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Abstract: A simple method (first-order approximation) to determine the impact of M2 and the Strehl
Ratio on the effective focusable spot size avoiding complex propagations of the beam wavefront is
proposed. The model is based upon previous models and the definition of M2 and the Strehl Ratio in
a simple manner. This work provides qualitative and quantitative estimates for the interplay of M2

and the Strehl Ratio on the effectively focusable spot size.
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1. Introduction

The spot size of a laser beam close to the focus is an important parameter for many
laser applications [1]. The spot size depends on numerous factors, including, among others,
the laser wavelength, the beam profile, the numerical aperture (NA) of the system, and, in
general, the caustic of the beam (i.e., the propagation of the beam’s wavefront towards and
close to the focus) [2].

Often, simple numerical values are provided as a compact expression of the complex
effects of the beam’s wavefront close to the focus. Among them, M2 and the Strehl Ratio are
commonly reported values for the beam quality and the optical quality of laser systems.

M2 is simply a heuristic parameter of the laser beam [3], whereas the Strehl Ratio (SR)
is a metric of the point spread function (PSF) relative to the equivalent diffraction-limited
PSF [4]. A thorough presentation of beam quality metrics can be found in a seminal work
from 2006 [5].

M2 is a heuristic parameter of the laser beam related to the spot size in focus [6],
whereas the SR is a measure of the quality of optical image formation, originally proposed
by Karl Strehl [7]. The SR is frequently defined as the ratio of the peak aberrated image
intensity from a point source compared to the maximum attainable intensity using an ideal
optical system limited only by diffraction over the system’s aperture [8]. Usually, M2 values
of 1.25 or below are considered excellent (and non-rigorously as “close to the diffraction-
limit”) [9]. Similarly, optical systems with SR values of 0.8 or better are considered excellent
(and non-rigorously as “close to the diffraction-limit”) [7].

It has been previously shown that M2 and the SR affect different laser–tissue interac-
tion processes including laser-induced optical breakdown (LIOB) [10] and laser-induced
refractive index change (LIRIC) [11].

In this work, a simple method (first order approximation) to determine the impact of
M2 and the SR on the effective focusable spot size avoiding complex propagations of the
beam wavefront is proposed. The model is based upon previous models and the definition
of M2 and the SR in a simple manner. This work provides qualitative and quantitative
estimates for the interplay of M2 and the SR on the effectively focusable spot size. The
novelty of this work is providing analytical (yet simple) closed-form equations to account
for M2 and the SR effects in photochemical and laser–tissue interaction models.
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2. Materials and Methods

M2 has a value > 1, with a hypothetical, perfectly unaberrated beam having an M2 of
1. M2 is define as

M2 =
θπω

λ
(1)

where θ is the beam divergence, ω is the measured beam waist, and λ is the wavelength
of light.

In other words,
ωactual = ω0M (2)

where ωactual is the actual beam waist and ω0 is the theoretical minimum beam waist at
focus under ideal conditions, and

θactual = θ0M (3)

where θactual is the actual beam divergence and θ0 is the theoretical minimum beam diver-
gence under ideal conditions.

The SR has a value between 0 and 1, with a hypothetical, perfectly unaberrated optical
system having a Strehl Ratio of 1.

SR =
max(PSFactual)

max
(

PSFdi f f raction−limited

) (4)

Both M2 and the SR are thus related to a “redistribution” of the (constant) energy in a
different (wider) region (the spread). For a super-Gaussian profile, the following equation
applies for the intensity [12]:

I0 =
2

1
N NEPulse

πR2
0Γ

(
1
N

) (5)

where N is the super-Gaussian order of the beam profile (where N = 1 represents a simple
Gaussian beam profile, and N = ∞ represents a flat-top beam profile), EPulse is the energy of
the laser pulse, R0 is the spot size when the radiant exposure falls to 1/e2 its peak value,
and Γ is the gamma function (the general factorial function for non-integer arguments).

In first-order approximation for not strongly aberrated beams, the intensity (related to
the PSF and the SR) is approximately inversely proportional to the squared spot size (the
waist at focus) (i.e., inversely proportional to the area of the spot).

From simple geometrical considerations, this relationship holds true also for any
arbitrary shape other than super-Gaussian. We could scale the intensity by sz (affecting
SR) and the radial distance of the spot by sx/y (along x-y-plane). To keep the volume
constant (energy is redistributed) 1 = svol = sxsysz, we have to define the scaling factors as
sz = 1/(sxsy). For a rotational symmetric scaling, sx = sy holds. Therefore, sz = 1/sr

2.
In this work, the calculations have been made by “pen and paper”, and the figures

have been simply generated using Microsoft Excel (Office 365, Redmond, WA, USA).

