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Abstract: Hantzsch 1,4-dihydropyridines (Hantzsch 1,4-DHP), have been utilized as starting material
in organic synthesis. In addition, several 1,4-DHP based drugs (Nifedipine, Niguldipine, Amlodepine
besylate) have been recognized for the treatment of cardiovascular diseases. During the redox
processes, 1,4-DHP systems are oxidatively transformed into the corresponding pyridine derivatives.
Furthermore, the oxidation of Hantzsch 1,4-DHP constitutes the more accessible method to obtain
pyridine derivatives with a great spectrum of important properties. Pyritic ashes, a waste material
from the metallurgical industry, has shown catalytic activity in redox processes, and its use can
facilitate the obtaining of derivatives from dihydropyridines under sustainable conditions.
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1. Introduction

Compounds from the 1,4-dihydropyridine (1,4-DHP) series, which have been studied
since 1882 beginning with the inaugural synthetic report via Hantzsch’s multicomponent
reaction, hold interest not only in the realm of fundamental scientific research within hete-
rocyclic chemistry but also, and more importantly, in their extensive practical applications.
Derivatives of 1,4-DHPs are particularly notable in medicine and organic synthesis, where
they are used for the laboratory-scale preparation of pyridine derivatives. In considera-
tion of the conceptual series: structure-properties-functionality-applications, numerous
comprehensive reviews [1–6] have been published on the chemistry, and pharmacological
properties and synthesis of 1,4-DHPs. Additionally, there are more specialized reviews
focusing on synthesis [7], and oxidation [8] of 1,4-DHPs.

The oxidative aromatization of dihydropyridines stands out as a versatile and efficient
method at the laboratory scale, yielding a variety of poly-substituted pyridines. These
compounds find extensive applications in pharmacology, agrochemistry, organic synthesis,
and industry. Despite the wide range of oxidizing agents available for this process, from in-
organic salts, solid supports, microwaves, ultrasound, enzymes, UV-Vis, organo-inorganic
molecular systems to Cytochrome P-450 [9–17], the oxidative aromatization of dihydropy-
ridines presents real issues. These include the steric constrain and reactivity of functional
groups in the molecule, sensitivity to various reagents and reaction conditions, and the
formation of secondary products. Such by-products not only complicate the separation
process, increasing costs, but also pose significant environmental treatment challenges.
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In this context, taking into account the potential of green chemistry [18,19] applied
to oxidative aromatization processes, there is a need to explore new reaction systems.
Particularly, those that employ heterogeneous catalytic conditions could address these
limitations, making the processing of the reaction mixture more environmentally friendly.

Pyrite ash [20,21] is a residue from the roasting of pyrite ores to obtain sulphuric
acid used in the fertilizer industry and its production is widely extended worldwide. The
mismanagement of this waste may result in environmental and health damages due to its
physico-chemical characteristics.

In this communication, we wish to report our preliminary results on the synthesis
of pyridine derivatives (illustrative examples) under heterogeneous and mild conditions,
using pyritic ash as a solid catalyst and efficient oxidant but also as something tolerant to
functionalities present in 1,4-DHPs.

2. Materials and Methods
2.1. General Procedures

All commercial reagents (oxides, ammonium acetate, 2-nitrobenzaldehyde, methyl ace-
toacetate, ethyl acetoacetate and selected solvents (CHCl3, CH3CN, ethanol, and methanol)
were purchased from Sigma-Aldrich/Merck Life Science (Darmstadt, Germany), and they
were used without any further purification or synthetic modification.

