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Abstract: The modeling of many problems of practical interest leads to nonlinear ill-posed equations
(for example, the parameter identification problem (see the Numerical section)). In this article, we
introduce a new source condition (SC) and a new parameter choice strategy (PCS) for the Tikhonov
regularization (TR) method for nonlinear ill-posed problems. The new PCS is introduced using a new
SC to compute the regularization parameter (RP) before computing the regularized solution. The
theoretical results are verified using a numerical example.

Keywords: source condition; parameter choice strategy; Tikhonov regularization method; ill-posed
problems

1. Introduction

Many problems of practical interest lead to nonlinear ill-posed equations. For example,
consider the inverse problem of identifying the distributed growth law x(t),t € (0,1) in
the initial value problem

% =x(t)y(t), y(0) =c, t€(0,1) (1)

from the noisy data y°(t) € L*(0,1).
If it is the exact case, we can use the variable separable method and obtain that
x(t) = £ Iny. Assume there is a fidelity term ¢ sin((s%) added to Iny so that

t
lny5—lny+(5sin(52>. (2)
Taking the derivative with respect to t for finding new x°, we obtain
d 1 t
6 _ Z —
x (t)—dtlny+5cos<52>. 3)

Note that the magnitude of noise is small (if § is small) in (2), but it is large in (3).
This is typical of an ill-posed problem (the violation of Hadamard'’s criterion [1]). One can
reformulate the above problems as an ill-posed operator equation £(x) = y with

[L(x)](t) = ceh @48 ¥ [2(0,1), t € (0,1). 4)
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The problem is to find x for a given y, when y is not exactly known. The modeling of
problems in acoustics, electrodynamics, gravimetry, phase retrieval, etc., that leads to the
solving of ill-posed equations can be found in [2].

Another real-life application occurs in the parameter identification problem when
mathematical models used in biology, physics, economics, etc., are often defined by a
Partial Differential Equation (PDE) (see Example 1) [3,4]. It is known that in general the
solution of such a PDE need not be an elementary function. So, based on the experimental
data, one need to obtain the parameters of the mathematical model. This type of problem
is known as the parameter identification problem [5].

In this paper, we consider the abstract nonlinear ill-posed equation

L(f)=g (5)

where £ : D(£) C U — V is a nonlinear operator and U, V are Hilbert spaces. Through-
out the paper, it is assumed that £ is weakly/sequentially closed, the continuous operator
D(L) is a subset of U, £ has the Fréchet derivative atall f € D(L) and is denoted by £'(f),
and £'(f)* is the adjoint of the linear operator £L'(f). We are interested in an fy-minimum
norm solution f (fo—MNS) (see [5,6]) of (5) (here, fy is an apriori estimate in the interior of
D(L), see [5,7,8]). Recall that a solution f of (5) is called an fy — MNS of (5) if

If = foll = min{||f — foll - £(f) = g, f € D(L)}.

We assume that f does not depend continuously on the data g, and the available data
are ¢° with
g —&°ll < 4. ©)

In such a situation, regularization methods are employed to obtain approximation for
f. TR is the well-known regularization method [5,6,8-13]. In this method, the minimizer fa‘f
of the Tikhonov functional

Ju(f) = 1£(F) = &I +allf = foll>, f € D(L) (7)

for some & > 0 is taken as an approximation. It is known [5,9] that f¢ satisfies the equation

L'(f) (L) = &) +a(fa — fo) =0. ®)

The convergence and rate of convergence of || f¢ — f|| are obtained [5,9,14] under
the so-called source conditions (SCs) on fy — f. Recall that apriori assumptions about the
unknown solution f are called source conditions [15]. The most commonly used SCs for
the TR method are [5,9];

fo—f = (I'T)"w for some w € N(I*T)*, ||w|| <p, 9)

where I' = £/(f), T* is the adjoint of the linear operator I, and [16,17]

P

fo=f = (L'(fo)*£'(fo))"w for some w € N(L'(fo)" L' (fo))=, lw| <p  (10)

forp>0,0<v <1

Other types of SCs are also studied in the literature, for example, the generalized
source condition [16-20] and variational source condition [21-25].