3. Results
3.1. Simple Estimate of the Impact of Strehl Ratio on the Effective Focusable Spot Size

From the methods (sz = 1/sr
2) and from the explicit expression of the intensity for

super-Gaussian beams, it follows that

ωactual =
ω0√
SR

(6)

i.e., in a first-order approximation, the SR (reduction in the peak PSF relative to the diffrac-
tion limited PSF) produces an increase in the spot size inversely proportional to the square
root of the SR.
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3.2. Quantitative Estimates

Usually, M2 values of 1.25 or below are considered excellent (and non-rigorously as
“close to the diffraction-limit”) [9]. According to the results presented above, the M2 of
1.25 would increase the spot diameter by +12% (1.12×); the spot area by +25% (1.25×); and
reduce the PSF intensity by −20% (0.80×). Figure 1 presents the simple estimate of the
impact of M2 on the effective focusable spot size.
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Figure 1. M2 is a heuristic parameter of the laser beam related to the spot size in focus. M2 has
a value > 1, with a hypothetical, perfectly unaberrated beam having an M2 of 1. M2 is defined as
M2 = θπω/λ, where θ is the beam divergence, ω is the measured beam waist, and λ is the wavelength
of light. In other words, ωactual = ω0M, where ωactual is the actual beam waist and ω0 is the theoretical
minimum beam waist at focus under ideal conditions; θactual = θ0M, where θactual is the actual beam
divergence and θ0 is the theoretical minimum beam divergence under ideal conditions. M2 is related
to a “redistribution” of the (constant) energy in a different (wider) region (the spread). Usually, M2

values of 1.25 or below are considered excellent (and non-rigorously as “close to the diffraction-limit”).
M2 of 1.25 would increase spot diameter by +12% (1.12×); spot area by +25% (1.25×); and reduce the
PSF intensity by −20% (0.80×).

Similarly, optical systems with SR values of 0.8 or better are considered excellent (and
non-rigorously as “close to the diffraction-limit”) [7]. According to the results presented
above, an SR of 0.8 would increase spot diameter by +12% (1.12×); the spot area by +25%
(1.25×); and reduce the PSF intensity by −20% (0.80×). Figure 2 presents the simple
estimate of the impact of Strehl Ratio on the effective focusable spot size.

This suggests “equivalence” for both metric values considered excellent, since the
focusability impact of an M2 of 1.25 approaches that of an SR of 0.8.

Combining a laser with M2 values of 1.25 or below into an optical system with SR
values of 0.8 or better is considered excellent (and non-rigorously as “close to the diffraction-
limit”). According to the results presented above, an M2 of 1.25 combined with an SR of
the optical train of 0.8 would increase the spot diameter by +25% (1.25×); the spot area by
+56% (1.56×); and reduce the PSF intensity by −36% (0.64×).
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Figure 2. The SR is a measure of the quality of optical image formation. The SR has a value between 0
and 1, with a hypothetical, perfectly unaberrated optical system having a Strehl Ratio of 1. The SR is
frequently defined as the ratio of the peak aberrated image intensity from a point source compared to
the maximum attainable intensity using an ideal optical system limited only by diffraction over the
system’s aperture: SR = max(PSFactual)/max(PSFdiffraction-limited). SR is related to a “redistribution” of
the (constant) energy in a different (wider) region (the spread). It follows that ωactual = ω0/

√
SR, i.e.,

in a first-order approximation, the SR (reduction in the peak PSF relative to the diffraction limited
PSF) produces an increase in the spot size inversely proportional to the square root of SR. Optical
systems with SR values of 0.8 or better are considered excellent (and non-rigorously as “close to
the diffraction-limit”). SR of 0.8 would increase spot diameter by +12% (1.12×); spot area by +25%
(1.25×); and reduce PSF intensity by −20% (0.80×).

In a more typical engineering situation, combining a laser with M2 values of 1.15 into
an optical system with SR values of 0.85 would increase the spot diameter by +16% (1.16×);
the spot area by +35% (1.35×); and reduce the PSF intensity by −26% (0.74×).