2.2. Catalyst for Oxidative Aromatization

The pyritic ash, a byproduct from processing pyrite ore at the Sulfometales “Patricio
Lumumba” Company in Santa Lucia, Pinar del Río, Cuba, originates from the exploita-
tion of polymetallic pyritic ores at the “Julio Antonio Mella” deposit (GPS: 22.653848;
−83.976551). A total of 2.0 kg of this pyritic ash material, labeled NRQ 0341978, was
collected for various analyses and processes. The distribution of the sample was as follows:
1 kg was set aside for size classification, 0.5 kg was allocated for chemical and phase
determinations, and the remaining 0.5 kg was used for developing catalytic processes in
the organic synthesis of high-value-added derivatives, pertinent to the pharmaceutical
and agrochemical industries. The portions of 0.5 kg each were finely crushed to achieve a
particle size smaller than 0.177 mm, meeting the size requirements for chemical, rheological,
and structural analyses. The reference material is stored at the Multidisciplinary Research
Laboratory of the Technical University of Esmeraldas, Ecuador.

2.3. Catalyst for Synthesis of 1,4-DHP (Model Compounds)

The catalyst sample for synthesizing 1,4-DHP (1 and Nife) was prepared using the
chemical co-precipitation method. The precursors FeSO4·7H2O and FeCl3 were utilized,
with the Fe2+ and Fe3+ cations present in a mass ratio of 1 to 2, weighing 5.2 g and 6 g
respectively, as determined by stoichiometric calculations. A magnetic stirrer (MHS-10L,
2017, Oxford Lab Products, San Diego, CA, USA) was set to operate at 550 rpm and
maintained at a temperature range of 75–80 ◦C. Upon reaching this temperature range, the
precursors were added while stirring. This resulted in an orange coloration, and the mixture
was allowed to stabilize at this temperature for 10 min. Subsequently, 25 mL of NH4OH
(28–30% V/V) was slowly added using a micropipette. Almost immediately, the solution
turned black due to the precipitation of nanoparticles (NPs), indicating the formation of
the catalyst. The mixture was then stirred for an additional 30 min to ensure homogeneity.
Following this, the reaction mixture was centrifuged and the solid product was separated
by filtration. Finally, the catalyst sample was dried in an oven at 80 ◦C, ground to a fine
powder (yielding 4.2 g), and stored at room temperature until needed [22,23].

2.4. X-ray Diffraction Analysis. Phase Determination of the Catalyst Used

The X-ray diffraction analysis, used for the determination of the phases present in
the pyritic ashes, was performed by the powder method, with the use of a PHILIPS PW
1710 diffractometer (2015, Eindhoven, The Netherlands), Kα radiation of Fe, and Mn filter,
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in the angular interval from 6 to 90◦. The interpretation of the results was performed with
the International Diffraction Data Center database of the year 2010.

2.5. Synthesis of 1,4-DHPs (Two Model Compounds)

The methodology for synthesizing 1,4-dihydropyridines (1,4-DHPs) was developed
through experimentation with catalysts in the multicomponent Hantzsch reaction. Maghemite
(γ-Fe2O3) was selected as the catalyst due to its superparamagnetic properties, which
facilitate the separation of the reaction medium and allow for its potential reuse.

The general reaction is depicted in Figure 1.
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Figure 1. Synthetic methodology of multicomponent reaction for 1,4-DHPs in catalytic heterogeneous
conditions.

An amount of 15.0 mg of maghemite (10 mol% iron; 159 g mol−1) was added to
a 25.0 mL glass vial with a screw cap, followed by 1.0 mmol of aldehyde, 2.0 mmol of
ketoester, and 1.0 mL of absolute ethanol (P.A.). Then, 3.0 mmol of ammonium acetate
(231.3 mg; 77.1 g mol−1) were added. The vial was wrapped in aluminum foil to protect it
from light. Finally, the flask was sealed and placed in an oil bath at 90 ◦C with magnetic
stirring for 1 h. After cooling to room temperature, the obtained compound was isolated by
precipitation in ice-cold deionized water.

