can be calculated as follows:[
∆xj

i(t)
]
= [cos]([α(t)]) ∗

[
dij(t)

]
[
∆yj

i(t)
]
= [sin]([α(t)]) ∗

[
dij(t)

] (21)

where [α(t)] and
[
dij(t)

]
are provided by the sensors, and we assume that the σα and σd are

the standard deviations of the sensors. So, they can be denoted as

[α(t)] = [α(t)− 3σα, α(t) + 3σα][
dij(t)

]
=

[
dij(t)− 3σd, dij(t) + 3σd

] (22)

Moreover, for the purpose of including the real position of vehicle i in the estimated rel-
ative interval as much as possible, we used tolerance variables (αxj, αyj, and αθ j) to optimize

the box state of vehicle j [Xj(t)] =
{
[xj(t)], [yj(t)], [θj(t)]

}T in the global coordinate system:[
xj(t)

]
=

[
xj(t)− αxj, xj(t) + αxj

][
yj(t)

]
=

[
yj(t)− αyj, yj(t) + αyj

][
θj(t)

]
=

[
θj(t)− αθ j, θj(t) + αθ j

] (23)

where xj(t), yj(t), and θj(t) are the results of Equation (19).

Vehicle i

0

Vehicle j

Figure 4. Relative positioning between vehicles.

Since there are redundant relative estimates at each time step in our model, we reduce
the redundancy by using the ICP at first. Details of the ICP method were presented in
the previous section; we can assume that all relative position information of vehicle i after
fusion using the ICP method is expressed by [XR

i ] (as shown in Equation (5)).
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With the same idea as that of Equation (23), we use parameters βxi, βyi, and βθi to
include the real position of vehicle i as much as possible in the interval form. The input
state box on the relative positioning step based on the result of the absolute positioning
step in Equation (19) can be denoted as

[xi(t)] = [xi(t)− βxi, xi(t) + βxi]

[yi(t)] =
[
yi(t)− βyi, yi(t) + βyi

]
[θi(t)] = [θi(t)− βθi, θi(t) + βθi]

(24)

At this time, the box state of vehicle i with relative information can be represented
as follows: {

[Xi(t)], PiI(t) + PiD(t), [XR
i (t)]

}
(25)

where [Xi(t)] is the state box of vehicle i at time t, PiI(t) and PiD(t) are the totally inde-
pendent and maximum degree of correlated parts of the covariance matrix, respectively,
and [XR

i (t)] is a result that contains all relative position information obtained with the
ICP method.

Meanwhile, for the covariance component, the covariance of the relative estimate of
vehicle i provided by vehicle j is determined with the following equations:

P
X j

i
(t) = J1Pj(t)JT

1 + J2Qj JT
2

P
X j

iI
(t) = J1PjI(t)JT

1 + J2QjI JT
2

(26)

where P
X j

i
(t) and P

X j
iI
(t) are the covariance of the relative estimate and the covariance

of the independent component of P
X j

i
(t) at time t, respectively. Pj(t) and PjI(t) are the

covariance of the state of vehicle j in the global coordinate system and the independent
component of Pj(t), respectively. Qj(t) and QjI(t) are the covariance matrices of zero-mean
Gaussian white noise and the independent component of Qj(t) at time t, respectively. In
addition, J1 and J2 are Jacobian matrices with respect to Xj(t) and the relative estimate

∆X j
i (t), respectively. They are denoted as

J1 =
∂X j

i
∂Xj(t)

=

1 0 −∆xj
i sinθj − ∆yj

icosθj

0 1 ∆xj
i cosθj − ∆yj

isinθj
0 0 1


J2 =

∂X j
i

∂∆X j
i (t)

=

cosθj −sinθj 0
sinθj cosθj 0

0 0 1



(27)

We can assume that the related covariance of
[
xR

i
]

equals the one with the smallest
trace among all matrices P

X j
i
(t). If k is the ID of the vehicle that has the smallest trace, the

related covariance can be determined as follows:

PXR
iI
= PXk

iI

PXR
iD

= PXk
iD

(28)
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The relative positioning by using the ISCIF can be represented as follows:

P1 =
PiD(t)

w
+ PiI(t)

P2 =
PXR

iD(t)

1 − w
+ PXR

iI
(t)

K = P1(P1 + P2)
−1

[Xi(t)] = [Xi(t)] + K
{[

XR
i (t)

]
− [Xi(t)]

}
Pi(t) = (I − K)P1

PiI(t) = (I − K)PiI(I − K)T + KPXR
iI
(t)KT

PiD(t) = Pi(t)− PiI(t)

(29)

In order to form a loop with the state prediction step (Equation (10)) and absolute
positioning step (as shown in Equation (19)), we calculate the input variables in the state
prediction step by determining the midpoint of the output result in the state box form
[Xi(t)] in the relative positioning step (the result of Equation (29)). Additionally, a flowchart
of our proposed cooperative localization method is illustrated in Figure 5.

Initialization

State prediction using Equation (10)

Absolute positioning using
Equation (19)

Calculating relative positions for its
neighbors using Equation (20)

and determining the corresponding
covariance matrices using Equation (26)

Propagation and reception of
relative information

Relative positioning using
Equation (29)

Processing relative information using ICP
method with Equation (5)

Update the related covariance matrices 
using Equations (13) and (14)

Figure 5. A flowchart of our proposed method.
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4. Fault Detection and Exclusion

In order to enhance the robustness of the system, we implement a fault detection and
exclusion (FDE) method based on Kullback–Leibler divergence (KLD). Our method mainly
includes three steps: fault detection, threshold optimization, and fault isolation. Each
vehicle in the system uses the proposed FDE method after the absolute positioning stage.

Considering two probability density functions (pdfs) ( f1 and f2), the KLD from f1 to
f2 can be denoted as

KLD( f1|| f2) = ∑
x

log
f1(x)
f2(x)

f1(x) (30)

The KLD for vehicle i is computed based on the state vector and covariance matrix both
before and after absolute positioning. The calculation formula for the KLD is as follows:

KLDi =
1
2

trace(Pt/tP−1
t/t−1) +

1
2

log
det(Pt/t−1)

det(Pt/t)
− 1

2
M

+
1
2
(Xt/t − Xt/t−1)

T(Xt/t − Xt/t−1)

(31)

where Pt/t−1 and Pt denote the total covariance of vehicle i before and after data fusion
in the absolute positioning stage, respectively. Xt/t−1 and Xt denote the state vector of
vehicle i before and after data fusion in the absolute positioning stage, respectively. M
is the dimension of the state vector. trace() and det() represent matrix operations for the
calculation of the trace and determinant, respectively.

Equation (31) is a generalized residual test that considers both the Mahalanobis dis-
tance and mean differences between predicted and corrected distributions. Moreover, in the
fault-free case, the distribution of the KLD is related to the F and Chi-square distributions,
which are denoted in the following equation [36]:

KLD ∼ M(n − 1)
2n(n − M)

FM,n−M +
1

2n − 2

∗ 1
1 − 1

6(n−1)−1 (2M + 1 − 2
M+1 )

χ2
1
2 M(M+1)

(32)

where n is the number of samples and M is the dimension.
After obtaining the KLD residual, a threshold should be determined to evaluate

whether there is a fault in the system. The decision includes the detection probability pD
and the false alarm probability pF, which can be denoted as

pD = p(s1|H1)

pF = p(s1|H0)
(33)

where H1 is the hypothesis that there is no fault in the system, H0 is the hypothesis that
there is a fault in the system, s1 is the action of selecting hypothesis H1, and s0 is the action
of selecting hypothesis H0. We can assume that H0 and H1 are known:

p(H0) = p0

p(H1) = 1 − p0
(34)

We define the pdfs of KLDs f (KLD|H0) and f (KLD|H1) as being under the H0 and
H1 cases, respectively. They satisfy

H0 : KLD ∼ f (KLD|H0)

H1 : KLD ∼ f (KLD|H1)
(35)

One example of these distributions is shown in Figure 6. So, the detection probability
and the false alarm probability in Equation (33) can be calculated as follows:
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PD =
∫ ∞

λ
f (KLD|H1)d(KLD)

PF =
∫ ∞

λ
f (KLD|H0)d(KLD)

(36)
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Figure 6. The pdfs of the KLD values in the faulty and non-faulty cases.