4. Discussion

In this simple work, we have provided some useful explorations of the effects of M2

and SR on intensity. The laser intensity (close to the focus) is the driving force for many
laser–tissue interaction processes including laser-induced optical breakdown (LIOB) [10]
and laser-induced refractive index change (LIRIC) [11].

In a sense, this model provides an analogy between M2, SR, and NA, since, ultimately,
(for the same pulse energy) all three affect both the spot size and laser intensity. A priori, a
relationship between M2, SR, and NA does not seem intuitive. M2 is simply a property of
the laser beam, and the NA of the focusing lens is determined by the lens and input beam
size. The M2 of the laser beam affects its divergence and would affect the size of the beam
going into the focusing lens; the effects may be evaluated by a full aberrated Gaussian
beam analysis instead of simplified to a single-value M2 property.

For some cases, M2 may be “high” despite good focusing properties. A clear example
would be a uniform beam (top-hat or flat-top) [13]. An exact top-hat has an angular intensity
distribution that follows a sinc-squared function and thus has a ∆θ that diverges and is not
well defined. It has been theoretically found that M2 = N

√
(Γ(3/N)Γ(2 − 1/N))/Γ(1/N)

≈
√

(N/3), where the approximation is valid for a large N. A smooth top-hat can be
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approximated for a super-Gaussian order N > 10, leading to a theoretical M2 > 2. This may
well represent a sort of soft limit for the application of this simple model.

The effects of M2 are subtle and not easily accounted for with precision, but the general
idea at least captures (perhaps only to first order) the effects of imperfect beams. Therefore,
to simplify things, the case of diffraction-limited beams (i.e., removing M2 and the SR from
all the equations) is generally considered. Most of the literature on laser–tissue interaction
processes assumes an ideal scenario for both parameters (M2 = 1; SR = 1). This clearly
overestimates the laser intensity in focus, and is then re-normalized to empirical values
using different sorts of gain factors [14]. From an engineering point of view, a “realistic
ideal”/“proper optimum” would be more in the range of M2 < 1.25 (~1.15); SR > 0.8 (~0.85).
As shown in the results, this means a spot size +16% larger than ideal, a spot area +35%
larger than ideal, and an intensity in the focus only 74% from ideal.

Interestingly, in the proposed model, the isolated effects derived from both “close to
diffraction-limited” values (M2 < 1.25 and SR > 0.8) are equivalent to one another (although,
rigorously, this is strongly dependent on the mix of modes included in the laser beam).

The M2, SR vs. NA analogy is based on the idea that the effects depend on the
number of photons combined in the material in space and time [15]. The beam waist in
the focus is proportional to M and inversely proportional to the NA. This is the reason
why the parameters are considered in the same manner. It may be (and it is likely) that the
provided equations are oversimplified, and the cross effects of M2 and the SR are much
more complex.

Importantly, it is debatable whether the SR and M2 (both related to the focusing
abilities) shall be combined, since it is likely that the SR may already include the effect of
M2 (and vice versa). A second limitation is the use of a first-order approximation. The
presented approximation is consistent with Gaussian beam propagation (of “quasi-perfect”
beams) [16]. M2 and the SR are both convenient single-figure parameters to represent
generic aberrated beam propagation and focusing. However, the actual PSF in general may
not preserve the shape (in a xyz scaled version) of the diffraction-limited PSF. It may be
that the assumption 1/

√
SR is actually “punishing” the spot size too little.

Yet, there are other approximations in optical aberrations theory which provide a
reasonable estimate of the SR based simply on the root mean square (RMS) of the beam
aberrations, regardless of the specific waveform of the aberration [8]. These approxima-
tions (including the presented model) eliminate the complexity of a formal beam caus-
tic measurement for generic aberrated beams (both from the laser source and from the
optical system).

Multiple different combinations of aberrated beams (from the source and from the
optical system) may lead to the same M2 and SR figures, and yet to different behaviours
in focus. The presented first-order approximation, although it cannot replace a rigorous
formal approach, shall provide better estimates than ignoring the effects of M2 and the SR
(in other words, assuming all beams are perfect, and all optical systems are ideal, meaning
diffraction-limited focusing conditions are assumed to apply).

Probably, the proposed equations hold for “small” levels of aberrations and break
down for larger magnitudes. An interesting question is “where the transition from small
aberration to large aberration lies”, what determines this transition point, how it depends
on spatial frequency, the type of aberration, phase reversals, and so on.