2.6. Oxidative Aromatization of Model 1,4-DHPs under Catalytic Heterogeneous Condition Using
Pyritic Ash. Synthesis of Pyridinic Derivatives

The synthesis was conducted in a 25.0 mL round-bottomed flask using approximately
0.1 mmol of the 1,4-DHPs: 1 (27.2 mg; 253.3 g mol−1) and Nifedipine (48.3 mg; 346.1 g mol−1),
along with 10.0 mL of acetonitrile and 0.2 mmol of I2 (52.5 mg; 253.8 g mol−1). The reaction
mixture was maintained under reflux and magnetic stirring for 4 h. After cooling to
room temperature, the acetonitrile was evaporated under reduced pressure. An amount
of 50.0 mL of 0.1 M sodium thiosulfate was then added to the residue, and the aqueous
solution was extracted with eight 50.0 mL portions of ethyl acetate. The organic phase
was dried over anhydrous sodium sulfate, and the solvent was removed under reduced
pressure to yield the products 1-ox and Nife-ox.

The general reaction is depicted in Figure 2.

Chem. Proc. 2023, 14, 61 3 of 8 
 

 

2.4. X-ray Diffraction Analysis. Phase Determination of the Catalyst Used 
The X-ray diffraction analysis, used for the determination of the phases present in the 

pyritic ashes, was performed by the powder method, with the use of a PHILIPS PW 1710 
diffractometer (2015, Eindhoven, The Netherlands), Kα radiation of Fe, and Mn filter, in 
the angular interval from 6 to 90°. The interpretation of the results was performed with 
the International Diffraction Data Center database of the year 2010. 

2.5. Synthesis of 1,4-DHPs (Two Model Compounds) 
The methodology for synthesizing 1,4-dihydropyridines (1,4-DHPs) was developed 

through experimentation with catalysts in the multicomponent Hantzsch reaction. Ma-
ghemite (γ-Fe2O3) was selected as the catalyst due to its superparamagnetic properties, 
which facilitate the separation of the reaction medium and allow for its potential reuse. 

The general reaction is depicted in Figure 1. 

 
Figure 1. Synthetic methodology of multicomponent reaction for 1,4-DHPs in catalytic heterogene-
ous conditions. 

An amount of 15.0 mg of maghemite (10 mol% iron; 159 g mol−1) was added to a 25.0 
mL glass vial with a screw cap, followed by 1.0 mmol of aldehyde, 2.0 mmol of ketoester, 
and 1.0 mL of absolute ethanol (P.A.). Then, 3.0 mmol of ammonium acetate (231.3 mg; 
77.1 g mol−1) were added. The vial was wrapped in aluminum foil to protect it from light. 
Finally, the flask was sealed and placed in an oil bath at 90 °C with magnetic stirring for 1 
h. After cooling to room temperature, the obtained compound was isolated by precipita-
tion in ice-cold deionized water. 

2.6. Oxidative Aromatization of Model 1,4-DHPs under Catalytic Heterogeneous Condition 
Using Pyritic Ash. Synthesis of Pyridinic Derivatives 

The synthesis was conducted in a 25.0 mL round-bottomed flask using approximately 
0.1 mmol of the 1,4-DHPs: 1 (27.2 mg; 253.3 g mol−1) and Nifedipine (48.3 mg; 346.1 g 
mol−1), along with 10.0 mL of acetonitrile and 0.2 mmol of I2 (52.5 mg; 253.8 g mol−1). The 
reaction mixture was maintained under reflux and magnetic stirring for 4 h. After cooling 
to room temperature, the acetonitrile was evaporated under reduced pressure. An amount 
of 50.0 mL of 0.1 M sodium thiosulfate was then added to the residue, and the aqueous 
solution was extracted with eight 50.0 mL portions of ethyl acetate. The organic phase was 
dried over anhydrous sodium sulfate, and the solvent was removed under reduced pres-
sure to yield the products 1-ox and Nife-ox. 

The general reaction is depicted in Figure 2. 

 
Figure 2. Oxidative aromatization of model 1,4-DHPs with pyritic ash. 

  

Figure 2. Oxidative aromatization of model 1,4-DHPs with pyritic ash.