In this paper, we introduce a new SC, i.e, we assume that

fo—f = (L*L)"w for some w € N(L*L)*, ||w|| < p, (11)
where L = fol L'(f+t(fo— f))dt,o > 0,0 < v < 1. It is known that [5,8,14,16], under

the SCs (9) and (10) the best possible rate of convergence of || ¢ — f|| is O(d Zv%) We shall

prove that the SC (11) also gives the convergence rate O(d 23%) (hereafter, we call v the
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Holder-type parameter). We formulate the new SC to introduce a new PCS (this stategy is
apriori in the sense that the RP « is chosen depending on é and ¢° before computing the
regularized solution f2) to choose a. The new PCS gives the order

2v

172 =71l = { o)

Note that most of the apriori PCS depends on the unknown v in the SC. The advantages
of our proposed PCS are (i) it is independent of the parameter v, (ii) it provides the order

O(é %) for0 < v < %, and (iii) it is apriori in the sense that it is computed before
computing the regularized solution f2.

In earlier studies such as [10,11,20,26-28], the regularization parameter & = «(#,9),
depending on the iteration step, is computed in each iteration, and the stopping index is
determined using some stopping criteria [11,20,26-28]. This apprach is computationally
very expensive, but our approach requires the computation of « = «(J) only once (here, a
is independent of the iteration step); hence, one can also fix the stopping index for a given
tolerence level in the beginning of the computation (see the comparison table in Example 1).

The above-mentioned advantages are obtained without actually using the operator L
for computing « and f? (or the iteratively regularized solution).

Another class of regularization methods is the so-called iterative regularization meth-
ods [26-36] (and the reference therein). Since our aim in this paper is to introduce a new
PCS that allows us to compute the RP « (depending on ¢° and &) before computing the
regularized solution f,,‘? , we leave the details of the above-mentioned (except (11)) source
conditions and iterative regularization methods to motivated readers.

The rest of the paper is arranged as follows. An error analysis under the new SC is
given in Section 2. A new PCS is given in Section 3, the numerical results are given in
Section 4, and the paper ends with a conclusion in Section 5, followed by the Appendix.

2. Error Analysis
The proof of our results is based on the following assumptions (cf. [5,9]).

(i) 3 constant kg > 0 and a continuous function ¢ : D(£) x D(L£) x U — U such that
for (f,z,v) € D(L) x D(L) x U, thereis a ¢(f,z,v) € U such that

(L'(f) = L'(2)v = L' (2)9(f,2,0), (12)

where
o (f,z,0)[| < kol f —zll]|o]-

(i) 3 constant k; > 0 and a continuous function ¢ : D(L£) x D(L) x V — V such that
for (f,z,§) € D(L) x D(L) x V, thereis a ¢1(f,z,g) € V such that

(L'(f) = L'(2))g = L'(2)"¢1(f,28), (13)

where
lp1(f, 2z )l < kallf —zlllgll-

(iii) 3 constant k; > 0 and a continuous function ¢, : D(£) x D(L) x U — U such that
for (f,z,v) € D(L) x D(L) x U, thereis a ¢5(f,z,v) € U such that

(L'(f) = L(2)) LN (2)v = L(2)" L (2) p2(f, 2, 0), (14)

where

lo2(f,z,0)[| < kol f = z]|[|2]-
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(iv) 3 constant k3 > 0 and a continuous function @3 : D(L) x D(L) x V — V such that
for (f,z,g) € D(L) x D(L) x V, thereis a ¢3(f,z,g) € V such that

(L'(z) = L)L (2)'8 = L)L (2)" 93(f,2.8), (15)

where

lp3(f 2, &)l < ksl f —z[llg]-
Remark 1. (a)  Note that, by (ii) above, we have
L'(f")h=L'(f)*R(f', f,h) (16)

where |R(f', f,h)|| < Cgr||h|| for some constant Cg > 0 provided || f — f'|| is bounded.
(b)  Using the above assumptions, one can prove the following identities (proof of which is given in