The RMS to SR approximation holds valid for an SR as low as ~0.3 [8], and yet, as
mentioned before, an SR > 0.8 is considered reasonably diffraction limited [7]. The proposed
approximation model is not meant for a low SR (<0.5) or for a large M2 (>2), and probably
works best limited to an SR > 0.67 (~0.82; ~0.50.5) or M2 < 1.5 (~1.252; ~20.5).

The relation between M2, the SR, and beam aberrations causing a different spot size
would be a study on its own. However, it made sense to assume a simple linear contribution
instead of taking the beam quality as not influencing the beam size at all (confirmed in
light of the relevant reductions in intensity and increases in the spot size obtained even for
excellent beam and optical qualities, M2 < 1.25 and SR > 0.8).
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In principle, M2 and the SR could be ignored as an approximation, and an aberrated
wavefront on the focused beam should be incorporated instead, and (photochemical)
models with an arbitrarily aberrated wavefront beam should be developed.

For a variety of laser–tissue interaction processes, it is not only the laser pulse intensity
which comes from the focus size, but the pulse overlapping as well [17]. Thus, the focus
size and the overlapping factor are both influenced by the NA as well as the beam quality
(M2 and the SR in our model).

In the limiting case for which the laser–tissue interaction process is only driven by
the applied dose (in the presence of tight pulse overlapping, average energy per unit of
area) [18], the effects of M2 and the SR vanish (since the reduction in intensity is compen-
sated by the cumulative overlap effect) and the results are identical to those obtained under
the diffraction-limited assumption.

At the other end of the limiting case for which the laser–tissue interaction process is
a single pulse effect (i.e., no pulse overlapping or cumulative effects play a relevant role),
the effects of M2 and the SR are maximized compared to the results obtained under the
diffraction-limited assumption [10].

In between, there is a corridor of increasing/decreasing importance for the effects of
M2 and the SR. For multiphoton absorption (non-linear) processes for which both the single
pulse intensity I (suprathreshold process) and pulse overlapping are involved, a formal
estimate can be derived [19].

E f f ect ∝ E Im−1 ωx

∆x
ωy

∆y
(7)

where m is the multiphoton order, ωx/y the spot size, and ∆x and ∆y the interspot distance.
Since

I =
I0SR

Mx My
(8)

ωx/y =
ω0,x/y Mx/y√

SR
(9)

The effect can be rewritten as

E f f ect ∝ E Im−1 ωx

∆x
ωy

∆y
= E

(
I0SR

Mx My

)m−1 ω0,x Mx

∆x
√

SR

ω0,y My

∆y
√

SR
(10)

E f f ect ∝ E I0
m−1 ω0,x

∆x
ω0,y

∆y

(
SR

Mx My

)m−2
(11)

E f f ect ∝ E f f ect0

(
SR

Mx My

)m−2
(12)

As it could be expected for two-photon processes, the reduction in the intensity due to
M2 and the SR is fully compensated by the increase in pulse overlapping. But for increasing
orders of the multiphoton process, the reduction due to M2 and the SR dominates over the
increase in the pulse overlapping. For the engineering optimum described before (M2 ~1.15
and SR ~0.85), the actual effect would be 74% of the diffraction-limited effect for a three-
photon process; but further reduce to 55%, 40%, and 30% of the diffraction-limited effect
for four-photon, five-photon, and six-photon processes, respectively. Figure 3 presents the
simple estimate of the impact of M2 and Strehl Ratio for different multiphoton orders on the
effect of photochemical models for laser tissue interaction accounting for spot overlapping.
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limited effect for a 3-photon process, but further reduce to 55%, 40%, and 30% of the diffraction-limited
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These values hint that numerical modelling under the assumption of diffraction-
limited setups may largely miss the empirical findings. However, it would be of value to
establish a convenient “rule of thumb”, like the one proposed in this model.

Further, this model may help one to understand differences among the units of the
same design (as a plausible explanation), when clearly distinct behaviours are observed at
different units which should be otherwise identical. The use of “semi-empirical” gain fac-
tors [14] may work (and seems to work, since this is the conventional approach) to describe
the process for a particular model setup (provided that model setup can be reasonably
replicated); yet static “semi-empirical” gain factors fail when it comes to explaining subtle
differences in the behaviours for units which were identical in design, but different within
the spread of the normal optical quality ranges.

Table 1 summarizes all the findings.

Table 1. Summary of all findings in relative terms.