Threshold λ can be optimized by minimizing the conditional entropy [41]. The
formulation is shown in Equation (37).

h(H|s) = E[log
1

p(H|s) ]

= − ∑
i∈[0,1]

(vilog
vi

vi + ki
+ kilog

ki
vi + ki

)
(37)

So, combining Equations (33) and (37), when the conditional entropy is minimized,
threshold λ can be determined. The decision criterion based on the KLD and threshold can
be expressed as

s0 : KLD < λ

s1 : KLD ≥ λ
(38)

When a fault is detected, an isolation method should be implemented to mitigate the
impact of faulty data on the positioning accuracy. The strategy that we propose is that if
a fault is detected after the absolute positioning stage of a vehicle, it should immediately
cease cooperation with other vehicles to avoid affecting their positioning performance. In
addition, given that we use the ICP method in the relative positioning stage, when a fault
occurs in a relative position measurement sensor, the fault can be automatically detected
during the execution of the ICP method.

For example, considering a system with three vehicles, if a fault is detected in the
absolute positioning stage of vehicle 1, it withholds the provision of relative position
measurements for vehicle 2 and vehicle 3 until the KLD is lower than the threshold. In
addition, when no vehicles detect any faults in the absolute positioning stage and vehicle 1
detects no intersections between the relative position intervals provided by its neighboring
vehicles during the execution of the ICP algorithm, this means that there is a fault in the
relative position measurement of vehicle 2 or vehicle 3. In such cases, vehicle 1 should halt
its relative positioning until the relative measurement data are deemed free of faults.

5. Simulation Results
5.1. Simulation Scenarios and Parameters

A comparison of the positioning performance of different techniques was performed
based on the scenario illustrated in Figure 7. There were three vehicles that could observe
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each other, and the data sharing was performed by using the V2V communication technique.
The reason for our selection of this scenario was that we focused on solving the data incest
problem with high-redundancy data. The more mutual observation between vehicles, the
more data redundancy there is. In addition, this scenario is a basic scenario with highly
redundant data, and this is also common in real traffic transportation systems.

In this study, the proposed localization method, along with several other methods,
was implemented using identical data, followed by a comparison of their respective perfor-
mances. The methods being tested included the following:

• Extended Kalman filter (EKF) [42];
• Cubature Kalman filter (CKF) [23];
• Adaptive cubature Kalman filter (ACKF) [24];
• Split covariance intersection Kalman filter (SCIF) [28].

V2V:

Figure 7. Simulation scenario.

Without loss of generality, in order to thoroughly test the positioning performance
with different absolute positioning abilities, we set up two simulation scenarios in [28]:
The absolute positioning ability of all vehicles in the system was the same, and one vehicle
in the system had an excellent absolute localization ability. Furthermore, the parameters
in our simulations are shown in Table 1. Simulation experiments were conducted to test
and compare the accuracy of our proposed method with that of the SCIF method [28]. In
addition, a third scenario was built in order to evaluate the performance of the implemented
FDE method.

Table 1. Details of the simulation parameters.

Parameter Value

Discrete time step 0.1 (s)

Simulation duration 60 (s)

Velocity of vehicles 15 (m/s)

Standard error of velocity 0.2 (m/s)

Standard error of direction 0.3 (degree)

Standard error of relative distance 0.2 (m)

Standard error of relative orientation r 0.1 (degree)

Standard error of absolute positioning on x-axis 5 (m)

Standard error of absolute positioning on y-axis 5 (m)

Standard error of excellent absolute positioning on x-axis 0.5 (m)

Standard error of excellent absolute positioning on y-axis 0.5 (m)

5.2. Results of Scenario 1: All Vehicles Have the Same Absolute Positioning Ability

Figure 8 displays the true trajectory and the estimated trajectories of vehicle 1 using
different methods over a span of 1 min. It should be noted that our method can provide a
real-time interval that includes the true position of the vehicle almost all the time.