Appendix A). Let 11 = fol L' (u+t(v—u))dt. Then,

1L ()L (f) +al) 1L ()" (T = L'(f))¢]l

{ ko (Il —FIl+ 1270 ) gl o # f a7
kol 21l v=f
ICL ("L (F) + ) AT = £/ ())) L' (f)é]]
{ ka(lle— I+ 25 lel, o f as)
Rl gl v=f,
ICL ("L (F) + ) HAT = £ ()) (T = L' ()
2
{ kako (I £l + 2524 ) el v # £ )
3kako 5 1211 v=f
and
el (L (L ()" +al) ™ — (LL" + al) Mg (20)
- { (ksCr + ko) (If = Fll + Lop Ll la(LLr +ar) 2], £ # fo
T U kaCr k) B (L 4wy f=fo
(c)  We will be using the following estimates:
[(L*L +aD) Y (L*L)Y|| <a' !, 0<v <1, (21)
ICL L (F) +al) L' () L' (Il < 1, f € D(L) (22)
and
1L L (F) + )T L' ()| < \}E feD(L). (23)
Letr := < 4 2rg, where rg = || fo — f||. Then, since f? is the minimizer of (7), we have

N

L) =& 1P +allfd = fol* < 1L =& 1P +allf — foll®
= & +alf - fll?
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hence,
0 A 1)
5 < 92 _ _ 9 _
I~ foll € S+ 1F = foll = 7+

Similarly, we have
1fe = foll < [lfo = fII = ro-
First, we shall prove that fo — f € R(L*L) implies fo — f € R(I"T) and fy — f €
R((L*L)Y) implies fo — f € R((I"T)"1) for 0 < vy < v.

Proposition 1. Suppose (i) and (iii) hold. Then, the following hold:
(P1) fo—f=LLz |zl <p= fo— f=T"T&, ||Z&|| < po for some po > 0.

(P) fo—f = (L'L)z |z < p = fo—f = (I'T)"¢&:, |1&:]| < p1 for some py > 0,0 <
rn<v<l

Proof. The proof is given in Appendix B. O

Remark 2. Similarly, one can prove

(Py) fo—f="L"Lz, |lz| <p= fo—f =L (fo)" L (fo)& |1zl < po for some pg > 0
and

() fo—f = (L'L)'z, |zl < p = fo—f = (£'(f0)" L (f0)"1&, I&]| < p1 for some
1 >00<1v <v<l.

Remark 3. Proposition 1 shows that SC (11) is not a severe restriction, but it almost follows from
SC (9) or SC (10). But the advantage of using SC (11), as mentioned in the introduction, is that
one can compute the reqularization parameter « (depending on ¢° and &) before computing the
reqularized solution f2 (see Section 3).

Lemma 1. Ifwe suppose kor < 2, then assumptions (i) and (iii) hold. Let f2 be as in (8) and f, be
the solution of (8) with g in place of g°. Then,

12 =l € 5= | = +harCho(r+ )+ DS = I

Proof. The proof is given in Appendix C. O

Lemma 2. Suppose korg < 2, (11) and the assumptions (i)—(iii) hold. Then,

a 2 3
1= A1l < 220y k) 30 4 1)
2—k07’0

2

Proof. The proof is given in Appendix D. O

Next, we prove the main result of this Section using Lemma 1 and Lemma 2.

Theorem 1. Let the assumptions in Lemmas 1 and 2 hold. Then,

0

aY),
oc+ )

If2 = £l < a

N

where q = %kor max {1,k2r(k0(r + )+ 1)227”,?;&0 [(ksCr + kl)% +1] } In particular, for

2
& = OS2+, we have

~ 2v
If2 = Il = O(s2+7).
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Proof. Since,

1f2 = FI < UF2 = fall + 1 fa = I,

the result follows from Lemma 1 and Lemma 2. O

2 2
Remark 4. Note that the apriori parameter choice « = 2v+T gives the order O(J i1 ), for 0 <
v < 1. But, v is unknown, so such a choice is impossible when it comes to practical cases. So, we
consider a new PCS that does not require knowledge of the unknown parameter v and provide the

order O(ézvzﬁ),foro <v<land O(é%),for% <v<L

3. New Parameter Choice Strategy
Let
d(a,8°) = |la(LoLg + D)~ (L(fo) — &)l (24)
where Ly = L'(f)).

Theorem 2. The function o — d(w, g°) for & > 0, defined in (24), is monotonically increasing,
continuous, and

- 5y o0 : 5y o0
lim d(e,8°) = [P(L(fo) —=&")ll,  lim d(a,¢%) = [£(fo) = &°l,
where P is the orthogonal projection onto the null space N (L) of L;.

