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Abstract: The conditions for the synthesis of dimethylaminomethylene derivatives were selected
based on the interaction of arylfuran-2(3H)-ones and dimethylformamide dimethylacetal (DMA-
DMF), proceeding through the methylene active unit of the furanone ring. The influence of the used
solvent and the type of activation on the reaction rate and product yields was established. Using
NMR spectroscopy and the one-dimensional version of NOESY1D with selective excitation of protons,
it was revealed that these systems exist in the form of an E-configuration.

Keywords: dimethylformamide dimethylacetal; furan-2(3H)-ones; dimethylaminomethylene derivatives;
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1. Introduction

Furan-2(3H)-one is a promising heterocycle that has high chemical potential and
acts as an easily accessible and platform-starting material for the synthesis of new series
of compounds. The furan-2(3H)-one ring system is the main element of the skeleton of
antitumor drugs [1–4], compounds with antioxidant [5] and antibacterial effects [6–8]. One
of the most important tasks of organic chemistry is the development of new preparative
methods for the synthesis of compounds that are capable of further modifications, leading
to a variety of heterocyclic structures and containing pharmacophore fragments. Such
compounds include dimethylaminomethylene derivatives, which have high prospects in
the design of bioactive compounds that have antitumor [9], antioxidant [10] activity and
are used as antibiotics [11].

Dimethylaminomethylenefuran-2(3H)-ones can be classified as highly effective syn-
thons due to the presence of several active reaction centers, as well as the pronounced
push–pull nature of the C=C bond, due to the presence of the carbonyl group of the furan-
2(3H)-one fragment conjugated with the amino group. However, information on methods
of preparation and properties of these systems is missing in the literature, which determines
the relevance of searching for methods for synthesizing these compounds.

The most well-known synthetic reagent in the literature for the generation of enamine
derivatives is dimethylformamide dimethyl acetal (DMF-DMA), the high reactivity of
which is explained by the presence of methoxy groups that provide a partially positive
charge on the carbon atom. Consequently, the DMF-DMA reagent can easily enter into
condensation reactions with various functional groups of organic compounds, most com-
mon of which are methylene, methyl and amino groups, and it is also widely used as a
one-carbon synthon for the construction of carbon skeletons [12–20].
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2. Results and Discussion
2.1. Synthesis of 5-Aryl-substituted 3-((dimethylamino)methylene)furan-2(3H)-Ones

We investigated the possibility of introducing a dimethylaminomethylene fragment
into the molecule of 5-arylfuran-2(3H)-ones. The conditions for the synthesis of dimethy-
laminomethylene derivatives of furan-2(3H)-one were optimized using the model reaction
of 5-(4-chlorophenyl)-furan-2(3H)-one 1a with DMF-DMA 2 as an example (Scheme 1); the
reagents were used in a molar ratio of 1:1 (Table 1).
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Table 1. Optimization of reaction conditions for the synthesis of 5-(4-chlorophenyl)-3-((dimethylamino)
methylene)furan-2(3H)-one 3a.

Entry Solvent Temperature, ◦C Time (min) Yield, %

1 EtOH 78 180 50
2 i-PrOH 82 178 50
3 MeCN 81 150 50
4 1,4-Dioxane 101 160 61
5 Benzene 80 173 57
6 Toluene 110 110 70
7 Solvent-free 153 - -
8 Toluene 115 25 75
9 Toluene 130 6 90
10 Toluene 150 - -

When the reaction mixture is refluxed in an EtOH environment, it leads to the target
product within 3 h with a yield of 50%; when using the more polar solvent acetonitrile, the
reaction time is reduced to 2.5 h; however, the yield of the product does not change. Under
these conditions, we tested non-polar solvents—benzene and toluene. The best results
were obtained in toluene. Also, carrying out the reaction under solvent-free conditions in a
twofold excess of DMF-DMA was not successful. Further attempts to increase the yield of
the desired product and reduce the conversion time were conducted using a Monowave
50 pressurized vessel reactor (Anton Paar). When carrying out the transformation at 120 ◦C
in toluene, the reaction time was reduced to 25 min with a yield of 75%; increasing the
temperature to 130 ◦C allowed us the ability to carry out the reaction for 6 min with a yield
of 90%. However, a subsequent increase in temperature did not provide the desired results
and tarring of the reaction mixture was observed. Thus, these conditions were chosen as
optimal for research (Scheme 2).

