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Abstract: An important aspect in environmental sciences is the study of air quality, using statistical 
methods (environmental statistics) which utilize large datasets of climatic parameters. The air qual-
ity monitoring networks that operate in urban areas provide data on the most important pollutants, 
which via environmental statistics can be used for the development of continuous surfaces of pol-
lutants’ concentrations. Generating ambient air quality maps can help guide policy makers and re-
searchers to formulate measures to minimize the adverse effects. The information needed for a map-
ping application can be obtained by employing spatial interpolation methods to the available data, 
for generating estimations of air quality distributions. This study used point monitoring data from 
the network of stations that operates in Athens. A machine learning scheme was applied as a 
method to spatially estimate pollutants’ concentrations and the results could be effectively used to 
implement missing values and provide representative data for statistical analyses purposes. 
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1. Introduction 
Studying the distribution of air quality parameters is an important task of urban com-

munities. According to the European Environmental Agency (EEA), air pollution is iden-
tified as a major environmental health hazard in Europe as hundreds of thousands of Eu-
ropeans are affected each year by air quality issues [1–3]. Effective planning strategies 
require constant monitoring of the various pollutants, creating databases suitable for sta-
tistical analysis. Increased data availability can help researchers produce more reliable 
results. Spatial interpolation techniques have been widely used in air quality studies [4,5] 
as they can be utilized for data implementation in pollutant time series with missing val-
ues and even for sites of interest with no data availability. Additionally, by using these 
implemented databases, the development of informational tools such as Air Quality Indi-
ces (AQI) can be beneficial for presenting in a comprehensible manner new insight to pol-
icy makers and the public [6–8]. The EEA proposed a European Air Quality Index (EAQI) 
which is based on hourly concentrations of five key pollutants (PM10, PM2.5, NO2, O3, and 
SO2) and has six different levels based on each pollutant’s concentrations. This study aims 
to present a methodology for filling gaps in environmental sciences and specifically in the 
field of air quality. From the original datasets and based on concentration time series for 
the selected pollutants of the EAQI, a machine learning data implementation process was 
followed. This methodology can be utilized as a fast and effective tool which will contrib-
ute to the development of indexes such as the EAQI, which will subsequently visualize 
air pollutants’ profiles and provide insight in patterns and relationships. 
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2. Experiments 
2.1. Data 

The air quality monitoring sites, from which the data were derived, are located in the 
metropolitan city of Athens, in Greece. As part of the Southeastern Mediterranean region, 
Athens’ climate is defined by dry summers (long periods, during which the temperatures 
are considerably high) and wet winters (these periods are usually short) [9]. The basin is 
bounded by mounts Parnitha, Pentelikon, Hymmetus, and Aigaleo to the north, northeast, 
east-central, and west, respectively. Due to the transport mechanisms, the topography of 
the area, and the proximity to the sea, the air pollution fields are greatly affected by vari-
ous flows of different scales [10–13]. The monitoring sites in the area are part of an air 
quality monitoring network that has operated since 1984, under supervision of the Hel-
lenic Ministry of Environment and Energy (MEE). The network is considered representa-
tive of the pollutants’ spatial variability and thus suitable for the application of advanced 
statistical methodologies. For the development of the EAQI, a different number of stations 
was selected for each pollutant. The criterion for this selection was that a station should 
have at least a small percent of available data and thus, could contribute to the data im-
plementation methodology. For the five pollutants, NO2, O3, PM10, PM2.5, and SO2, the 
number of stations used was fourteen, thirteen, eleven, six, and six, respectively. All five 
were monitored hourly, and the time period of the analysis was three years (2016–2018).  

2.2. Methodology 
The first step in this study, after the database development, was to find the number 

of gaps that are present in each station’s data (target station/missing hourly concentra-
tions) for 2018. This task was performed for all pollutants individually. However, in order 
to be able to apply effectively the machine learning spatial interpolation scheme, a specific 
criterion was adopted. For each one of these gaps at a target station, at the same time all 
the remaining stations had to have an available measurement. Even if one of them also 
had a gap, it was not included in the interpolation process. The results of this step are 
presented in Table 1 and reveal the number of missing values that could be potentially 
estimated and used to increase the available data points. The next step was to apply an 
Artificial Neural Network (ANN) approach for spatial estimation purposes. To achieve 
this, a Shallow Neural Network (SNN) was utilized as a practical and fairly simple ANN 
that is moderately demanding in terms of time and computational power. However, it can 
effectively simulate complex nonlinear relationships between parameters. In detail, two-layer 
networks with sigmoid hidden neurons and linear output neurons were used (Figure 1).  

 
Figure 1. A two-layer network with sigmoid hidden neurons and linear output neurons. 
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Table 1. Number of missing values (gaps) during 2018, for the original and spatially interpolated dataset. 