Proof. See Lemma 1in [18]. O

Further, we assume

IP(L(fo) = &°)II < e6 < [I£(fo) = &°II, (25)

for some ¢ > 1.
The application of the intermediate value theorem gives the following theorem.

Theorem 3. If g° satisfies (6) and (25), then 3 is a unique a such that
d(n,g°) = cé. (26)
We will be using the following moment inequality:
1B x| < ||B”x||* [|x||'"7, 0<u<v, (27)
where B is positive selfadjoint operator (see [37]).

Lemma 3. Let a = a(6) be the unique solution of (26) and (k3Cr + kl)zﬂ < 1. Suppose that
(11) holds and g" satisfies (6) and (25). Then, under the assumptions (i), (ii), (iii), and (iv):

Ife = fIl = 065), 0<v <1
Proof. The proof is given in Appendix E. [

Lemma 4. Let ¢° satisfy (6) and (25) and let w = w(6) satisfy (26). Further, suppose (11) holds
and assumptions (i)—(iv) hold. Then,

o fowtnus]

NG o), v>1
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Proof. The proof is given in Appendix F. O

Theorem 4. Suppose that the assumptions in Lemmas 1—4 hold. Then,

2v

R n O(H2v+1 ’1/<1
Hﬁ—fW—{ orivse
2

Proof. Since,

1f2 = I <02 = fall + 1fa = £
the proof follows from Lemmas 1-4. O

Remark 5. Note that « = a(0) satisfies (26) and is independentof v and gives the order O(6 %)

for0 <v < land O(s %) for 3 < v < 1. Also, observe that the PCS does not depend on the
operator L and that the reqularization parameter w is computed before computing f2.

4. Numerical Example

Next, we provide an example satisfying the assumptions (i)-(iv).
Example 1. Here, the problem is to find q satisfying the two-point boundary value problem

—u"+qu=f, te(0,1)

u(0) = g0, u(1) = g1, 28)

where go, g1 and f € L?[0,1] are given. This problem can be written as an operator equation of
the form L(q) = u(q), where L : D(L) C L?[0,1] — L?[0,1] is a nonlinear operator and u(q)
satisfies (28). Here,

D(L) := {q € L?[0,1] : ||g — qo|| < € for some g € U and small enoughe > 0},

where
U={q€L?0,1:4>0 ae.}.

Then,

L'(ph=-T;HL(@), L'(9)'w=-LQT; " (w),

forq € D(L),h,w € L*[0,1], where T, : H*(0,1) N H}(0,1) — L?[0, 1] satisfies
Tju=—Au+qu, uc H*NH].

Assumptions (i) and (ii) are verified in [5]. The verification of assumptions (iii) and (iv) is
given in Appendix G.

We estimate the parameter a using PCS (26). To compute f2 in (8), we use the Gauss—Newton
method, which defines the iterate {f{ } fork =1,2,... by

firra = foa = (L' URa) L (o) +a) L (f) " (L(f0) = 8°) +alfin — fo). - (29)

Since we are estimating q, we will use the notation qi/ o Jor f]f w4 for f, and u® for ¢° in
the example.

We take f = 100e~100—05)° and o = 1, g = 2as in [28]. Then, § = 5¢2(1 — t) + sin(27tt).
For our computation, we use random noise data u® so that ||u — u®|| < &. Further, we have taken the
initial approximation as gy = 0. We have used a finite difference method for solving the differential
equations involved in the computation by dividing [0, 1] into 100 subintervals of equal length, and
the resulting tridiagonal system has been solved by the Thomas algorithm [38].
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We have taken ¢ = 4 in (26) to compute «. Table 1 gives the values of ¢, the parameter

1.8
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« computed using (26), and the error ||qi . — 4|l and time taken to compute & for different
values of J. The corresponding figures are provided in Figure 1.