In addition, Figures 9–11 illustrate the root mean square errors (RMSEs) of vehicle 1,
vehicle 2, and vehicle 3 in 30 rounds of simulations, respectively. The x coordinate indicates
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the test index, and the RMSE is indicated by the y coordinate. Moreover, average RMSEs
of the different vehicles based on the different methods in scenario 1 are demonstrated in
Table 2. Based on our proposed method, each vehicle was able to achieve the most accurate
localization result. In 30 tests, the average RMSEs for the three vehicles when utilizing
the SCIF, ACKF, EKF, CKF, and our method were 1.597 m, 1.668 m, 2.450 m, 1.790 m, and
1.455 m, respectively. When all vehicles possessed similar absolute positioning capabilities,
our method demonstrated an approximate reduction in the RMSE by 8.9%, 12.8%, 40.6%,
and 18.7% compared to the SCIF, ACKF, EKF, and CKF methods, respectively.
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Figure 8. Estimated trajectories for different methods in scenario 1.
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Figure 9. RMSE of vehicle 1 in scenario 1.
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Figure 10. RMSE of vehicle 2 in scenario 1.
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Figure 11. RMSE of vehicle 3 in scenario 1.

Table 2. Average RMSEs of different vehicles based on different methods in scenario 1.

Methods RMSE of V1 RMSE of V2 RMSE of V3 Average RMSE

Our method 1.498 m 1.424 m 1.444 m 1.455 m

SCIF 1.761 m 1.581 m 1.450 m 1.597 m

ACKF 1.693 m 1.661 m 1.650 m 1.668 m

CKF 1.791 m 1.793 m 1.800 m 1.790 m

EKF 2.455 m 2.475 m 2.430 m 2.450 m

5.3. Results of Scenario 2: One Vehicle Has an Excellent Absolute Positioning Ability

Figure 12 illustrates the true trajectory and the estimated trajectories of vehicle 1 when
using different methods over a span of 1 min. Compared with the results in scenario 1, more
closed trajectories were obtained by using the SCIF and our method. The reason is that the
vehicle had an excellent absolute positioning ability, and it could obtain a more accurate
absolute positioning result. In addition, the RMSEs of vehicle 1, vehicle 2, and vehicle 3
based on 30 rounds of simulations are shown in Figures 13–15, respectively. Furthermore, the
average RMSEs of the different vehicles based on different methods in scenario 2 are listed in
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Table 3. The average RMSEs across all vehicles when using the SCIF, ACKF, EKF, CKF, and
our method were 0.888 m, 1.274 m, 1.796 m, 1.363 m, and 0.750 m, respectively. Our method
showcased reductions in the RMSE of 15.5%, 41.1%, 58.2%, and 45.0% compared to the SCIF,
ACKF, EKF, and CKF methods, respectively. This effectively emphasized the advantageous
suitability of our proposed method for vehicle localization in scenarios involving redundant
data with MSMVs.

Table 3. RMSEs of different vehicles based on different methods in scenario 2.

Methods RMSE of V1 RMSE of V2 RMSE of V3 Average RMSE

Our method 0.450 m 0.788 m 1.010 m 0.750 m

SCIF 0.440 m 1.033 m 1.190 m 0.888 m

ACKF 0.510 m 1.643 m 1.670 m 1.274 m

CKF 0.520 m 1.800 m 1.770 m 1.363 m

EKF 0.460 m 2.497 m 2.431 m 1.796 m
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Figure 12. Estimated trajectories for different methods in scenario 2.
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Figure 13. RMSE of vehicle 1 in scenario 2.
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Figure 14. RMSE of vehicle 2 in scenario 2.
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Figure 15. RMSE of vehicle 3 in scenario 2.

