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Abstract: The Internet of Things (IoT) is seeing significant growth, as the quantity of interconnected
devices in communication networks is on the rise. The increased connectivity of devices has height-
ened their susceptibility to hackers, underscoring the need to safeguard IoT devices. This research
investigates cybersecurity in the context of the Internet of Medical Things (IoMT), which encompasses
the cybersecurity mechanisms used for various healthcare devices connected to the system. This
study seeks to provide a concise overview of several artificial intelligence (AI)-based methodologies
and techniques, as well as examining the associated solution approaches used in cybersecurity for
healthcare systems. The analyzed methodologies are further categorized into four groups: machine
learning (ML) techniques, deep learning (DL) techniques, a combination of ML and DL techniques,
Transformer-based techniques, and other state-of-the-art techniques, including graph-based methods
and blockchain methods. In addition, this article presents a detailed description of the benchmark
datasets that are recommended for use in intrusion detection systems (IDS) for both IoT and IoMT net-
works. Moreover, a detailed description of the primary evaluation metrics used in the analysis of the
discussed models is provided. Ultimately, this study thoroughly examines and analyzes the features
and practicality of several cybersecurity models, while also emphasizing recent research directions.

Keywords: cybersecurity; cyberattacks; intrusion detection; Transformers; deep learning (DL);
machine learning (ML); Internet of Things (IoT)

1. Introduction

Nowadays, the Internet of Things (IoT) is experiencing significant growth. With advanced
technology, the number of connected devices in communications systems is increasing [1] as
the interconnected devices become more vulnerable to cyberattacks [2]. To safeguard sensitive
data and uphold device integrity, securing IoT devices is crucial. The applications of IoT
technologies cover various fields, such as smart healthcare systems and connected vehicles.

The cybersecurity of the Internet of Medical Things (IoMT) is the focus of this work.
In IoMT environments, various healthcare-related devices are connected. These devices
include wearable health devices such as smart inhalers and medical sensors, implantable
medical devices such as insulin pumps and pacemakers, digital health records, smart beds,
monitoring systems, and medical lab equipment. Regulatory agencies such as the Food and
Drug Administration (FDA) participate in medical device security by enforcing rigorous
certification processes for medical device manufacturers, including cybersecurity checks.
Securing medical devices is essential for many reasons. Ensuring the safety of patients and
protecting their health records are primary goals. Moreover, it is essential to prevent the
malicious use of medical devices and secure healthcare systems’ infrastructure. Network
attacks on the IoMT pose high risks to patient well-being, information confidentiality,
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and the overall reliability of healthcare services. Cyberattacks can endanger patients’ lives
and disrupt hospital operations [3].

One well-known attack in the medical field is the “WannaCry” ransomware. This
attack compromised 230,000 devices in the UK in 2017 [3,4]. The attack infected computers
in 150 countries and resulted in substantial financial losses [4]. Another popular attack
occurred in Germany in 2000 [3,5]. The attack compromised 30 servers, and the hospital
had to redirect many emergency patients [5].

Ayoub et al. [6] classified IoMT attacks into three categories. The first category repre-
sents attacks at the level of data collection. Data modification is an example of an attack in
this category. The second category is transmission-level attacks. Denial of Service (DoS),
spoofing, and Man-In-The-Middle (MITM) attacks fall within this category. The third
category comprises attacks targeting the storage level, with examples including malware
and social engineering attacks.

This section briefly elaborates on sample types of IoMT attacks. In data modification
attacks, the attacker aims to tamper with the data, which compromises their integrity. An at-
tacker tries to impersonate real users in a spoofing attack, which violates the authenticity
aspect of security. Social engineering attacks are also very common nowadays. Attackers
attempt to trick victims into sharing personal information. This violates data confidentiality
because the system’s sensitive data can be revealed. DoS attacks occur when the system
becomes overwhelmed by network traffic so that the service may be unreachable or slow.
The system’s availability is affected by DoS attacks. Distributed Denial of Service (DDoS)
attacks involve multiple sources overwhelming a system with traffic, which also results in
unavailability, as in DoS attacks. In MITM attacks, the attacker can intercept communication
channels within the network. This attack can compromise the confidentiality aspect if the
attacker steals the data. It can also affect the integrity of the data, if the attacker modifies
them before forwarding them to the recipient. A malware, or malicious software, attack is
a common cyberattack that executes unauthorized actions on the victim’s system. Viruses
and worms are examples of malware attacks. The attacker aims to corrupt or steal the
data (integrity violation). The intruder can also illicitly access the system (violating the
confidentiality rule). Ransomware is a type of malware that encrypts data and demands a
ransom for their release, compromising data availability and potentially confidentiality if
the data are sensitive. Figure 1 illustrates examples of the mentioned security threats [1].

After discussing the various network attacks, this paper explores state-of-the-art
directions to address these threats. The subsequent subsection summarizes related surveys
within the field of cybersecurity.

Figure 1. Examples of security threats [1].

1.1. Related Surveys

The emerging importance of cybersecurity in safeguarding the IoT network has led
researchers to focus on implementing machine learning (ML) and deep learning (DL)
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techniques to enhance the methods for the detection of cyberattacks in IoT networks. This
subsection presents a summary of the recent surveys in the field.

Alyazia et al. [7] reviewed recent studies focusing on cybersecurity intrusion detection
systems (IDS) in IoT networks. Many DL techniques for attack detection within an IoT net-
work were investigated. The methods include deep belief networks (DBN), autoencoders
(AE), and generative adversarial networks (GANs). Additionally, long short-term mem-
ory (LSTM) networks, neural network synthesis (NNS), graph neural networks (GNNs),
and deep neural networks (DNN) are examples of the discussed DL techniques. More-
over, the authors explored the use of hybrid DL models to enhance the detection accuracy.
Recurrent neural networks (RNNs) based on LSTM, RNNs combined with convolutional
neural networks (CNNs), and LSTM are examples of the hybrid DL techniques explored.
A detailed description of the publicly available benchmark datasets recommended for IDS
in IoT networks was given. The authors explained the most important evaluation metrics
used to assess the surveyed DL models. Finally, the key challenges facing cybersecurity
in IoT networks were summarized, including the requirement of labeled datasets for IoT
networks and the real-time model deployment issues.

Due to the IoT’s technological advancements, cybersecurity is vital in various fields,
like smart grids, vehicle communication systems, smart cities, and healthcare applications.
The authors in [8] provided an overview of the current state of cybersecurity, the challenges
faced, and the future research directions. This review addressed emerging cybersecurity
techniques like artificial intelligence (AI) and machine learning (ML) for the detection
of cyber threats and to automate their responses. Sophisticated cyberattacks utilizing
methods such as multi-vector attacks, polymorphic and fileless malware, zero-day exploits,
advanced persistent attacks, and AI-driven attacks are challenges facing the cybersecurity
domain. The progress in AI has led to significant advancements in cybersecurity. However,
it has also enabled a breakthrough in the development of cyberattacks, resulting in artificial
intelligence-based attacks such as botnet attacks. Moreover, the growing reliance on cloud
services has led to the emergence of evolving threat types. The new threats include data
breaches, unauthorized access, insecure application programming interfaces, and shared
infrastructures. These attacks pose high security risks. They can also result in data loss
or the disruption of services. Finally, the authors pointed out future research directions
in cybersecurity, including quantum computing, biometric authentication, advanced AI,
and ML models.

The work in [9] thoroughly examined the integration of databases and DL technologies
in cybersecurity, specifically intrusion detection systems (IDS). This review paper examined
benchmark cybersecurity datasets, describing the steps involved in data collection, the fea-
tures, and the attack types found in these datasets. Moreover, the authors explored various
DL techniques, including DBN, AE, CNNs, LSTMs, and GANs. They investigated their
applications in different domains, such as malware detection, phishing detection, and net-
work intrusion detection, assessing their advantages and disadvantages. Furthermore,
the survey identified a potential research gap in the current studies: the present features in
the available benchmark datasets are insufficient in obtaining high attack detection rates as
cyberattacks evolve.

The objective of the review paper in [10] was to comprehensively summarize the
relevant literature in the field related to the use of AI in cybersecurity for IoT networks.
The authors examined various attack types: initial reconnaissance, physical attacks, MITM
attacks, false data injection, botnets, and DoS attacks. They also discussed methods of
attacking IoT networks: the device’s hardware and software, the connected network,
and the interfacing application. Additionally, the paper explored the AI field, examining
AI-based models used for cyberattack detection, including decision trees (DT), K-nearest
neighbors (KNN), support vector machines (SVMs), and artificial neural networks (ANNs).
Attackers can utilize AI techniques to attack the IoT network. They can also manipulate AI
cybersecurity models to work against their systems. During AI model training, the authors
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investigated attacks involving input manipulation, data poisoning, and false data injection.
This included dataset poisoning, model poisoning, and algorithm poisoning.

1.2. Paper Contributions

Many research papers focus on the field of cybersecurity, specifically exploring the in-
tegration of artificial intelligence (AI) methods. Nevertheless, there is a scarcity of research
papers that specifically focus on AI-driven cybersecurity for ecosystems. The primary
emphasis of this research study is healthcare systems in IoT contexts. An extensive survey
was conducted on cutting-edge artificial intelligence (AI) methods to safeguard healthcare
systems from cyber threats. The paper furthermore offers an elaborate depiction of the
benchmark datasets for both IoT and IoMT systems. The survey presents a classification
system that is based on artificial intelligence approaches and offers security solutions specif-
ically designed for the healthcare industry. The evaluation metrics used to analyze these
techniques are then described. Finally, the paper examines the areas of study that have not
been addressed in healthcare cybersecurity and provides suggestions for future directions.

1.3. Paper Organization

The rest of the paper is structured as follows. Section 2 shows the methodology used
in this survey. Section 3 is dedicated to presenting the related work. The methodology,
including the analytical models, the cybersecurity datasets, and the performance metrics, is
described in Section 4. Section 6 presents the conclusions.