M2 SR m Spot Diameter Spot Area Intensity Effect

1 1 4 100% 100% 100% 100%
1.15 1 4 107% 115% 87% 76%

1 0.85 4 108% 118% 85% 72%
1.15 0.85 4 116% 135% 74% 55%
1.49 1 4 122% 149% 67% 45%

1 0.67 4 122% 149% 67% 45%
1.15 0.85 2 116% 135% 74% 100%
1.15 0.85 6 116% 135% 74% 30%

This work emphasizes the need for a conscious and driven selection of the adequate
wavelength to drive the aimed for process. In general, the shortest feasible wavelength to
drive the process is advisable. This has at least two positive implications: on the one hand,
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the efficiency of the process will be increased (due to the lower multiphoton order), and on
the other hand, the detrimental effects of M2 and the SR may be strongly reduced.

For corneal work (the expertise domain of the authors), most intracorneal laser–tissue
interactions are currently performed with ~1 µm wavelengths (representing a five-photon
process). Increasing the wavelength to ~1.2–1.3 µm (representing a six-photon process)
would be detrimental since the statistical likelihood of six photons reaching the effect
volume will be strongly reduced (compared to five photons) and is more sensitive to optical
imperfections in terms of M2, the SR, or aberrations. On the contrary, shortening the
wavelength to ~760 nm (representing a four-photon processes) would enhance the effect
since the statistical likelihood of four photons reaching the effect volume will be higher
(compared to five photons) and less sensitive to optical imperfections in terms of M2, the SR,
or aberrations. Further shortening the wavelength to ~570 nm (representing a three-photon
process) would enhance it even further, yet it may not be clinically feasible due to the strong
irradiation falling in the visible spectrum. Finally, shortening the wavelength to ~370 nm
(representing a two-photon process) would “optimize” and “stabilize” the effect, since just
two photons are required in the effect volume and the process may be insensitive to M2

and the SR.
Corneal processes which may benefit from a proper selection of the wavelength

include the LIOB [10] and LIRIC [11] processes. For LIOB [10], a reduction from ~1035 nm
(five-photon process) down to ~345 nm (two-photon process) suggests an almost ~5-fold
decrease in the LIOB threshold (but the same sensitivity to M2 and the SR, due to the single
pulse nature of the effect). For LIRIC [11], the same reduction suggests an over ~1000-fold
increase (over three orders of magnitude) in efficiency (plus improved stability against M2

and the SR, as shown in this work).
Since the NA and focusability are very important for many applications, in terms of

other possible factors affecting the beam quality, i.e., the spot size, in this case, M2 and the
SR have been considered in the model. The main idea behind the model is to explain and
support actual experimental data which are produced using real-life systems which do not
have perfect beams.

Previous works have considered the effects of or provided refined methods to de-
termine M2 or the SR. For the single-pulse machining of glass with ultrashort pulses
at near-infrared wavelength, a theoretical calculation and corrections based on M2 was
provided for the ablation of glass inferred from experimental results [20]. Beam quality
measurements with a Shack–Hartmann wavefront sensor and M2 sensor were compared
in another work. With a Shack–Hartmann wavefront sensor, the wavefront of the beam
can be easily measured and M2 can be determined from the wavefront [21]. In another
work, for spatio-temporal coupling distortion cases, the Strehl Ratios showed a trend of
improvement as the F-number decreases [22]. A previous publication corrected the wave-
front distortion induced during the post-compression of a 100-TW Ti:Sapphire laser. By
compensating for the wavefront aberrations with an adaptive optics system, the Strehl Ratio
of the post-compressed beam was improved from 0.37 to 0.52 and the focused intensity of
the post-compressed beam could be enhanced by a factor of 1.5 [23].

How the NA, SR, and M2 crosstalk in different systems is a different story, because
it depends on both the M2 of the laser source and the SR modifications along the specific
optical train.

Of note, the combined use of M2 and SR corrections is only granted if the SR is
calculated for an ideal beam, and it does not intrinsically/implicitly incorporate the effects
of the M2 of the actual beam. Otherwise, the provided corrections shall only consider the
SR (of the system) and ignore M2 (since M2 is “embedded” into the system’s SR).

5. Conclusions

Adding M2 and the SR as parameters into photochemical models to consciously
deviate from the diffraction-limited assumptions could explain the empirical findings
observed/determined with real-world experiences, in particular, using commercially avail-
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able systems. This work provides analytical (yet simple) close-form equations to account
for the M2 and SR effects in photochemical and laser–tissue interaction models.
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