The advantages of this type of activation of the reaction mixture are new reaction
pathways, i.e., by varying the heating time and temperature, one can observe the formation
of various intermediate reaction products; significant reduction in transformation time;
increased product yields; minimized solvent consumption and the ability to carry out
reactions without the use of catalysts, which meets the principles of “green chemistry”. The
literature provides isolated information on the study of the features of carrying out various
chemical transformations using a reactor of this type, which determines the relevance of
research in this area.
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The use of a sealed vessel reactor allowed us the possibility to monitor and analyze
conditions inside the vial (Figure 1).
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Figure 1. Temperature (red) and pressure (blue) inside the vial during the synthesis reaction of
compound 3a, according to the built-in sensors of the sealed vessel reactor.

The temperature curve smoothly increased to 50 ◦C, which corresponds to the process
of dissolution of the initial components, followed by a sharp increase to 191 ◦C, signifi-
cantly exceeding the initially set temperature value. This indicates an exothermic reaction
occurring with the formation of 5-(4-chlorophenyl)-3-((dimethylamino)methylene)furan-
2(3H)-one. An increase in temperature above the boiling point of toluene (130 ◦C versus
110 ◦C) offered us the opportunity to enhance the interaction due to the formation of a
gaseous water–toluene azeotrope, which is shown by an increase in pressure up to 10 bar
(Figure 1).

2.2. Structure of 3-Dimethylaminomethylene Derivatives of Furan-2(3H)-Ones 3a–f

The structures of the new compounds were determined by spectroscopic methods (1H,
13C NMR, HMBC, HSQC, NOESY1D) and elemental analysis data.
Phenyldimethylaminomethylenefuran-2(3H)-ones showed 1H and 13C NMR data sets
consistent with the proposed structures. Compounds 3a–f showed 1H NMR chemical
shifts for the protons of the methyl group NMe2 in the form of one singlet in the range of
3.30–3.33 ppm. Signals of vinyl protons of the furan-2(3H)-one ring were observed in the
range of 6.83–7.09 ppm; protons belonging to the exocyclic double bond C=C appeared
at 7.19–7.28 ppm. The resulting structures were found to exist as the E-isomer, the config-
uration of which around the C=C bond was confirmed using a one-dimensional variant
of NOESY1D under selective excitation. It was shown that there is no spatial correlation
between the vinyl proton of the furan-2(3H)-one fragment and the proton at the C=C bond,
which indicates data in favor of the E-configuration.
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3. Material and Methods
3.1. Physical Measurements

1H (400 MHz) and 13C NMR (100 MHz) spectra in acetone-d6 were recorded with a
Varian (Agilent) 400 spectrometer (Agilent Technologies, Santa Clara, CA, USA), and the
internal standard was TMS. Chemical shifts (δ) are reported in ppm. Elemental analysis
was performed on a CHNS analyzer “Elementar Vario MICRO cube” (Elementar Analysen-
systeme GmbH, Hanau, Germany). Melting points were determined on a Stuart™ SMP10
melting point apparatus (Cole-Parmer, Beacon Road, Stone, Staffordshire, ST15 OSA, UK).
The progress of the reaction and the purity of the synthesized compounds were monitored
by TLC on ALUGRAM®® SIL G UV254 plates (MACHEREY-NAGEL GmbH and Co. KG,
Düren, Germany), a hexane–ethyl acetate–acetone (2:2:1) mixture was the eluent.

3.2. Synthesis and Characterization of Compounds 3a–f

A mixture of 1 mmol of the corresponding 5-arylfuran-2(3H)-one 1a–f and 1 mmol of
DMF-DMA 2 in 5 mL of toluene was placed in a Monowave 50 Anton Paar sealed vessel
reactor and heated at 130 ◦C for 6 min. The crystals that precipitated during cooling were
washed with cold toluene, recrystallized from ethanol, and dried.

5-(4-(Chlorophenyl)-3-((dimethylamino)methylene)furan-2(3H)-one 3a

Yellow crystals (ethanol), yield 0.33 g (90%), mp 210–211 ◦C; 1H NMR (400 MHz,
acetone-d6): δ 3.33 (s, 6H, CH3), 7.07 (s, 1H, Fu), 7.28 (s, 1H, =CH), 7.38 (d, J = 8.0 Hz, 2H,
Ar), 7.60 (d, J = 8 Hz, 2H, Ar); 13C NMR (100 MHz, acetone-d6): δ 45.67, 95.22, 101.45, 124.53,
128.61, 131.48, 143.67, 147.56, 170.03 (C=O). Anal. calcd. for C13H12ClNO2: C: 62.53%; H:
4.84%; N: 5.61%; Cl: 14.20%; Found: C: 62.75%; H: 4.98%; N: 5.82%; Cl: 14.06%.