2. Survey Methodology

This section outlines the methodology that was used in conducting this survey.
The main objective was to enhance the security of IoMT systems in order to protect them
from cyberattacks. The research analyzed relevant scholarly articles on the cybersecurity of
IoMT systems that use artificial intelligence (AI) techniques. The articles included were
published during the last four years, up to the year 2023. The original research questions are
presented in Table 1. The first phase of data collection included searching several academic
databases, including Google Scholar, Scopus, and IEEE Xplore, using specific keywords like
“cybersecurity”, “IoMT”, “healthcare”, “ecosystems”, “artificial intelligence”, “machine
learning”, and “deep learning” to identify relevant publications. The collected data were
then examined and refined to determine their relevance to the survey’s purpose. The filter-
ing procedure consisted of three steps, first based on the title, followed by an evaluation of
the abstract and the conclusion. Ultimately, the filtration process was conducted according
to the scholarly contributions. Figure 2 depicts the technique that has been used for the
proposed review. In summary, this study examined a total of 33 research studies and
4 survey papers. The pie chart in Figure 3 illustrates the distribution of articles chosen from
various types of journals. The bar chart in Figure 4 displays the publication years of the
works considered in this study.

Table 1. Proposed research questions.

RQ Research Question

1 What is the current status of IoMT cybersecurity in the recent literature?

2 What are the cyberattacks targeting the cybersecurity of the IoMT systems?

3 What are the most common techniques used recently in addressing the cybersecurity of IoMT systems?

4 How can AI be incorporated in addressing the cybersecurity problems in IoMT systems?

5 What are the benchmark datasets used for the AI modeling of IoMT systems?

6 What are the evaluation metrics used to evaluate the current models in the literature?

7 What are the research gaps and future directions in safeguarding IoMT systems?
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Figure 2. Survey methodology.

Figure 3. Representation of surveyed papers.
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Figure 4. Representation of publication years of surveyed papers.

3. Related Work

In this section, the related work is categorized into ML-based methods, DL-based
models, combined ML and DL approaches, Transformer-based approaches, and others,
as discussed in the following sections.

3.1. Machine Learning Methods

In [11], the authors produced a novel healthcare IoT dataset (WUSTL-EHMS) [12]) for
an enhanced healthcare monitoring system. The database contains 28 features related to
network traffic data and eight biometric characteristic features. For intrusion detection, four
machine learning algorithms were evaluated: random forest (RF), KNN, SVM, and ANN.
The best results (lowest prediction time and highest area under the curve) were achieved
using the ANN model. The experiments confirmed the positive impact of combining
network features with features gathered from patients’ biometrics. The authors planned to
enhance their work by tuning the model’s hyperparameters and improving the data quality
using feature engineering. One possible limitation of the work in [11] is the assumption
that the data collected using medical sensors are transmitted in plain text to avoid high
processing power.

The work in [13] addressed three main challenges: designing a distributed security
framework, ensuring security while dealing with big data, and designing a robust anomaly-
based IDS. The proposed IDS [13] uses a fog cloud architecture and ensemble learning.
The first-level learners in the model are decision trees (DT), Naive Bayes (NB), and RF.
Using stacking, the output of the ML classifiers is input to XGBoost to determine the
final classification of the system. The model was investigated using the ToN-IoT database.
The reported evaluation metrics were the accuracy, precision, detection rate, false alarm
rate, and F1 score.

The model has the following strengths: it is simple, it relies on few parameters, and it
can be updated in real time. A possible limitation of this approach is that it tackles only
binary classification. The authors planned to extend their work so that it could detect
different network attacks. Another future direction that they mentioned was to adopt
various techniques in the feature selection stage.

In the framework of the IoMT, the paper [14] tackles the crucial cybersecurity problem.
The authors aimed to create efficient techniques for the identification and cessation of
cyberattacks in IoMT environments. The study used the WUSTL-EHMS 2020 dataset, which
includes biometric and network information. Data cleaning and feature selection were



AI 2024, 5 710

the two preparatory procedures the authors used. Several performance metrics, including
the accuracy, precision, recall, F1 score, and mean-squared error loss, were employed
to evaluate the ML models. The RF method produced accuracy of 96.9% and achieved
values above 96% in terms of precision, recall, and F1 score. Gradient boosting (GB)
produced comparable outcomes in terms of precision, recall, and F1 score, with accuracy
of 96.5%. The SVM’s accuracy was 95.85% compared to the other two models, but its
precision, recall, and F1 score were marginally lower. The recommended machine learning
models were evaluated against the current methods in this research. It was seen that
the suggested random forest and GB models performed better than the conventional
techniques. In contrast, the SVM model produced results that were competitive with those
of earlier research.

The research in [15] presented an investigation into creating an ML intrusion detection
system (IDS) for the IoMT. The authors examined several ensemble learning strategies,
such as GB, extreme GB, bagging, RF, and ensemble voting classifiers. These ensemble
approaches enhance intrusion detection by combining the predictions of several models.
For every classification model, the hyperparameters were optimized to guarantee optimal
performance. By selecting critical features for intrusion detection, the authors carried out
feature selection. Considerations included the source and destination IP bytes, protocol,
connection state, etc. The AdaBoost (ADB) classifier outperformed the other examined
classification models regarding all performance measures. It recorded the lowest false
discovery rate (FDR), F1 score, accuracy, and precision. Two current models (Model 1 and
Model 2) were compared to the proposed ADB-based IDS for the IoMT. The proposed
model performed better than the other compared models in terms of the false positive rate
(FPR), FDR, accuracy, and precision.

To provide an efficient and effective security solution while considering the limitations
of Internet of Medical Things (IoMT) networks, one work [16] offered an anomaly intrusion
detection system (AIDS) explicitly designed for IoMT networks. The authors provided
an all-inclusive AIDS framework for IoMT networks that included modules for dataset
generation, feature normalization, data collection, and central detection, using ML methods
to detect intrusions. The network’s core gateway was the target of data gathering, which
included disc and Wi-Fi bandwidth utilization, CPU and memory utilization, and energy
consumption data. It also contained network data, such as the protocol details, packet sizes,
and source and destination IP addresses. CSV datasets containing gateway-, network-,
and device-specific sets were created from the processed data. By balancing the feature val-
ues, feature normalization prevented dominance problems. The central detection module
used machine learning methods to find irregularities and intrusions in the IoMT network.
Regarding binary classification tasks, DT, RF, and KNN performed better than other popu-
lar machine learning methods. They demonstrated great recall, accuracy, precision, and F1
score, which qualified them for IoMT intrusion detection. Future work, including the
installation of hardware prototypes, multi-class support, hyperparameter optimization,
and the investigation of deep learning for cloud-based solutions, was also outlined in
the study.

The authors in [17] addressed the challenge of the lack of openly accessible datasets
on the Internet of Healthcare Things (IoHT). They contributed by designing the ECUIoHT
database, thus encouraging more researchers to develop robust models for IoHT security.
The authors launched different types of network attacks, such as network mapper (Nmap),
address resolution protocol (ARP) spoofing, DoS, and smurf attacks. Numerous anomaly
detection methods were investigated, with six variations of nearest neighbor algorithms,
three clustering algorithms, two statistical-based methods, and one kernel-based algorithm.
Specifically, the list of tested techniques included KNN, the approximate local correlation
integral (aLOCI), the local outlier probability (LoOP), influenced outlierness (INFLO), the
cluster-based local outlier factor (CBLOF), and the clustering-based multi-variate Gaussian
outlier score (CMGOS). Additionally, the list included the local density cluster-based outlier
factor (LDCOF), robust principal component analysis (RPCA), and the histogram-based
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outlier score (HBOS). Lastly, the one-class support vector machine (LIBSVM) method was
also evaluated. Possible limitations for the work in [17] included the following. The class
imbalance problem was not addressed. At the same time, it was clear from the distribution
of benign versus attack instances that some attacks represented minority classes compared
to normal network traffic. In addition, the DoS attacks appeared to be artificial and could
not be detected with good performance (as was noticed from the F1 score bar graph in [17]).
Moreover, each attack type was tested independently (i.e., the system used binary, anomaly-
based detection). In other words, the authors used four different subsets of the data and
tackled a single type of attack in each test.

In [18], the authors’ approach showed effectiveness in reducing cyberattacks compared
to other machine learning approaches. A framework using algorithms for task scheduling
using blockchain and a combination of deep reinforcement learning was developed to
enhance the performance of healthcare applications in a distributed IoMT environment.
The proposed framework utilized a temporal LSTM deep neural network for disease detec-
tion and anticipation. The Bayesian optimization algorithm was used to optimize the pa-
rameters of an EML-based model for IoT security attack detection. The proposed approach
showed superior precision, recall, F1 score, and receiver operating characteristic–area under
the curve (ROC-AUC) performance compared to other approaches. The suggested ap-
proach was found to achieve better performance overall, with a 32 percent time complexity
reduction and a 15 percent increase in current accuracy values when evaluated against
several ML methods, such as LR, RF, Naive Bayes, decision trees, extreme machine learn-
ing, and ensemble learning approaches, such as extreme machine learning with genetic
algorithms and EML with RS. These resulted in the successful classification and prediction
of attacks in the Internet of Medical Things environment. EML works for some patterns
but may not be suitable for large, nonlinear datasets. Deep learning neural networks are
recommended for untrained features.

Wazid et al. [19] reported the effectiveness of a new model, EID-HS—Envisioned
Intrusion Detection in Industry 5.0-driven Healthcare Applications—which ensembles
SVM, DT, and KNN with custom weights to detect new malware using traffic analysis on a
large-scale network. Industry 5.0 healthcare systems focus on delivering personalized prod-
ucts for patients given their unique needs. This study demonstrated that ensemble deep
learning yields promising results in such systems. The EIDHS system was robust against
cyberattacks and was shown to outperform existing approaches. The experimental results
on the NSL-KDD dataset, with 81,161 intrusion instances, indicated accuracy of 95.12%.