wl
02 0z 04 0 o8 1 % ‘ 0z 04 06 08
(g): method (29), 6 = 0.005 (h): method (30), 6 = 0.005
Figure 1. Exact (— — ——) and computed solutions (x * ) for various parameters given against
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Table 1. Computed « and computed error.
Elapsed Time
5 A 1%
Method 0 * quzlx l in Seconds
0.01 3.8147 x 10~° 0.0255 0.1664
0.001 3.7253 x 1077 0.0081 0.3884
(29) 0.05 3.0518 x 107> 0.0298 0.1277
0.005 9.5367 x 10~7 0.0178 0.1865
0.01 1.9073 x 10~ 0.0138 0.2190
0.001 3.7253 x 10~ 0.0086 0.5289
(30) 0.05 6.1035 x 107> 0.0404 0.3383
0.005 4.7684 x 1077 0.0143 0.3988

J
fk+1,lxk+1

We compare our method with that of the most widely used iterative method [26] for

(5), which is the regularized Gauss Newton method, in which the iterations xi , are defined

fork=0,1,2,...by

= fime = (£ fiw) £ F) + D) ML (o) (L(fa) —¥°) + 2 f, — o)l (30)

where fg « = Xo. Here, (wy) is a given sequence of numbers such that

«

>0, 1<— <r and limaz=0
Kf+1 k—o0

for some constant r > 1.

Stopping index: Choose k; as the first positive integer that satisfies

1
§(||F(xi‘,.)—y5|\+\|F(xi(,._1)—y‘5|| < 19, (31)

where T > 1 is a sufficiently large constant not depending on é. We have taken A = 1.05
and a; = 1/k in our computations.

We use a 4-core 64 bit Windows machine with 11th Gen Intel(R) Core(TM) i5-1135G7
CPU @ 2.40GHz for all our computations (using MATLAB).

Clearly, the table shows that our approach requires less computational time than that
of method (30).

5. Conclusions

We introduced a new SC and a new PCS for the TR of nonlinear ill-posed problems.
Our PCS does not require knowledge of v, and it gives the error estimate

|W—ﬂ={OWM§

The advantage of our method is that one can compute the RP « before computing
the regularized solution f2. We also applied the method to the parameter identification
problem modeled as in Example 1 and obtained favourable numerical results.
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Appendix A. Proof of the Identities (17)—(20)

Using assumption (i), we have
1/ (F) £/ () + al) L/ () (1T = £/(F))2]
= WYL+ LYY [ ol io—w, f0))
. {mow—ﬂ+ﬂi”wahv#f
— L ko, v=f

and using (iii), we have

1L ()L (f) +al) " AT = L'(F)*)L (]
= L)L (f) +al) L () L'(f)
1

< [ a0 —u), £, 0t

Y

. {b|m fl+ D)l o f
ko e, v=f
and by (i) and (iii);
I (F)* £/ (f) +al) " (I = £/(F)") (T~ £'()&]
= (L)L) +al) (AT~ L(F))L(f)
1
< [ pluto—u), £,
= L)L) +al) L) L (f)
1 1
></ (pz(u—l—T(v—u f, / (u+ t(o — u), f, &)dt)dr|
< ol — 1+ 22 [ gt 10— ), g, 00a1)
. {bmou—fwﬁﬂfOHN,v¢f
kako I g v=f.

Further, using (ii), (iv), and Remark 1 (a) and (c), we obtain

lal (L ()L ()" +al) ™ = (LL* +aI) C|

= (L' (HL' (" +al)HLL" = L'())L"(f) Ja(LL" +al) 71|
= ||( "HL ) +al) L = L)L+ L)L = L'(f)")]
xa(LL* +al) 17|

w%ﬂ'qﬁ+amlkL—UU»ﬂUr
< [ RG+elfo— ) faln +an) e

+L(F)(L = L'(f)7)a(LL" + al)lél H
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< EHLE +a) LOLY) [ RG 4o s,

[ g5+ 1o = P fo(an + at) )]
FIE (FL () +aD) L (L (f)