5-Phenyl-3-((dimethylamino)methylene)furan-2(3H)-one 3b

Yellow crystals (ethanol), yield 0.29 g (85%), mp 206–207 ◦C; 1H NMR (400 MHz,
acetone-d6): δ 3.32 (s, 6H, CH3), 7.01 (s, 1H, Fu), 7.21–7.25 (m, 2H, Ar+1H, =CH), 7.34–7.38 (t,
2H, Ar), 7.61 d, (J = 8.0 Hz, 2H, Ar); 13C NMR (100 MHz, acetone-d6): δ 95.24, 100.49, 123.07,
127.05, 128.51, 130.53, 131.09, 144.89, 147.15, 171.09 (C=O). Anal. calcd. for C13H13NO2: C:
72.54%; H: 6.09%; N: 6.51%; Found: C: 71.99%; H: 5.87%; N: 6.02%.

5-(4-(Bromophenyl)-3-((dimethylamino)methylene)furan-2(3H)-one 3c

Red crystals (ethanol), yield 0.32 g (92%), mp 224–225 ◦C; 1H NMR (400 MHz, acetone-
d6): δ 3.32 (s, 6H, CH3), 7.09 (s, 1H, Fu), 7.28 (s, 1H, =CH), 7.50–7.55 (m, 4H, Ar); 13C NMR
(100 MHz, acetone-d6): δ 38.90, 45.92, 95.08, 101.62, 119.87, 124.80, 129.73, 131.59, 143.68,
147.59, 170.83 (C=O). Anal. calcd. for C13H12BrNO2: C: 53.08%; H: 4.11%; N: 4.76%; Br:
27.16%; Found: C: 53.43%; H: 4.28%; N: 4.31%; Br: 27.66%.

5-(4-(Methylphenyl)-3-((dimethylamino)methylene)furan-2(3H)-one 3d

Yellow crystals (ethanol), yield 0.32 g (91%), mp 215–216 ◦C; 1H NMR (400 MHz,
acetone-d6): δ 2.31 (s, 3H, CH3), 3.31 (s, 6H, CH3), 6.93 (s, 1H, Fu), 7.22 (s, 1H, =CH), 7.18 (d,
J = 8 Hz, 2H, Ar), 7.69 (d, J = 8 Hz, 2H, Ar); 13C NMR (100 MHz, acetone-d6): δ 20.54, 38.73,
45.70, 95.39, 99.61, 123.10, 127.83, 129.15, 136.6, 145.08, 146.78, 171.16 (C=O). Anal. calcd.
for C14H15NO2: C: 73.34%; H: 6.59%; N: 6.11%; Found: C: 73.72%; H: 6.92%; N: 6.65%.

5-(3,4-(Dimethylphenyl)-3-((dimethylamino)methylene)furan-2(3H)-one 3e

Yellow crystals (ethanol), yield 0.33 g (89%), mp 207–209 ◦C; 1H NMR (400 HMz,
acetone-d6): δ 2.24 (d, J = 4 Hz, 6H, CH3), 3.30 (s, 6H, CH3), 6.90 (s, 1H, Fu), 7.21 (s, 1H,
=CH), 7.11 (d, J = 8 Hz, 1H, Ar), 7.33 (d, J = 8 Hz, 1H, Ar), 7.40 (s, 1H, Ar); 13C NMR
(100 MHz, acetone-d6): δ 18.66, 18.90, 38.73, 45.70, 95.40, 99.31, 120.74, 124.80, 128.21, 129.70,
135.61, 136.52, 145.35, 146.56, 171.18 (C=O). Anal. calcd. for C15H17NO2: C: 74.05%; H:
7.04%; N: 5.76%; Found: C: 74.45%; H: 7.42%; N: 5.82%.

5-(4-(Methoxyphenyl)-3-((dimethylamino)methylene)furan-2(3H)-one 3f
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Brown crystals (ethanol), yield 0.35 g (88%), mp 186–187 ◦C; 1H NMR (400 MHz,
acetone-d6): δ 3.30 (s, 6H, CH3), 3.81 (s, 6H, OCH3), 6.83 (s, 1H, Fu), 6.94 (d, J = 8 Hz,
2H, Ar), 7.19 (s, 1H, =CH), 7.55 (d, J = 8 Hz, 2H, Ar); 13C NMR (100 MHz, acetone-d6): δ
38.73, 45.70, 54.68, 95.46, 98.30, 114.01, 123.32, 124.59, 159.22, 145.16, 146.33, 171.20 (C=O).
Anal. calcd. for C14H15NO3: C: 68.56%; H: 6.16%; N: 5.71%; Found: C: 69.01%; H: 6.13%;
N: 5.99%.

4. Conclusions

We developed optimal conditions for the synthesis of aryl-substituted
dimethylaminomethylenefuran-2(3H)-ones, where arylfuran-2(3H)-ones and a reactive
one-carbon synthone, DMF-DMA, were used as starting components. It was found that the
highest yields and shorter transformation times were achieved when using a MW50 sealed
vessel reactor and a non-polar solvent—toluene.
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