Recent studies exploring machine learning methods for cybersecurity within IoT and
IoMT environments have shown notable advancements but have also revealed several
key areas in need of enhancement. In the study conducted by Hady et al. [11], a novel
dataset integrating both biometric and network features was introduced. However, the re-
search assumed that data collected from medical sensors are transmitted in plain text,
potentially compromising the data security. This assumption reveals a critical need for
more robust data handling protocols that enhance the security without overwhelming
the processing capabilities. Moreover, Kumar et al. [13] utilized a fog cloud architecture
and ensemble learning, primarily handling binary classification. This approach may be
inadequate against more complex, multi-class cyber threats, which are becoming increas-
ingly common in modern networks. This limitation suggests a need for models capable of
efficiently differentiating among a broader array of attack vectors. Additionally, the study
by Tauqeer et al. [14] aimed to address sophisticated cyberattacks in IoMT settings. How-
ever, the effectiveness of these machine learning models could be limited by the current
approaches to data preprocessing and feature selection. This indicates the potential for
improvements in feature engineering techniques to better capture and utilize the nuances
of cybersecurity data.

To address these identified challenges, the following enhancements could be beneficial.
First, for research like that of Hady et al. [11], integrating advanced encryption methods dur-
ing data transmission could significantly mitigate the risk of security breaches. Employing
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lightweight cryptographic algorithms might provide an optimal balance between security
and operational efficiency. Second, in response to the gaps identified in Kumar et al.’s
work [13], it is crucial to develop machine learning models capable of effective multi-class
classification. Incorporating sophisticated algorithms could improve the system’s ability to
manage diverse cyber threats. Third, to augment the performance of the models discussed
in Tauqeer et al.’s study [14], implementing more advanced feature engineering methods,
including automated feature learning through deep learning techniques, could enhance
both the accuracy and detection capabilities. Finally, integrating federated learning could
enhance the scalability and robustness of intrusion detection systems by allowing multiple
decentralized devices to train models collaboratively, without compromising data privacy.

Table 2 compares cutting-edge IDS techniques, including the methodologies, classi-
fication types, datasets, evaluation measures, and constraints. Table 2 lists the ML-based
approaches. The table provides useful information and aids in identifying research gaps,
which will drive future research into network intrusion detection systems.

Table 2. A summary of ML-based methods for cyberattack detection.

Model Classification Type Dataset Evaluation Metrics Limitations

RF, KNN, SVM,
ANN [11] Binary WUSTL-EHMS

Accuracy, area under the
ROC curve (AUC),

average training time,
average prediction time

Medical sensor data are
transmitted in plain text

Fog computing,
ensemble learning [DT,
NB, RF] + XGBoost [13]

Binary ToN-IoT
Precision, F1 score, false
alarm rate, detection rate,

and accuracy
—

RF, GB, SVM [14] Binary WUSTL EHMS 2020

Accuracy, precision,
recall, F1 score, loss

(mean-squared
error—MSE)

Lack of generalization of
the proposed models to

real-world
IoMT environments

MNB, LR, LRSGD, LSVC,
EVC [15] Not mentioned ToN-IoT

F1 score, accuracy,
precision, recall, false

positive and false
discovery rates

Lacks detailed
information about the
dataset’s source, size,

and characteristics

LR, RF, DT, NB, KNN,
and SVM [16] Binary Custom dataset Accuracy, precision,

F1 score, recall Limited dataset

LOF, COF, aLOCI, LoOP,
INFLO, CBLOF, CMGOS,

LDCOF, RPCA, HBOS,
LIBSVM, and KNN [17]

Binary ECU-IoHT True positive, false
positive, F1 score

Class imbalance was not
considered so the

method could not detect
the minority class

(DoS attack)

EML and Bayesian
optimization [18] Binary ToN-IoT

Recall, precision,
ROC-AUC, F1-, F2-,

and F-beta scores

Privacy and security
issues in dynamic

cloud/fog systems with
lots of devices

EID-HS [19] Binary NSL-KDD Accuracy —

3.2. Deep Learning Methods

Marwa et al. [20] presented a recent anomaly detection technique built on deep learn-
ing and deep clustering. The paper addressed two main challenges, namely feature ran-
domness and feature drift. The first challenge, feature randomness, occurs when training
a neural network encoder without a decoder, based on hypothetical similarities. This
method may result in the encoder producing features that do not accurately represent the
distinguishing characteristics of the data. On the other hand, feature drift arises when
combining clustering and reconstruction objectives in the use of autoencoders. Clustering
aims to simplify data by removing unimportant details, whereas reconstruction strives
to preserve all information. Consequently, feature drift occurs when there is a failure to
balance these conflicting objectives. The proposed algorithm utilized the concept of deep
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subclass dispersion within a one-class support vector machine (deep SDOSVM). The main
steps of the algorithm were feature mapping, feature selection, clustering using a dynamic
autoencoder (DynAE), feature normalization, subclass matrix calculation, model training,
model testing, and a performance assessment. The authors used performance metrics
such as the false positive rate, true positive rate, number of support vectors (SVs), ROC
curve, AUC, probability values (p-values), and training time. For future work, the authors
planned to implement an incremental IDS to overcome the batch learning model limitation.
The upgraded version should effectively manage sequential and large-scale datasets, while
learning using the limited available data samples.

The study in [21] introduced an ensemble deep learning technique for the classification
of network attacks. The authors built a robust generative adversarial network based on
ensemble convolutional neural networks (GANsECNN). The model was used to generate
synthetic data for each type of network attack. Experiments were performed using two
publicly available datasets, the NSL-KDD and the UNSWNB15 datasets. The performance
was measured using the following metrics: accuracy, precision, recall, and generator and
discriminator loss. The experiments indicated that the suggested method could enhance
multi-class classification by around 10% using the generated samples. The proposed
method presented a stable architecture, and the model converged rapidly. However, the re-
ported results were not superior to related results from experiments on the same datasets.

A new deep learning method was adopted in [22] to apply to medical cyber-physical
systems. The authors proposed a federated learning (FL) architecture that utilized gen-
erative adversarial networks (GANs). The GAN models were trained on two categories
of data: medical and network traffic data. The CHARIS [23,24] clinical dataset and the
UNSW-NB15 dataset were used for medical anomaly detection and network traffic data
detection, respectively. Data modification and scrambling attacks were launched on the
medical data. At the same time, the algorithm detected several types of attack on the
network traffic, including backdoors, Denial of Service attacks, shellcodes, and worms.
Five performance metrics were reported: accuracy, recall, precision, F1 score, and AUC.
The authors concluded that the federated models achieved better results than non-federated
models. However, the results were not very high for network flow anomaly detection.
For example, the F1 scores were 0.77 and 0.78 for non-federated versus federated network
flow models. As part of their future work to enhance their model, the authors planned to
augment a range of deep learning methods with privacy prevention policies.

Intrusion detection using a cloud-based model was introduced in [25]. The authors
implemented a hierarchical federated learning (HFL) algorithm. In contrast, the proposed
hierarchical long short-term memory (HLSTM) model was used to distinguish between
health records and detect intrusions in the incoming network traffic. The proposed model
was reported to require minimal training while safeguarding IoMT networks against
various network attacks. The IDS was tested using the TON-IoT and NSL-KDD datasets.
Various metrics, including the accuracy, precision, recall, and F1 score, were utilized to
assess the model’s performance. The experimental outcomes demonstrated the effectiveness
of the proposed model. The authors suggested including the Gurobi optimization solver
for future extensions to optimize the performance. In addition, they planned to explore
how the model performed concerning heterogeneity, interoperability, and scalability [25].

Two multi-class classification models, namely DenseNet and Inception Time, were
proposed in [26]. The models were used to identify cyberattacks on an IoT network.
The proposed models were trained on three publicly available benchmark datasets: ToN-
IoT, Edge-IIoT, and UNSW2015. The evaluation measures used were the accuracy, recall,
precision, and F1 score. The DenseNet model achieved a remarkable 99.9% accuracy for
the ToN-IoT dataset. However, when using the Inception Time architecture, the results
reached a perfect 100% accuracy. In the case of the Edge-IIoT dataset with the Inception
Time architecture deployed, the accuracy reached 94.94%.

The necessity of an IDS in the IoMT is emphasized in the paper [27], seeking to identify
and alert administrators to potentially dangerous activity. Federated learning (FL), a method
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of fitting machine learning models across distributed platforms without the need for data
exchange, was introduced in this work. The authors described how their suggested model,
which used deep neural network (DNN) methods, operated. The model was composed of
a global model disseminated to local edge devices after being trained on a source domain.
Using local datasets for training, the local models’ expertise was fed back into the global
model without jeopardizing the integrity of the local datasets. This procedure enabled rapid,
safe, customized intrusion detection on edge devices. The learning method, including layer
freezing and CORAL loss minimization, was described in the study. This procedure aimed
to enhance the model performance with each local dataset and fine tune the global model.
The model demonstrated greater accuracy compared to classic machine learning and deep
learning techniques, underscoring its efficacy in intrusion detection. It maintained realistic
prediction times for real-time detection on edge devices without regular connectivity to
cloud servers.

In recent years, the use of DNNs for the detection of cyberattacks in IoT networks has
been on the rise. However, this technique for cyberattack detection brings challenges, as it
is computationally complex to apply and vulnerable to adversarial samples. The study
in [28] aimed to address these challenges by enhancing the accuracy of DNN models while
reducing the computational complexity, especially in resource-constrained environments.
The fully connected neural network (FCNN) model was presented in the paper as the
baseline model for cyberattack detection. The authors then proposed a performance
enhancement technique that integrated pruning, simulated micro-batching, and parameter
optimization to handle the computational complexity problems of the DNN models.