< [ oulF + o~ P f(an + at) g
{(kscR+k1><|f A+ L) (L + o), f # fo

(ksCr + kp) Lo ZL (1L + a1y~ 1g, f=fo

Appendix B. Proof Proposition 1

Suppose fo — f = L*Lz, ||z|| < p. Then, by (i) and (iii) we have

fo—f

L*Lz
[L*L — T*T)z + "Iz
(L* F*)L+F*(L I))z + "Iz

|
[(L* =T*)(L—T+4T)+T*(L—T)]z+TI"Tz,
[(L* —T*)(L—T)+ (L* =T*)[ +T*(L —T)]z+T'Tz,

1 ~ A A
(L* ~T*)T / (F+lfo= ). f2dr+ [ T'Toalf +t(fo— ). f.2)at

+ /O UTo(f +t(fo — f), f,2)dt +T'Tz,
[ Tl 10~ DF [ o(f + o~ . f 2y

+ [ UToa(f 4 1o~ . f 2+ [T 4 iy~ ) f o)+ T,

*TY(f,z f),

where ¥(f,z, f) = fo (p2<f+tf0— .1 fo (f+t fo—f),f,z)dr>dt+

fo e2(f+t(fo— f), fz)dt + fo (f +t(fo — f), f,z)dt + z. Further, we have

¥zl s | /Olqoz<f+t<fof>,f,/01<o<f+r<fof>,f,z>dr>dt||

1 R A a
H [ oaf+ 1= .2t
4 [ ol +1Go— ) f, 2t + )
(kzkf’nfo—fnﬂk +hy >> Uo7

kok
[(T}+(k2+ko)>?+1 [y

IN

+ 1] Iz

=:Po-
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This proves (P1). To prove (P;), we use the formula ([37], p. 287) for the fractional
power of positive self-adjoint operators B given by

Bex = M/ TQ{(B+TI)1x—®(ﬂx+...+(—l)"®(r)8”1x]dt
T Jo T ™
sinfrg [x  Bx -1 Br—1x
+ p. {Q Q_1+...+( 1) 7Q_n+1,xeu,

where
[0 if 0<¢<1
G)(9)_{1 if 1<¢<oo

and ¢ is a complex number such that 0 < Reg < n.
Suppose that fo — f = (L*L)"z,0 < v < 1. Then, by using the above formula, we have

A

fo—f = [(L"L)! = (I"T)"]z + (I'"'T)"z
- sz(” /O T (T 4 71) 7 x (UL~ TT)(L°L + 71)~'zde + (T°T)',
_ _@ /O°° (T T 470 (L = T*)(L=T) + (L* = T*)T

+T*(L — r)] (L*L 4 7I)~lzdt + (T*T)"z.

So, by using (i) and (iii) we have

fo—f = —M/OOOT”(F*T+TI)’1

7T
X[@*—Wﬁﬂfﬂf+ﬂh—f%ﬁ@%+¢01ﬂ%
+ /01 T Toa(f 4 t(fo — f), f, (L*L + 71) ~z)dt

+/01 T*To(f +t(fo — ), f, (L*L + 1) "'z)dt | dT + (T*T)"z

(again, using (iii) we have)

- —L‘"(V)/ V(T + 1)~
T 0

<| [ rre(fein-ng
/01 o(f +s(fo—f). f, (L*L+ TI)‘lz)ds> dt
4 [T T + 1o~ ), (0Lt 1) )

+/Ol UTo(f +t(fo— f), f, (L*L + tI)~'z)dt |dT + (T*T)"z
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so, for 0 < v; < v we have

fo—f = (I'T)1 [— M/Ow (D) (T*T 4 71) !

T

1 . o o
X{/o (P2<f+t(fo—f),f,/0 (P(f+s(f0—f),f,(L*L+TI)1z)ds>dtd'r
+ /01 @2 (f+t(fo— f), f, (L*"L+ 1) 'z)dt

+/01 o(f +t(fo— 1) f, (L*L+TI)1z)dt} dt + (T°T)'z

= (I"D"¢E,
where
& = —Sm;[(v)/ /(TT) " (T°T + 71)
0

1 . ! . L
x { /O ¢2 (f +t(fo —f),f,/0 o(f+s(fo—f), f, (L*"L + rl)lz)ds> dt
+ /01 @2 (f+t(fo— f), f, (L*L+ tI) 'z)dtdr
+ /01 o(f +t(fo—f). f. (L'L+ TI)lz)dth} + (I*T)V "z,