5.4. Results of Scenario 3: Cooperative Vehicle Localization with FDE

The values of the probability density function (pdf) of Kullback–Leibler divergence
(KLD) in the both presence and absence of faults in the system were calculated based on
empirical data [36]. Threshold λ was approximately 2.137 when the conditional entropy
was about 0.1267. In the absence of faults, the RMSE of vehicle 1 over the time steps is
depicted in Figure 16. The KLD values based on the time steps are illustrated in Figure 17.
We can notice that all of the KLD values were less than the threshold, which indicated the
accuracy of the relationship between the threshold and KLD values.

In order to evaluate the effectiveness of our proposed FDE method, we added impulse
noise to the sensor for achieving the absolute positioning of vehicle 1 from 51 s to 54 s [35].
The results of the RMSE based on the time step are shown in Figure 18. We can notice that
the RMSE increased dramatically when there was a fault in the system. At the same time,
the KLD value based on the time step is illustrated in Figure 19. At time 51 s (time step
510), the KLD value was immediately higher than the threshold, which showed the good
real-time performance and sensitivity of our proposed FDE method. In addition, the KLD
value was lower than the threshold value when there were no faults in the system.
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Figure 16. RMSEs of vehicle 1 based on the time step in the absence of faults.
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Figure 17. KLD values of vehicle 1 based on the time step in the absence of faults.
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Figure 18. RMSE of vehicle 1 based on the time step in the presence of faults.
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Figure 19. KLD values of vehicle 1 based on the time step in the presence of faults.
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After the fault detection, we implemented fault exclusion based on our proposed
isolation strategy. The trajectories of vehicle 2 estimated using the FDE method and without
using the FDE method when the sensor of vehicle 1 had a fault are shown in Figure 20. We
can notice that our FDE method could provide a more accurately estimated position when
there was a fault in the system. The RMSEs of vehicle 2 and vehicle 3 when their neighbor
(vehicle 1) had a fault are illustrated in Figures 21 and 22, respectively. By employing our
proposed FDE method, there was about an average 55 percent reduction in the RMSE for
vehicles 2 and 3, which indicated the effectiveness of the proposed FDE method.
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Figure 20. Trajectories of vehicle 2 using the FDE method and without using the FDE method.
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Figure 21. RMSE of vehicle 2 with or without the FDE method.
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Figure 22. RMSE of vehicle 3 with or without the FDE method.
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6. Conclusions and Future Work

In this study, we proposed a new data fusion method named the ISCIF. In this method,
the inverse of the interval matrix in the traditional IKF and IEKF was replaced by using
a regular matrix, which prevented potential issues that could impact the data fusion
accuracy. Then, the proposed ISCIF method was applied to both the absolute and relative
positioning steps. It should be noted that the ICP method was employed in the relative
positioning step to reduce redundancy in data on multiple relative positions. Moreover,
a KLD-based FDE method was implemented in our localization system to enhance the
robustness. Furthermore, we conducted simulations in three different scenarios. Both
scenario 1 and scenario 2 were carried out to evaluate the accuracy of our proposed
cooperative vehicle localization method. In scenario 1, it was assumed that all vehicles in
the system had the same absolute positioning ability, while in scenario 2, vehicle 1 was
assumed to have an excellent absolute positioning ability. Scenario 3 was carried out to
evaluate the performance of the implemented FDE method. The simulation results showed
that our proposed method could effectively address the data incest problem and enhance
the localization accuracy in MSMVs. In comparison to the SCIF method, our approach could
reduce the RMSE by 8.9% and 15.5% in the two different simulation scenarios, respectively.
Additionally, in the presence of faults, the implemented FDE method effectively reduced
the RMSE compared to situations in which the FDE method was not employed.

In future work, we would like to research the cubature split covariance intersection
filter (CSCIF) [43] and adaptive cubature split covariance intersection filter (ACSCIF) [44].
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