By integrating the proposed optimization method into the baseline model, the authors
proposed a refined model, namely Robust Effective and Resource-Efficient DNN (REDNN).
Three publicly available benchmark datasets—N-BaIoT, Kitsune, and WUSTL—were used
to test the performance of the newly suggested model. The robustness of the proposed
model was also presented. The robustness was tested against various factors, including the
number of epochs, clipped perturbation samples, and model variations. The efficiency of
the REDNN model was then compared against that of the baseline model and state-of-the-
art techniques. The REDNN model, as proposed, exhibited robustness against adversarial
attacks and achieved an unconventionally high level of accuracy in detecting cyberattacks
within IoT networks. It also demonstrated the significant conservation of resources. Notably,
the suggested model demonstrated considerable decreases in memory and time utilization
compared to the benchmark in simulated virtual worker environments. Additionally,
its effectiveness was demonstrated in a federated learning (FL) setting, highlighting its
robustness and efficiency in real-world scenarios.

The primary focus of the work in [29] was to reduce the complexity and classification
time, which improved the accuracy when using DL-based techniques in a cybersecurity IDS
for IoT networks. The authors proposed three different models using various deep learning
techniques. The deep learning techniques used for the three models were a feed-forward
neural network (FFNN), LSTM, and a random neural network (RandNN). Each model was
trained on the CIC IoT 2022 dataset. The proposed framework consisted of five stages. First,
features were extracted using CICFlowMeter 4.0. Second, the data preprocessing stage
took place, including data cleaning, encoding, and scaling. Then, data balancing, feature
selection using principal component analysis (PCA), and data splitting were performed.
The proposed models aimed to classify instances into “Normal” or “Attack” for binary
classification problems. However, for multi-class problems, the proposed models classified
instances as “Normal” or identified their specific attack types. These newly suggested
models were then compared with one another and with the traditional ML IDS models
and state-of-the-art IDS models. The RandNN model showed promising performance
as it could capture complex dependencies. The LSTM model also showed promising
performance because it captured the time-based dynamics within IoT data. The newly
proposed FFNN model demonstrated enhanced performance compared to the proposed
LSTM, the RanDNN, and other ML and DL-based models.
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Recent advancements in deep learning methods have significantly improved anomaly
detection and cyberattack classification within IoT and IoMT environments. However, sev-
eral studies highlight persistent research gaps that could hinder their broader application
and effectiveness. Notably, Marwa et al. [20] and other subsequent studies reveal issues
such as feature randomness and feature drift, where deep learning models struggle to
balance data simplification with accurate information preservation. This challenge points
to an inherent limitation in the current autoencoder architectures used for cybersecurity
purposes. Furthermore, while methods like those proposed by Raha et al. [21] for the
generation of synthetic data to train robust models show promise, they often do not outper-
form existing benchmarks, indicating a gap in the efficacy of such generative approaches.
Similarly, the use of federated learning in medical cyber-physical systems, as discussed
in Ilias et al. [22], although improving the performance over non-federated models, still
shows sub-optimal results in certain key areas like network flow anomaly detection.

To address these gaps, this paper proposes several solutions aimed at enhancing the
current state of deep learning techniques in cybersecurity. First, to tackle feature random-
ness and drift, an advanced deep learning architecture that integrates enhanced regulariza-
tion techniques could be developed. This would involve sophisticated training regimes that
more effectively capture the nuances of cybersecurity data, thereby producing features that
better represent the underlying patterns without oversimplification. Second, to improve the
performance of generative adversarial networks in cybersecurity, it is essential to integrate
novel adversarial training frameworks that can generate more diverse and challenging
synthetic datasets. This approach will ensure that the models are not only robust against
known types of attacks but are also prepared for zero-day exploits. Lastly, the application
of federated learning models in cybersecurity could be enhanced by incorporating multi-
modal learning strategies that leverage both structured and unstructured data from various
IoT devices. This method would help in better understanding the context of the data, thus
improving the detection accuracy of network anomalies. Additionally, exploring advanced
optimization algorithms could significantly reduce the computational overhead, making
these models feasible for deployment in resource-constrained environments.

Table 3 summarizes the DL-based methods mentioned in this section.

Table 3. A summary of DL-based methods for cyberattack detection.

Model Classification Type Dataset Evaluation Metrics Limitations

Deep SDOSVM [20] Binary ToN-IoT

False positive rate, true
positive rate, ROC,

AUC, p-values,
number of SVs,
training time

Batch learning model

GAN-ECNN [21] Multi-class NSL-KDD,
UNSW-NB15

Accuracy, precision,
sensitivity, F1 score

The reported results
were not superior to

those of other
related work

FL, GAN [22] Binary CHARIS, UNSW-NB15
Accuracy, recall,

precision, F1 score,
AUC

Results for network
flow data were
not promising

Dew-cloud-based
HFL-HLSTM [25] Binary and multi-class ToN-IoT, NSL-KDD Accuracy, precision,

recall, F1 score

Hierarchical model
results in increased

latency. Delays should
be minimized in

real-time scenarios

DenseNet, Inception
Time [26] Multi-class ToN-IoT, Edge-IIoT,

UNSW2015
Accuracy, precision,

recall, F1 score Partial dataset

DNN [27] Binary and multi-class CICIDS2017

Accuracy, detection
rate, average training

time, average
prediction time

Long training time
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Table 3. Cont.

Model Classification Type Dataset Evaluation Metrics Limitations

REDNN [28] Binary N-BaIoT, Kitsune,
WUSTL IIOT 2018

Memory saving, test
accuracy, train time,

train mem, test set acc,
test time, test mem

No improvements in
accuracy compared to

other related work

FFNN, LSTM,
RandNN [29] Binary and multi-class CIC IoT 2022 Accuracy, precision,

recall, F1 score
It could be

time-consuming

3.3. Combined Machine Learning and Deep Learning Methods

The primary goal of the study in [30] was to develop an effective IDS to safeguard
IoMT networks against cyberattacks. The author highlighted the growing significance of
the IoMT in healthcare, but he also drew attention to the vulnerabilities brought about by
medical devices’ interconnectedness. The paper recommended using a fog cloud architec-
ture to solve the security concerns related to the IoMT. The ensemble learning technique
used by the suggested IDS system integrates several long short-term memory (LSTM)
networks. The author presented a deployment methodology that offers Infrastructure as
a Service (IaaS) in the cloud and Software as a Service (SaaS) in the fog. The paper also
covered several data preprocessing methods, such as feature mapping, data imputation,
and feature selection, to prepare the dataset for intrusion detection. Learning curves and
misclassification errors were used to assess the performance of the proposed technique,
which demonstrated that the ensemble approach performed much better than a decision
tree. The ROC curve was used to evaluate the classifier’s performance; the AUC showed
that the proposed method performed better than the baseline. The work in [31] aimed to
provide a reliable approach for the detection of anomalies and attacks in IoMT devices
used in healthcare. The study used four real IoMT datasets gathered from actual health-
care devices: WUSTL-EHMS, TON-IoT, ICU, and ECU-IoHT. The suggested approach
used machine learning techniques to perform multiple phases of dataset cleaning, fea-
ture selection, feature extraction, and classification. The study used the recursive feature
elimination (RFE) technique to choose the most crucial characteristics. The first method
used was the KNN classifier. Then, a multi-layer perceptron (MLP) classifier with hy-
perparameters adjusted was employed to improve the classification. The efficacy of the
suggested approach in identifying abnormalities and cyberattacks was demonstrated by
its excellent accuracy rates across all IoMT datasets. Better performance was obtained by
combining the hyperparameter-tuned MLP with XGBRegressor-based feature selection.
The authors intended to set up an IoMT laboratory to improve the attack detection accuracy
and investigate potential new research avenues.

The work in [32] focused on intrusion detection in the context of the IoMT, recog-
nizing two forms of attacks: data spoofing and data alteration. The primary goal was
to develop an effective intrusion detection model to secure healthcare systems that han-
dle sensitive information. The study used a range of assessment metrics to assess the
intrusion detection model’s performance. These measures included the ROC-AUC and
the following: prediction time, F1 score, accuracy, precision, false acceptance rate (FAR),
and recall (detection rate). To improve the precision and effectiveness of intrusion detection,
the suggested model combined several machine learning methods, feature scaling strate-
gies, data augmentation, and class weight ratios. Noteworthy average testing accuracy of
94.23%, indicating the model’s superiority over an existing method, was one of the most
important findings. The model’s efficiency was mainly ascribed to the shorter prediction
times attained in feature, algorithm, and data preparation selection. However, there were
also acknowledged drawbacks, such as the model’s narrow focus on only two types of
attacks and its assessment in a simulated network context. In further research, the author
suggested including more attack types to create a more comprehensive intrusion detection
model, looking at deep learning models with minimum complexity to increase the AUC
and detection rates.
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In [33], network traffic and patient biometric data were combined into a dataset using
an ARGUS tool to improve intrusion detection in the IoMT. There were 44 features in the
dataset, comprising 9 biometric features and 35 network traffic features. The dataset was
initially composed of 2046 attack samples and 14,272 normal samples. When attacks were
infrequent, 1400 attack samples were chosen at random to replicate real-time networks.
A CNN, DNN, and LSTM were utilized for intrusion detection. AdaBoost performed
the best among all machine learning models, with accuracy of 91.6%. All ML models
displayed high recall, F1 score, and precision. The DNN achieved maximum accuracy of
96%, surpassing both the CNN and LSTM in performance. The precision, recall, and F1
score of the DL models were consistently good. However, the DNN obtained the best
overall accuracy. The suggested particle swarm optimization deep neural network (PSO-
DNN) algorithm achieved accuracy of 96%, which was 3.2% better than that in previous
studies, outperforming cutting-edge techniques. To improve IoMT attack categorization in
the future, the author proposed integrating particle swarm optimization (PSO) for feature
selection and DNNs for intrusion detection.