Further, by (i) and (iii) we have

1 [e<)
=1l < </O () (T )|

7T

N k+k
Ifo — fII? + 222

+H@ ) lz])-

[““ Hh—f”MLL+TD1m4WT

By spliting the limit of intergration and rearranging the terms, we obtain

kz—l—k()

182l =

Vﬂﬂf P+

——lfo —fII]

x [/Ol (D) (0T 4 7)Y |

<[ (T + D) |(L*L + <)~ |1z d

+/1w T ()t (T*T+T1)_1|||(L*L+TI)_1|||Z||dT1
HIT T 2]

Now, using the relations ||(T*T)! V1 (T*T + =I)~1*"|| < 1, |[(T*T + <)~ < 71,
[(T*T +I)~"| < t7¥,and || (L*L + 1)~} < 7! we have
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kok s ko +k A
Izl < 1[240|fo—f||2+ = °||fo—f||]

7T

N

1 [ee]
X [/ T"*”l*ldr—k/ TVZdT”(F*r)lVl”] 1=l
0 1

() ]|
1 | kok ko + k 1 r*r)l—u
lzorz_'_ 2tk ( Ll |>p
v—1 1—v

x| 4 07 2 0

+H(T D)o =: pr.
This proves (P,).

Appendix C. Proof of Lemma 1

Observe that,
L)L) = &) +alfy — fo) =0

and

L' (fu)*[L(fa) — 8] + a(fa — fo) = 0.

So, we have
L) LU — L' (fa) Lfo) +alfe — fo) = L(£2)*8° — L (fa)"g

‘ ) = LUa)] + (LR = L' (fa) 1L fo) + a(f — fa)
= L) (& — &)+ L) = L' (fa) s

Let
s (Y 5
ME = [ L/t = fo)it

Then, by (A1) we have,

fo—fu = (L)L) +a) L () (L () = MO((fF — fu)
L' () (8" =)+ (L'(f) = L' (fa)) (g — L(fa))]

= (L)L (fR) +al) L) (L(f2) = M)((fL ~ fo)
L' (f)" (8" = 8) + (L'(f)" = L'(fa)")

< [ Gt - ) - £ + ﬁ’(fi)]dwf—m]
= (L)L) +aD) [L’(fﬁ)*w(ff) - M((F ~ £
L (8" = )+ (L) = £(f) L' (2)

x (/01 o(fo + t(ffuc)lfof’ffa)dt+ff“>]'

(A)
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By (17) (with IT = M3, ie, u = fo, f = v = f2, & = fo — fu), (iii), (22), and (23), we have

for r
4

72 =5l < A= fell+

thar ko(r + )+ 1] Ifa = fIl € 1f2 = full <.

2
Therefore,
(1_@)”](5_]6\|<i+k2r{ko(r+rfo)+1}||f — flI- (A2)
2 e SR =y 2 ’

Appendix D. Proof of Lemma 2
Since £ (fa)*(L(fa) — §) +a(fx — fo) = 0and L(f) = g, we have

G [ LG i~ e+l ) = (- f)
and
L) £/ (fo) + ] ()
= LU [ 1)~ £+ #fa = P~ ) +alfo - ).
So,
fomf = L) el
<€ 10 = €10 + 106 = Dattss = )+ alfo -

and hence by (17) (with IT = fol L'(f 4 t(fa — f))) we have

Ifu = fIl < kjona — FIP+ la(L (fa)* £ (fa) + D) (fo = F)I
koro

< oMo =l lla(L ()" £ (fo) + )™ (fo = P (A3)

Since || fx — f|| < ro, by (A3) we have

koro

(1= ) o = FIl < ML (fa) L' (fo) + D)~ (fo = P (A4)

Next, we shall prove that ||a(L'(f)*L'(fx) +al) 1 (fo — f)|| = O(a”) under the
assumption (11).
Note that

(L (fo)*£'(fa) + ) (fo = f) A
lal(£"(fo)* L' (fa) +al) ™ = (L*L+al)](fo = )l
Ha(L*L+aD) ™ (fo - f)