2.7. Gas Chromatography Coupled with Mass Spectrometry (GC-MS)

A Hewlett-Packard 6890 gas chromatograph (Palo Alto, CA, USA) was used. A carrier
gas was used, He, at a flow of 1 mL/min. An injection volume 2 µL at a temperature of
280 ◦C, was used in split mode (1:10 ratio) and with a capillary column of Ultra 2 type
(J & W Scientific, Folsom, CA, USA). The ionization source was IE: 70 eV operating at
230 ◦C; -acquisition mode: Full Scan; -range of m/z 40–700.
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2.8. NMR Studies

The 1H and 13C NMR analyses were carried out using a Bruker AC 250-Magnet (2005,
Bruker Center AXS, Karlsruhe, Germany) equipment, operating at 250 MHz. The samples
were prepared in 500 µL of CDCl3 containing, approximately, 5 mg of sample.

3. Results and Discussion

The eco-sustainable use of polyphasic residual materials of natural inorganic origin
with potential catalytic capabilities at a laboratory scale represents a crucial aspect of
technical-industrial development in Ecuador. This approach was previously established
during the Prometheus program from 2014 to 2018. The approach focuses on the strategic
utilization of residuals, the development of potential catalytic agents, their application in
model organic reactions, and their reuse. It also aims to assess their functional capacity
for application in various processes, minimizing environmental impact while maximizing
atomic efficiency. Additionally, the Prometheus approach in Ecuador explored the potential
for structural modifications at all scales of the industrial residuals. Pyritic ashes are a
central subject of this conceptual framework [24].

Pyritic ashes have their chemical composition detailed in Table 1.

Table 1. Chemical composition of pyritic ash used as solid catalyst 1.

Chemical Composition % (m/m)

Total Iron 40.97
Acid Soluble Iron 37.09

Ferrous Iron 34.75
Ferrous + metallic iron 2.34

Water soluble iron 0.09
Total Sulfur 1.84

Unroasted Sulfur 1.41
Sulfur by aqueous extraction 0.20

Total Lead 3.50
Total Copper 0.20

Leachable Copper 0.20
Total Zn 0.41

Leachable Zn 0.00
Silica 21.15

Manganese 0.08
Barium 5.85

Potassium 0.38
Magnesium 0.18

Moisture 1.44
1 The elemental and chemical characterization was, mainly, oriented to evaluate the possibility of using pyritic
ashes in various organic chemistry processes at laboratory scale.

The phases present in the pyritic ashes are detailed in Figure 3, where the interplanar
distance of the phases is shown, with their corresponding angle of dispersion, as well as
the relative intensity of each of the characteristic signals.
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The phases identified are: Plumbojarosite (PbFe6(SO4)4(OH)12; Goethite (FeO.OH);
Anglesite (PbSO4); Barite (BaSO4); Hematite (Fe2O3); Quartz (SiO2); and Pyrite (FeS2).

Several of the phases identified in the catalytic heterogeneous system for oxidative
aromatization of dihydropyridines, based on natural pyritic ashes, show a recognized
catalytic capacity in different industrial organic processes, such as the trans-esterification
of used cooking oils, catalytic aqua-thermolysis of heavy crude oils, and reduction of
nitroarene derivatives [25–28]. The presence of these phases suggests that pyritic ashes
could potentially be used as catalysts in the oxidative aromatization of dihydropyridines.

The synthesis of the starting model dihydropyridines achieved satisfactory yields,
demonstrating the catalytic versatility of the nano-maghemite (vide supra). The molecular
characterization is presented in Table 2.

Table 2. Molecular characterization of model 1,4-DHPs synthetized in described conditions.

Structure Molecular Characterization 1
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model compounds, we were able to evaluate the catalytic efficiency of this polyphasic
natural inorganic system in the given process. Notably, this heterogeneous system operates
under mild conditions and does not generate any chemical residues. This aromatization
process was very clean as indicated by the absence of side-spots during the analysis of the
reaction mixture by means of planar chromatography (results not reported in this commu-
nication).

The results of aromatization of model 1,4-DHPs compounds are described in Table 3.

Table 3. Oxidative aromatization of model 1,4-DHP with pyritic ashes.

Structure Molecular Characterization 1
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