Developing a strong IDS to safeguard sensitive medical data against attacks and
breaches was the main goal of the paper [34]. The authors used a Kaggle intrusion detec-
tion dataset that is globally benchmarked and covers a variety of attack methods along
with typical network behavior. PCA was used as a dimensionality reduction approach to
solve the dataset’s high dimensionality problem. By reducing the number of attributes, this
strategy increased the efficiency. The Grey Wolf Optimization (GWO) method makes this re-
search distinctive. After PCA, GWO was employed as a second-level optimization method.
GWO aids in further dimensionality reduction while maintaining crucial characteristics.
The dataset was subjected to various categorization models, such as NB, RF, SVM, KNN,
and DNN. These models were designed to be used for intrusion detection. According to the
paper’s findings, the suggested classifier model regularly performed better than alternative
models with respect to sensitivity, specificity, and accuracy. The classification model became
more efficient and required less training time as the dimensionality was reduced.

By highlighting the possible dangers and repercussions of security holes or online
attacks in these systems, the authors of the paper [35] sought to address the security
weaknesses in IoMT contexts. Their primary objective was to create a reliable method of
identifying malicious activity in IoMT networks. The authors set up 100 IoT nodes on a
fictitious square field using an Intel Xeon system with particular hardware configurations.
Throughout the studies, several DDoS assaults were simulated. Wireshark was used
to collect data packets. A Python script was developed to extract IoT end-level layer
characteristics from packet capture (.pcap) files, which were then transformed into CSV
files for analysis. Using a label encoder to transform categorical elements into numerical
values and managing missing values are two examples of the data preprocessing steps
applied. The authors employed numerous optimization approaches, including Spider
Monkey Optimization, Salp Swarm Optimization, Whale Optimization, and a hybrid of
Lion and Salp Swarm Optimization (LSSOA). These methods were used to improve the
detection of malicious traffic. Several metrics, including the accuracy, precision, recall,
F1 score, invalid positive rate (IPR), and invalid negative rate (INR), were used in the
research to assess the effectiveness of these optimization strategies. The efficacy of the
detection techniques was evaluated using these metrics. The suggested Lion and Salp
Swarm Optimization Algorithm (LSSOA), according to the authors, had a recall F1 score
of 98.0% and could be applied to a variety of tasks, such as resource allocation, network
security, hybrid optimization, the management of numerous variables, and scalability.

This section, with studies on combined machine learning and deep learning methods
for cybersecurity in the IoMT, reveals significant advancements and also exposes critical
gaps that need to be addressed. In the study by Khan [30], while the fog cloud architecture
and the use of LSTM networks indicate a robust approach to safeguard IoMT networks,
the research lacks details on the real-world application and scalability of the proposed
system. Similarly, Kilincer et al. [31] demonstrate improved classification through machine
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learning techniques and feature selection, but the reliance on conventional methods like
KNN and MLP might not be sufficient against more sophisticated or evolving cyber threats.
Furthermore, Gupta’s work [32] points out the limitations of focusing only on two specific
types of cyberattacks and conducting assessments in a simulated environment, which
might not translate effectively into real-world settings. This highlights a broader issue in
the current research: a narrow focus on limited attack types and a lack of comprehensive
testing across diverse operational conditions. In addition, the study by Chaganti [33]
shows promising results using a CNN, DNN, and LSTM for intrusion detection, with high
accuracy rates. However, the best performance is limited to a DNN model, which suggests
the need to explore more integrated or hybrid approaches that can leverage the strengths
of various machine learning and deep learning models more effectively.

For systems like those proposed by Khan [30], it is critical to extend the testing beyond
controlled or simulated environments to real-world applications. This would involve
deploying the proposed IDS in actual IoMT settings to observe its performance under
real operational pressures and attack scenarios. Considering the limitations in the studies
by Kilincer et al. [31] and Chaganti [33], there is a clear need to develop hybrid models
that integrate multiple machine learning and deep learning techniques. Such models
could utilize the strengths of different algorithms to enhance their detection capabilities,
especially for complex and evolving attack vectors. In response to the narrow focus
observed in Gupta’s study [32], future research should incorporate a wider array of attack
types and test the IDS models against a broader spectrum of cyber threats. This would
ensure that the IDS is robust and versatile enough to handle various types of cyberattacks.
To improve the efficacy of the IDS, as observed across these studies, the implementation of
more advanced feature selection techniques such as deep learning-based feature extraction
could be explored. Techniques like autoencoders or deep belief networks might offer better
feature representation and thus enhance the model’s predictive accuracy.

Table 4 summarizes the methods based on both ML and DL discussed in this section.

Table 4. A summary of combined (ML and DL) methods for cyberattack detection.

Model Classification Type Dataset Evaluation Metrics Limitations

LSTM networks,
DT [30] Binary ToN-IoT

Accuracy, false alarm
rate, detection rate,
detection of binary

anomalies

Limited detail, dataset
not well defined

MLP, KNN, Recursive
Feature Elimination

(RFE), XGBoost
Regressor

(XGBRegressor) [31]

Binary and multi-class ECU-IoHT, ToN-IoT Precision, recall,
accuracy and F1 score

Limited features,
time-consuming

LR, DT, RF, Extra Tree
Classifier, Artificial

Neural Network [32]
Not mentioned Custom dataset

ROC curve, AUC,
accuracy, precision,

recall, F1 score

Limited attacks,
simulated environment

LR, KNN, Decision
Tree, AdaBoost,

Random Forest, SVM,
Long Short-Term

Memory (LSTM) [33]

Binary Custom dataset Accuracy, precision,
F1 score, recall

Limited scope,
scalability

DNN, SVM, KNN, RF,
NB [34] Not mentioned Custom dataset Accuracy, recall Limited

experimental details

Lion and Salp Swarm
Optimization
(LSSOA) [35]

Binary Custom dataset

Accuracy, precision, F1
score, invalid positive

rate (IPR), invalid
negative rate (INR)

High computational re-
source consumption

3.4. Transformer-Based Methods

The author in [3] introduced a framework to enhance the security of medical systems.
The author built a hybrid security system consisting of two components. The first compo-
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nent of the IoMT system was an intrusion detection system, which aimed to monitor the
system for any unauthorized access or breaches. Another element was a malware detection
system designed to protect the computers used by medical professionals. The approach
used a BERT-based Transformer and a light gradient boosting machine (LightGBM). The rec-
ommended method consisted of three main phases, as outlined in [3]. First, the network
flow was derived from the recorded activities. Subsequently, the collected data underwent
preprocessing. Subsequently, the classification of each network’s activity as either benign
or an assault was performed using the two machine learning algorithms. The model was
assessed using four datasets: ECU-IoHT, ToN-IoT, Edge-IIoTset, and EMBER [36]. The pro-
posed model was found to be capable of detecting many types of assaults, regardless of the
specific equipment being targeted. An identified constraint of the model was its intricate
deployment process. In addition, a correlation calculation was required to combine the
obtained data. In further research, the author intended to include other sophisticated
malware families and investigate the use of an analytical approach to merge the system’s
outcomes and expedite decision-making in the IoMT setting.

A research study [37] was published on a modified Transformer neural network
(MTNN) designed for the detection of intrusions in IoT systems. The authors proposed
a unique approach to identifying cybersecurity vulnerabilities in IoT devices using the
MTNN model. The MTNN model, with its smaller parameter count, utilizes the information
gain for feature selection and achieves acceptable accuracy. This makes it suitable for
implementation in distributed IoT systems, distinguishing it from RNN and LSTM models.
The experimental findings on the Ton-IoT dataset [38] showed large improvements in
accuracy, precision, recall, and F1 score. The article examined the use of Transformers in
detecting cyberattacks and intrusions in IoT systems and the possibility of using GANs to
generate false data injection. The authors further emphasized the need for hyperparameter
optimization to enhance the efficacy of Transformer-based models. They suggested using a
grid search or Bayesian optimization (BO) as potential approaches. The authors discussed
the possibility of using generative adversarial networks and federated learning to improve
distributed learning in IoT systems in the future.

The authors in [39] presented a novel method for intrusion detection systems called
the robust Transformer-based intrusion detection system (RTIDS). This innovative method
significantly improved the classification accuracy compared to many present detection
techniques. RTIDS demonstrated superior performance compared to SVMIDS, with an
improvement of 4.56%; RNN-IDS, with an improvement of 1.67%; LSTM-IDS, with an
improvement of 0.81%; and FNN-IDS, with an improvement of 3.03%. The system’s
performance was further confirmed by comprehensive assessments conducted on two
datasets, namely CICIDS2017 and CIC-DDoS2019. Regarding CICIDS2017, RTIDS exhibited
remarkable accuracy of 98.45%, precision of 98.32%, recall of 98.73%, and an F1 score
of 98.02%. In the case of the CIC-DDoS2019 dataset, the system achieved accuracy of
98.58%, precision of 98.82%, recall of 98.66%, and an F1 score of 98.45%. The underlying
robustness of RTIDS resided in its ability to accurately identify network abnormalities
and traffic violations, exceeding the capabilities of traditional and DL-based IDS. Further
exploring the architecture of the suggested system, the authors emphasized the importance
of self-attention mechanisms and strategic data preparation strategies. The comprehensive
examination of a dataset including more than 30 million records highlighted the potential
of RTIDS in practical applications. A potential area for future research would be optimizing
the effectiveness of the Transformer algorithm used in the intrusion detection system to
enhance its speed and better address the consequences of abnormal occurrences. In addition,
the authors anticipated that incorporating meta-learning would be a viable approach to
address the difficulties presented by few-shot categorization situations.