IN

< [kaCr+ k) (Ife — A+ I L gairs +an 15— 1

(by (20))
< [(ksCrt ) 22 4 Ula(L7L + )LL) ] (A5)
< [(ksCr k)22 + 1o
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Appendix E. Proof of Lemma 3
Note that, by (A4) and (A5), we have

1= Al € 5 (kG + ) 5+ DIa(L L al) (LDl (A6)

LetB = (L*L)%, x = a(L*L + a«I)~'w. Then, by (27), we have

IB¥x| = [a(LL+aD)" (fo— f)l
< B2 x|
< (L L) (L L+ a) 7 (fo — )| 55 o] 51
< Jla(LL +al) T A(fo — £ w75
= (la(LL" +al) 7 (L(fo) = 8+ — ) ) 571 o] =51
< (Ila(LL +al) " (L(fo) — &) +8) 25 ||| 5. (A7)

Here, we have used the relations (L*L)% = UL, where U is the unitary operator and
L(fo — f) = L(fo) — g- Observe that,

IIa(LL*Jrvd)’l( (fo) = &)l

< llaf(LL* +al) ™t = (LoLg +al) ' (L(fo) — &%)
Hla(LoL§ +al) (L (fo) — &)
< (ksCg +k1)—\|a(LL* +al)"HL(fo) — )
+la(LoLs +al) = (L (fo) — &) (bY(?-O))
2 " _
< (2 — (kBCR —‘rkl)l"o) ||“(L0LO +D‘I) (E(fO) _g(s)H
— 2 « o
- (2 (ksCr +k1)ro)d( 8
2

= 2 (aCr k) (A9

The result now follows from (A6), (A7), and (AS8).

Appendix F. Proof of Lemma 4

Note that,
5 = d(a,g%)
< la(LoLg +al) "' (g — &) + lla(LoLg +al) " (L(fo) — &)l
< S+ [la(LoLg +al) "1 (L(fo) — 9)I-
So,
(c=1)6 < [la[(LoLg +al)~" = (LL* +al)~"](L(fo) — &)
+la(LL* +al) " (L(fo) — 9|
< [(k3CR+k1) +1] (L L+ al) (L L)
(by (20))
- 1o artwl,  v<j
< [sCr+k)7 +1] 7, (A9)
2

al|L L 2w, v >
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Therefore, since

(A10)

Appendix G. Verification of Assumptions (iii) and (iv)
As in [5], we use the following assumptions:

(A1) Letgp € D(L), and assume that 3 x > 0 with |£(qo)(t)| >« V t € (0,1).
Then, 3 U(qo) of go in L?[0, 1] such that

(A2) [L(q)(t)] > 5 forallqg € U(go) N D(L) and t € (0,1).
Note that,

(Tz = TP L (2) L (2)"w + Ty (L' (z) = L1(f) £ (2)"w = (L(f) = L(2)) L (2)"w,
so, we have for x,z € U(qo) N D(L):
(L'(z) = L)L (2)w

= 7171 |:(T - Tz)ﬁl(z)ﬁl(z)*w+ (E(f) _E(Z))ﬁl(z)*w}

= T G (T =TI DL @ w0+ (L)~ L)L ) )| £(6)

= —T! [—E(Z)TleZ

—1 . / .
L(AL() ((Tf = T2)L'(2) £'(2)"w

+(L(f) - E(Z))E’(Z)*w)] L(f)

= L(N)L(2) p2(z f ),

where @2 (z, f,w) = WE(z)TZ((Tf —T)L (2) L (z)*w + (L(f) — L(z))L(z)*w). Then, as
in Lemma 2.4 in [5], one can prove that ||¢2(z, f,w)|| < kz||z — f||||w||. Further, observe that

(L) = £ (2)"]L ()
1
(

= —L()T;" [Tzcz) (E(f)(Tfl ~ T, ) (L (2)v)
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where p3(z, £,0) = b (LOA(T; = T (£/(2)0) + (£(f) = L) T L' (2)0) ). Again,
as in Lemma 2.4 in [5], one can prove that ||@3(z, f,v)|| < ks||z — f]|||7]-
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