A recent study [40] developed a new intrusion detection model that combined multi-
head attention with bidirectional long short-term memory (BiLSTM). This proposed model
employed an embedding layer to transform the intrusion data into a vector format, im-
proving the data representation. The process of embedding converted the initial vectors
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into two-dimensional vectors. Using the multi-head attention mechanism enabled the
model to focus specifically on crucial characteristics within the vector, improving its in-
terpretability. This method was seamlessly integrated with BiLSTM, which, despite not
being intended for time series data, can discern connections between distant characteristics,
hence linking various features together for predictive purposes. The research used datasets
like KDDCUP99, NSLKDD, and CICIDS2017 for training and testing purposes. Optimal
model performance was ensured by using data processing methods such as normalization
and one-hot encoding. The SMOTE algorithm, also known as the Synthetic Minority Over-
sampling Technique, was used to tackle the issue of imbalanced class distributions. When
compared to other models, the recommended model demonstrated greater performance in
terms of accuracy and F1 score. The researchers highlighted specific constraints, such as
the model’s inability to precisely detect or report new forms of infiltration. Nevertheless,
these invasions might still be categorized for further examination.

The study conducted in [41] showed that an IDS using a hierarchical attention model
obtained detection accuracy of 98.76% and a false alarm rate of 1.49% when the timestep
was set to 10. Prior research has suggested the use of ML methods for IDS, which include
approaches such as feature selection and the utilization of DNNs. The use of the attention
mechanism in the model facilitates the capturing of relevant characteristics and offers the
potential for advancements in feature selection and parallel computing. The proposed
model exhibited commendable performance on the UNSW-NB15 dataset, with accuracy
above 98.76% and a false alarm rate below 1.2%. The suggested model demonstrated a
3.05% enhancement in comparison to the BiLSTM model. A total of 82,332 records were
used in the investigation. The experts suggested that future research should prioritize
categorizing various forms of attacks using the presented approach. The proposed system
does not yet have a second-phase detection capability. In [42], the authors proposed an
intrusion detection method for IoT networks that utilizes an attention mechanism and
a bidirectional gated recurrent unit (BiGRU). The authors tackled the issues of unbal-
anced datasets and insufficient feature information learning in state-of-the-art DL models.
The paper introduced SEW-MBiGD, a hybrid intrusion detection model that integrates the
SEW model with a BiGRU fusion neural network and an attention mechanism. The SEW
model can detect the characteristics of minority groups within a dataset. Furthermore,
the data quality was enhanced using model balancing techniques. The studies conducted
on NSL-KDD [43] showed that the SEW model effectively addressed the problem of dataset
imbalance. Therefore, the suggested method successfully achieved minority-class learning.
In addition, the MBiGD model enhanced its feature acquisition by including multi-head
self-attention (MHSA) in the BiGRU. This improvement allowed the model to better evalu-
ate the connections between features and enabled attention to be focused on temporal class
information. The SEW-MBiGD model was found to outperform and had superior data
comprehension capabilities compared to other models. As an example, it enhanced the
precision of the support vector machine (SVM) from 77.7% to 81.2% and resulted in around
a 1% improvement for K-nearest neighbors (KNN) and decision trees (DT). The inclusion
of the BiGRU model with the MHSA layer resulted in a notable improvement in accuracy,
with a 5.3% increase for binary classification and a 4.7% increase for multi-classification.
The accuracy was improved by training on a balanced dataset.

In the framework introduced by Abdallah [3], namely a hybrid system combining
BERT-based Transformers and LightGBM for intrusion detection and malware preven-
tion, the complexity of deployment and the need for correlation calculations to integrate
data streams highlight significant operational challenges. These issues could impede the
method’s scalability and real-world applicability. The research by Ahmed [37] on a modi-
fied Transformer neural network (MTNN) demonstrates improvements in precision and
recall using Transformers. However, the reliance on traditional feature selection meth-
ods like information gain might limit the model’s ability to process more complex or
subtle patterns in IoMT environments. Additionally, the use of generative adversarial net-
works (GANs) to simulate attack scenarios raises questions about the model’s performance
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against real-world, novel cyber threats. Wu et al.’s study [39], which developed a robust
Transformer-based intrusion detection system (RTIDS), shows impressive performance
metrics. Nevertheless, the system’s focus on known datasets like CICIDS2017 and CIC-
DDoS2019 means that it may not fully represent the dynamic nature of cyberattacks in
IoMT contexts, suggesting a gap in the adaptability and ongoing learning capabilities of the
model. Zhang’s approach [40] to integrating multi-head attention with BiLSTM to enhance
the data interpretability and predictive accuracy is promising but highlights an ongoing
challenge in machine learning-based IDS: the detection of new, previously unreported
types of cyber threats. This limitation underscores the need for models that can evolve and
adapt to new threats dynamically. Liu’s application of a hierarchical attention model [41]
demonstrated high accuracy and low false alarm rates, but the research suggests potential
overspecialization to specific dataset characteristics, meaning that the model might not
generalize well across different IoMT platforms or attack vectors.

For complex systems like the one proposed by Abdallah [3], developing streamlined
deployment processes and automated data integration tools could reduce the operational
complexity and enhance the scalability. This could involve creating modular frameworks
that allow for easier customization and integration into existing IoMT infrastructures.
To address the limitations noted in Ahmed’s MTNN model [37], incorporating deep learn-
ing approaches such as autoencoders or deep belief networks for feature learning could
uncover more nuanced data patterns and improve the model’s efficacy in detecting sophis-
ticated cyber threats. Regarding adaptive and evolving models, for systems like RTIDS [39],
integrating continuous learning mechanisms, such as online learning or reinforcement
learning, could allow the system to adapt to new threats dynamically. This would help
to maintain high performance even as the attack strategies evolve. Zhang’s use of multi-
head attention with BiLSTM [40] could be enhanced by hybridizing these models with
unsupervised learning techniques to detect anomalies that do not fit any known patterns,
thereby improving the system’s ability to identify novel threats. Regarding cross-platform
validation and testing, ensuring that models like Liu’s hierarchical attention system [41]
are tested across diverse IoMT environments and against a variety of attack simulations
could improve their generalizability and robustness.

Table 5 summarizes the Transformer-based methods discussed in this section.

Table 5. A summary of Transformer-based (DL) methods for cyberattack detection.

Model Classification Type Dataset Evaluation Metrics Limitations

LightGBM,
Transformer [3] Binary

Edge-IIoTset,
ECU-IoHT, ToN-IoT,

EMBER dataset

MCC, ROC-AUC,
F1 score, recall,

accuracy, and precision

Model is complex
to deploy

MTNN [37] Multi-class ToN-IoT Recall, precision,
accuracy, and F1 score

False data injection
performed

using GANs

RTIDS [39] Multi-class CICIDS2017,
CIC-DDoS2019

Precision, recall,
accuracy, and F1 score

Refining the
Transformer

algorithm’s efficiency
is needed, along with

integration of
meta-learning to

overcome
few-shot occurrences

Multi-head attention
and BiLSTM [40] Multi-class

KDD-CUP99,
NSL-KDD,

and CICIDS2017
Accuracy, F1 score

Cannot accurately
identify novel
intrusion types

Hierarchical Attention
Mechanism [41] Binary UNSW-NB15 Accuracy, false

alarm rate
Cannot identify

misclassified attacks

SEW-MBiGD [42] Binary NSL-KDD F1 score, accuracy,
precision, recall —
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3.5. Other Methods

The paper [44] proposed an innovative framework, namely the IoT Security Simu-
lator (IoTSecSim). Graphical security modeling (GSM) was utilized to create IoTSecSim.
This framework focuses on modeling IoT networks with diverse IoT devices and various
network protocols. It could help researchers to simulate different cyberattacks and cyber-
security defenses in IoT networks. Additionally, the effectiveness of these defenses could
be assessed using various security metrics embedded in the software. To evaluate the
performance of the software, the authors utilized Botnet malware, such as the Mirai virus,
seeking to assess the effectiveness of their framework. Three defense methods were tested
to demonstrate the framework’s effectiveness: firewall, NIDS, and vulnerability patching.
The security generator produced a two-layered hierarchical attack representation model
(HARM) to capture malware propagation data. Several security metrics were utilized
to assess the computational time for malware infection and its spread across four stages:
scanning, accessing, reporting, and installation. Additionally, the authors presented four
permutations of attacker behaviors that could impact the spread of malware within a net-
work. The paper provided evidence of the simulator’s correctness through a simulation and
sensitivity analysis. The suggested software offered versatile and intricate functionalities
for the modeling of existing and upcoming cyberattacks targeting IoT networks. Neverthe-
less, it exhibited certain constraints. IoTSecSim lacked real-time simulation capabilities for
packet flows, and the proposed defense methods could not identify anomalies.

The authors in [45] proposed a new edge-directed graph multi-head attention net-
work model (EDGMAT) for NIDS. This contemporary framework applied a multi-head
attention transformation mechanism to perform weighted aggregation on nodes and edges.
The model used traffic directionality and utilized a graph attention network. The eval-
uation findings demonstrated that the EDGMAT model performed better in multi-class
classification, with higher accuracy, recall, and F1 score than state-of-the-art techniques.
The model was assessed using four publicly available NIDS. The model was compared to
other methods and showed excellent performance. A limitation of the model is that it uses
large amounts of GPU memory and requires a long period of time for training to provide
comparable levels of accuracy in intrusion detection.

Rayan et al. [46] proposed a security framework for IoMT devices. The method used
machine learning and blockchain technology. The authors used a tri-layered feed-forward
neural network (TNN) to classify network traffic into normal traffic or attacks. Anomaly
detection was implemented using the TNN, while the blockchain helped to secure the data.
The proposed blockchain architecture guaranteed the privacy and integrity of the dataset.
For performance evaluation, the ICUDatasetProcessed [47,48] dataset was used. It contains
42 features and around 187K records. The presented performance parameters were the
confusion matrix, classification accuracy, precision, recall, and F1 score. The method was
found to exhibit superior performance. However, when comparing the approach with other
cutting-edge techniques, the dataset used appeared to have certain limitations, because the
results for most of the baseline methods approached 99%, so the suggested method could
only slightly improve the results.

The exploration of diverse methods in cybersecurity for IoT and IoMT devices, as de-
scribed in recent studies, unveils several research gaps that require attention for enhanced
security solutions. The study by Chee et al. [44] introduces IoTSecSim, a security simulator
utilizing graphical security modeling (GSM) to simulate cyberattacks and defenses. De-
spite its capabilities, the simulator lacks real-time simulation for packet flows, which is
critical for dynamic network environments. Additionally, the defense methods proposed
do not include anomaly detection, a key component in identifying unforeseen or zero-day
attacks. Li’s research [45] on the edge-directed graph multi-head attention network model
(EDGMAT) for network intrusion detection systems (NIDS) demonstrates superior classifi-
cation performance. However, the model’s strong reliance on GPU memory and extended
training times could hinder its practical deployment, especially in resource-constrained
environments. Rayan et al. [46] present a novel framework combining machine learning
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with blockchain technology to enhance IoMT security. While the blockchain architecture
ensures data integrity and privacy, the study reveals a potential overfitting issue or dataset
limitations, as indicated by the unusually high performance metrics close to 99 percent for
the baseline methods. This raises questions about the robustness and generalizability of
the proposed model.

To address the limitations of IoTSecSim noted in Chee et al.’s study [44], incorporating
real-time data processing capabilities could significantly enhance its utility. Integrating
more advanced real-time simulation engines and developing capabilities to monitor live
network traffic could provide more accurate and timely insights into network security vul-
nerabilities. For the EDGMAT model presented by Li [45], optimizing the model to reduce
its dependency on extensive GPU resources and training time is crucial. Techniques such
as model pruning, quantization, and efficient training algorithms like federated learning
could be explored to improve the efficiency without compromising the model’s perfor-
mance. To strengthen the framework proposed by Rayan et al. [46], conducting extensive
validation against a broader set of attacks and in more diverse network environments
would be beneficial. Enhancing the dataset’s diversity and complexity could help to as-
certain the true efficacy of the combined blockchain and machine learning approach and
identify any overfitting issues. Given the absence of effective anomaly detection in the
IoTSecSim framework, incorporating sophisticated anomaly detection algorithms such
as unsupervised learning or semi-supervised learning models could fill this gap. These
methods could potentially identify novel attack vectors that are not part of the existing
threat models used for training.

By addressing these gaps, future research can significantly enhance the effectiveness
of cybersecurity measures in IoT and IoMT environments. Improved real-time simula-
tion capabilities, resource-efficient models, robust validation methods, and sophisticated
anomaly detection are pivotal in developing resilient security solutions that can adapt to
the evolving landscape of cyber threats.

Table 6 summarizes the other surveyed methods discussed in this section.

Table 6. A summary of other surveyed methods for cyberattack detection.

Model Category Classification
Type Dataset Evaluation

Metrics Limitations

GSM, two-layered
HARM model [44] Graph-based Not mentioned

Botnet (Mirai
malware and its

variants)

Security metrics
(average time

taken to
compromise a
node, average

number of
compromised

nodes)

Lacks real-time
simulation
capabilities,

the proposed
defense methods

are unable to
identify anomalies

EDGMAT [45] ML + graph-based Binary
NIDS, 4 dataset

benchmark,
ToN-IoT, Bot-IoT

Accuracy, recall,
F1 score

High GPU
memory usage
during training,

prolonged training
times, challenging

to maintain
high accuracy

TNN +
blockchain [46] ML + blockchain Binary and

multi-class ICUDatasetProcessed
Accuracy,

precision, recall,
F1 score

Dataset limitation

4. Methodology
4.1. Analytical Models

Artificial intelligence (AI) has a subset called machine learning (ML). Its main goal
is to create algorithms that enable a program to recognize patterns in data and forecast
outcomes based on training. The following approaches have used ML techniques in their
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cybersecurity IDS: [11,13–19]. The following research has combined ML algorithms with
other methods: [30–35,45,46].

A unique subset of machine learning is deep learning. Deep learning models in-
volve layered architectures, which can learn more complex data patterns. They can be
applied to more sophisticated tasks like image processing and natural language processing.
The following state-of-the-art works have adopted DL (non-Transformer-based) meth-
ods: [20–22,25–29]. The following works have combined DL with ML methods: [30–35].

One class of deep learning models based on the self-attention process is Transform-
ers. They have been recently introduced in the paper “Attention is All You Need” [49].
Transformers have shown encouraging improvements in several domains, including ma-
chine translation and natural language processing. The studies [3,37,39–42] have adopted
Transformer-based methods in the field of cybersecurity.

Graphical security modeling is an approach that relies on graphical representations
to analyze the security aspects of computer systems. It involves creating visual models
representing the system’s components and their relationships. The visual model helps to
identify vulnerabilities in the software. This can assist in implementing robust security
strategies in the IoT network. The work in [44,45] considers graph-based approaches.

Blockchain is a technology that relies on cryptographic methods. It allows a group of
computers to securely work together in a decentralized fashion. Blockchain resembles a
super-secure digital record book that keeps track of data. Its safety is maintained because
many computers work together to monitor it. The work in [46] adopts blockchain technology.

4.2. Datasets

The related cybersecurity datasets have been classified into three main categories,
with the first category being IoMT datasets. Table 7 contains a description of these medical
datasets. Other IoT datasets can be found in Table 8. Other non-IoT datasets used in the
surveyed papers are outlined in Table 9.

The WUSTL-EHMS dataset [11,12] was created in 2020. It contains 16k data records,
including network flow features and patients’ biometric features. It contains Man-In-The-
Middle attacks, including spoofing and data injection. The ECU-IoHT dataset [50] contains
111k records. It has a greater variety of cyberattacks on the IoMT, but the number of
features is much smaller than those in other IoMT datasets. The ICUDatasetProcessed
dataset [47,48] contains 187k records and 42 features. To the best of our knowledge, it can
be considered the largest publicly available dataset for the IoMT.

Additionally, seven datasets commonly used in the cybersecurity domain of IoT
are identified. The IoT datasets are Ton-IoT [38,51], BoT-IoT [52], CIC IoT 2022 [53,54],
N-BaIoT [55], Kitsune [56], WUSTL IIOT 2018 [57], and Edge-IIoT [58]. These datasets
contain a wide variety of features and network attacks, as shown in Table 8. Further-
more, other datasets frequently utilized in the security field are listed. These include the
UNSW-NB15 [59], CICIDS2017 [60], NSL-KDD [43], CSE-CIC-IDS2018 [61], CHARIS [23,24],
and EMBER [36] datasets.

Table 7. IoMT datasets.

Dataset Number of Records Number of Features Types of Attack

WUSTL-EHMS [11,12] 16,318 36 features Man-In-The-Middle attacks

Ecu-IoHT [50] 111,207 6 features ARP spoofing, Nmap port
scan, smurf attack, DoS attack

ICUDatasetProcessed [47,48] 187,643 42 features

Message Queuing Telemetry
Transport (MQTT) DDoS,
MQTT flood attack, brute

force attack, SlowITE attack
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Table 8. IoT datasets.

Dataset Number of Records Number of Features Types of Attack

Ton-IoT [38,51] 41,043 43 features
Brute force passwords,
ransomware, injection,

MITM, DDoS, and backdoors

BoT-IoT [52] 72,000,000 45 features

DDoS, DoS, keylogging, data
exfiltration, OS, and service
scans. Based on the protocol

in use, DDoS and DoS
assaults were more common

CIC IoT 2022 [53,54] – 48 features
DOS (HTTP, UDP, and TCP
flooding), brute force and
camera RTSP URL attacks

N-BaIoT [55] (sub-divided) 7,062,606 115 BASHLITE or Mirai attacks

Kitsune [56] 27,170,754 7 Reconnaissance attacks, DoS
attacks, and Mirai attacks

WUSTL IIOT 2018 [57] 7,037,983 6

Port scanner, address scan
attack, device identification
attack, device identification

attack (aggressive mode),
exploit

Edge-IIoT [58] 20,952,648 1176 (61 are
highly correlated)

Attacks using malware,
Man-In-The-Middle, injection

attacks, DoS, DDoS,
and information gathering

Table 9. Other datasets.

Dataset Number of Records Number of Features Types of Attack

UNSW-NB15 [59] 2,540,044 49 features

Analysis, fuzzers, backdoors,
DoS, exploits, generic,

shellcode, reconnaissance,
and worms

CICIDS2017 [60] 2,830,743 77 features
DDoS, web-based, Mirai,

spoofing, recon, DoS,
and brute force

NSL-KDD [43] 125,973 training,
22,544 testing 41 features DOS, probing, R2L, and U2R

CSE-CIC-IDS2018 [61] – 80 features
Brute force attacks, DoS,

DDoS, web attacks,
infiltration, Botnet attacks,

port scanning

CHARIS [23,24] – –
Generated attack types

in [22]: data modification and
data scrambling attacks

EMBER [36] – – –

4.3. Performance Metrics

This section describes the main performance measures applied by the studies surveyed
in this work. The performance metrics are summarized in Table 10.

1. Precision (P)
Precision measures a model’s accuracy in making positive predictions. Its usage is
mainly in binary classification problems, where the goal is to distinguish between two
classes as ‘1’ or ‘0’.

Precision =
TP

TP + FP
(1)
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where
true positives (TP) = number of ‘1’s correctly predicted as ‘1’s by the model.
false positives (FP) = number of ‘0’s incorrectly predicted as ‘1’s by the model.
A machine learning model with a greater precision value is more accurate in producing
positive predictions and has a lower rate of false positives.

2. Recall (R)
A model’s recall, also known as sensitivity, quantifies its capacity to accurately identify ev-
ery real positive among the total number of real positives (true positives + false negatives).

Recall (or Sensitivity) =
TP

TP + FN
(2)

where
false negatives (FN) = number of actual ‘1’s incorrectly predicted as ‘0’s by the model.
A high recall value indicates that the ML model correctly recognizes all relevant
instances belonging to a certain class, even if it may also generate some incorrect
positive identifications. Conversely, poor recall indicates that the model has failed to
identify a significant number of true positive instances.

3. F1 score
The F1 score may be defined as the mathematical average of the precision and recall,
specifically calculated using the harmonic mean. The evaluation approach provides
a fair assessment by considering the presence of both false positives and false neg-
atives. The method is used to conduct an intermediate assessment where datasets
exhibit imbalances.

F1 score =
2 × Precision × Recall

Precision + Recall
(3)

4. Accuracy
The accuracy score is a machine learning assessment statistic that estimates the per-
centage of correct predictions generated by a model compared to the total predictions.
It is calculated by dividing the number of accurate predictions by the total number
of forecasts.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where
true negatives (TN) = number of actual ‘0’s correctly predicted as ‘0’s by the model.

5. Receiver Operating Characteristic Curve
The receiver operating characteristic (ROC) curve is a visual depiction of the perfor-
mance of a binary classification model. It evaluates the balance between the model’s
sensitivity (true positive rate) and 1-specificity (false positive rate).
The ROC curve, as seen in Figure 5 [62], often represents the true positive rate (TPR)
or sensitivity on the vertical axis. In contrast, the false positive rate (FPR) or 1-
specificity is displayed on the horizontal axis. The ideal ROC curve is characterized
by its positioning in the upper-left corner of the graph, indicating a high level of
sensitivity and a low number of false positives, which are desirable qualities for a
classification model.

6. Area Under the Curve (AUC)
As shown in the ROC graph, the area under the curve signifies the comprehensive
efficacy of a classifier. The AUC of a perfect classifier is 1, whereas the AUC of a
random classifier is 0.5. A greater AUC indicates the more effective discriminatory
capabilities of the model.

7. False Alarm Rate
The false alarm rate (FAR) is a statistic used to assess system performance, particularly
in the context of signal detection, anomaly detection, and security systems. It counts
the number of false alarms or false positives generated by the system.
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8. Invalid Positive Rate
The invalid positive rate is used when the rate of positive results, typically in the
context of medical tests or diagnostic procedures, is not valid or reliable. This can
occur for various reasons, such as issues with the test, improper administration, or a
small sample size. It is usually the true negative rate in terms of intrusions.

Figure 5. Receiver operating characteristic (ROC) curve [62].

Table 10. Performance metrics.

Metric Description Note

Precision Measures a model’s accuracy in positive
predictions Between 0 and 1

Recall Measures how specific the model is in terms of
finding the true positives among actual positives Values between 0.0 and 1.0

F1 score Measures how accurate a model is:
goodness of fit

Higher is better, values between 0 and 1, used
when datasets are imbalanced

Accuracy Measures the number of correct predictions out
of all predictions made

Higher is better, values between 1 and 100
in percentage

ROC Curve

An illustration of how well a binary classification
model performs. It assesses how well the

model’s true positive rate (sensitivity) and false
positive rate (specificity) are balanced. Moreover,
the upper-left corner of the graph, which denotes

a high degree of sensitivity and few false
positives, is where the ideal ROC curve is located

Better performance is indicated by values closer
to the upper-left corner

AUC Measures the overall performance of a
binary classifier Values between 0.0 and 1.0

False Alarm Rate (FAR ) Measures the rate at which the system generates
false alarms or false positives. Lower is better, values between 0 and 1

Invalid Positive Rate Measures true negative rate Lower is better, values between 0 and 1
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5. Discussion

A wide range of techniques and strategies for cyberattack detection are presented
in the reviewed literature, with an emphasis on intrusion detection systems (IDS) in the
context of the Internet of Medical Things (IoMT). In order to identify similarities, differences,
and potential topics for further research, the results and approaches of the examined studies
are compared and contrasted in this section.

Several studies improve cyberattack detection in IoMT networks by utilizing machine
learning (ML) and deep learning (DL) approaches. To achieve better interpretability
and accuracy, Zhang et al. [40] suggest a model that combines multi-head attention with
bidirectional long short-term memory (BiLSTM). Similar to this, Rayan et al. [46] classify
network traffic and secure data by combining blockchain technology with a tri-layered
feed-forward neural network (TNN). By utilizing graph-based methods and multi-head
attention transformation mechanisms, Li [45] present the edge-directed graph multi-head
attention network model (EDGMAT) for network intrusion detection systems (NIDS).

These studies show that ML and DL techniques are effective in detecting cyberattacks,
but they also emphasize the value of interdisciplinary cooperation. In order to detect intru-
sions, Abdallah [3] combines LightGBM and BERT-based Transformers. This highlights the
difficulty in implementing such systems and the requirement for correlation computations
in order to successfully integrate data streams. Ahmed [37] delves into the application
of a modified Transformer neural network (MTNN) for enhanced precision and recall.
The study highlights the dependence on conventional feature selection techniques and the
possible constraints of GANs in replicating actual cyber threats.

A collection of standardized performance criteria, such as the accuracy, precision,
recall, F1 score, area under the curve (AUC), false alarm rate, and invalid positive rate,
are used to evaluate cybersecurity models. There are differences in the performance of
various models, although the majority of studies claim good accuracy and detection rates.
For example, Zhang’s model [40] outperforms other models in terms of predicted accuracy,
achieving remarkable accuracy and F1 score. Surprisingly high performance measures for
the baseline approaches point to potential overfitting problems or dataset restrictions in
Rayan et al.’s architecture [46].

This study outlines a number of exciting prospects in the field of cybersecurity for IoT
and IoMT applications, in addition to pointing out current obstacles and research gaps.
These opportunities include exploring blockchain-based security solutions to improve data
integrity and trust; fostering interdisciplinary collaboration to address complex security
challenges; integrating artificial intelligence techniques for adaptive threat detection; har-
nessing real-time threat intelligence feeds for proactive threat identification; and ensuring
compliance with cybersecurity standards and regulatory requirements to establish robust
security frameworks. By seizing these new opportunities, organizations may reduce the
cyber risks, improve the security of IoT and IoMT systems, and create robust healthcare
infrastructures that can survive growing cyber attacks.

6. Conclusions

In conclusion, this study provides a thorough survey and analysis of cyberattack
detection techniques, emphasizing intrusion detection systems (IDS). This research focuses
on the cybersecurity of the Internet of Medical Things (IoMT). The survey covers a wide
range of methodologies identified in the recent literature for the safeguarding of IoMT
networks, including blockchain technology, Transformer-based models, deep learning (DL),
machine learning (ML), and graph-based techniques.

A clear pattern suggests combining ML and DL techniques to improve the detec-
tion performance, frequently by building hybrid models to solve certain drawbacks.
Transformer-based models demonstrate possible uses in cyberattack detection, drawing
inspiration from developments in natural language processing. Furthermore, graph-based
methods, such as graphical security modeling (GSM), provide valuable insights into com-
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plex systems such as Internet of Things networks, making it easier to create strong security
plans and vulnerability detection systems.

By using decentralized consensus methods and cryptographic techniques, blockchain
technology can potentially improve the data security in Internet of Things networks. De-
spite progress, challenges persist, including the need for more diverse datasets, scalability
issues, and the ongoing evolution of cyber threats. Interdisciplinary collaboration is crucial
in addressing these challenges and developing robust defense mechanisms.

This survey highlights the various methods used to identify cyberattacks and em-
phasizes the importance of interdisciplinary collaboration in solving cybersecurity issues.
Several research gaps are highlighted in relation to intrusion detection for IoT and IoMT
applications, emphasizing the need for more effective and lightweight models, improved
methods of detecting new threats and anomalies, and further investigation into edge device
deployment and federated learning.

This study evaluates the effectiveness of cybersecurity models using a detailed set of
performance metrics, listed in Table 10. These metrics include precision, which emphasizes
the accuracy of positive predictions, and recall, which assesses the model’s capability
to correctly identify all actual positives. The F1 score offers a balanced perspective by
considering both false positives and false negatives. Additionally, the overall accuracy
provides an estimate of the correct predictions made. The receiver operating characteristic
(ROC) curve and the area under the curve (AUC) provide both visual and quantitative
evaluations of the model performance. The results demonstrate that these metrics can be
used together to create a comprehensive evaluation framework that highlights the strengths
and weaknesses of the current cybersecurity solutions. The application of these metrics has
pinpointed critical areas for improvement, especially in enhancing the precision and recall,
which are vital in detecting cyberattacks effectively in IoMT environments.

There are several limitations that should be noted despite the thorough survey and
analysis that this study presents. Firstly, given the rapid development of this area, the study
might not include all recent developments and approaches in cyberattack detection for IoT
and IoMT applications. Furthermore, the quality and accessibility of datasets can have a
significant impact on the generalizability of the results and the assessment of the performance
measures and approaches. Moreover, although the importance of multidisciplinary coopera-
tion in tackling cybersecurity issues is emphasized, the study’s depth and breadth restrictions
prevented it from delving thoroughly into any particular interdisciplinary strategy.

Further investigation is necessary in areas such as creating lighter and more effi-
cient models, especially for IoT and IoMT applications, since existing models might not
be sufficiently scalable or resource-efficient. Better techniques for the identification of
novel risks and abnormalities are also required, particularly in the quickly changing cyber
threat landscape. To guarantee the efficient deployment of intrusion detection systems in
dispersed and resource-constrained contexts, more research on edge device deployment
and federated learning is necessary. In order to provide a thorough security framework
for healthcare systems, research should also look into how intrusion detection may be
integrated with other security measures like firewalls and intrusion prevention systems.

Significant challenges and gaps in knowledge remain despite advances in cyberattack
detection for IoMT networks. Incorporating advanced measures such as the false alarm
rate and invalid positive rate, improving the models’ accuracy, and creating intrusion
detection systems that are resistant to adversarial attacks should be the top priorities for
future research. In order to strengthen cybersecurity protection in IoMT scenarios, more
research into federated learning and edge device deployment is required, along with better
scalability and dataset variety. The creation of a safer digital healthcare environment that is
capable of successfully resisting cyber threats depends on these initiatives.
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