 Original Gaps Gaps after Interpolation Difference Estimated Percentage (%) 
NO2 13,253 11,145 2108 15.91 
O3 10,814 7961 2853 26.38 

PM10 7182 3948 3234 45.03 
PM2.5 4558 2524 2034 44.62 
SO2 7043 4746 2297 32.61 

The number of hourly concentrations that were used for the models were those for 
which none of the stations had a missing value. The training of the networks was per-
formed with the Levenberg–Marquardt backpropagation algorithm. The dataset was di-
vided into three subsets used for training, validation, and testing randomly and each sub-
set corresponded to specific percentages of the original data (70% training, 15% validation, 
15% testing). Depending on the pollutant, the number of data points used for the subsets 
was different and is presented in Table 2. The network architecture included a number of 
inputs equal to the number of all stations minus the target station (13 for NO2, 12 for O3, 
10 for PM10, 5 for PM2.5, and 5 for SO2), while the output was always one (target station). 
Regarding the number of neurons in the hidden layer, the performance of each network 
was evaluated by using the Mean Absolute Error (MAE) statistical criterion [14–18], which 
is calculated by using the following equation: 

MAE = 1𝑛෍|𝐸௜ − 𝑂௜|௡
௜ୀଵ  (1)

where E denotes the estimated concentration, O the observed concentration, and n the 
number of data points. Lower MAE values illustrate the optimum performing network. 
Five runs were performed for all schemes and for hidden layer neurons that ranged from 
1 to 40. The best performing networks and their architecture are presented in Table 3. By 
using these selected SNN models for the corresponding inputs of 2018, the gaps in each 
station and pollutant were filled.  

Table 2. Number of data points distributed to the training, validation, and testing subset for the 2016–2017 time period. 

 Training Validation Testing Total 
NO2 47,151 10,101 10,101 67,353 
O3 25,272 5412 5412 36,096 

PM10 13,410 2880 2880 19,170 
PM2.5 37,785 8100 8100 53,985 
SO2 13,925 3080 3080 20,085 

Table 3. Number of input, hidden (average), and output neurons as well as Mean Absolute Error (MAE) (average), mean 
concentration values, and percentage of error (MAE to mean concentration) for the best performing models and the 2016–
2017 time period. 

 Input Neurons Hidden Output MAE Mean Error (%) 
NO2 13 21.7 1 5.80 32.70 17.74 
O3 12 22.3 1 6.86 58.86 11.65 

PM10 10 23.6 1 5.71 29.53 19.34 
PM2.5 5 25.2 1 5.17 23.81 21.71 
SO2 5 22.5 1 1.89 6.06 31.19 

3. Results 
A total of 12,526 missing values were estimated and the percentage of gaps that were 

filled out in each station was above 40% for PM10 and PM2.5, above 20% for O3 and SO2, 
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and above 15% for NO2. Regarding O3 and NO2 where the percentage of interpolated val-
ues is lower, it needs to be considered that they had a higher number of input stations and 
thus, the criterion that none of the inputs should have a missing value for each gap of the 
target station was more difficult to fulfill. Table 1 presents in detail the gaps originally and 
after the interpolation, as well as the percentage of missing values that were estimated. 

The number of data points for the training, validation, and testing subsets and for 
each pollutant are presented in Table 2. Pollutants with a lower number of input stations 
were associated with higher data point numbers per station (smaller probability for all the 
stations to have a missing value at the same time). However, more stations (NO2, O3) pro-
vided additional data points. NO2 and PM2.5 are the pollutants which provided more data 
for training, validation, and testing purposes. 

The architecture of the optimum performance models is presented in Table 3. The 
hidden neurons number was an average of all the stations for each pollutant. The MAE 
average values (measured in the same units as the concentrations of the pollutants, μg/m3) 
in these cases were also included. However, all pollutant-specific networks had the same 
number of inputs and all networks had a single output (the target station). The average 
hidden neuron value ranged from 21.7 to 25.2, which revealed that the models were at an 
almost equal complexity level.  

4. Discussion 
According to Table 3 results, it could be concluded that the error percentage was 

higher when the number of input stations was lower and subsequently the information 
provided for training was more limited. O3 was an exception to this statement because 
although the number of input stations was 12 versus 13 for NO2 and correspondingly the 
available data points were nearly half, the error percentage was considerably lower. This 
can be explained by examining other behavioral characteristics of this pollutant (differ-
ences in mean values among stations, more easily identifiable patterns in datasets, etc.). 
When comparing PM2.5 and SO2, where the input neurons were five for both, the predic-
tion performance for SO2 was lower, possibly due to the smaller number of data points, 
according to Table 2 (PM2.5 had nearly three times more data points). Different approaches to 
evaluate the performance of the models can be followed (scatter diagrams, correlation metrics, 
etc.), and more types of similar complexity neural network models can be examined. 

5. Conclusions 
This study applied SNN models as a tool for point spatial interpolation of air quality 

parameters, using data from an air quality monitoring network located at a densely pop-
ulated urban area. Five air quality parameters were selected (PM10, PM2.5, NO2, O3, and 
SO2), due to their importance in the field of air quality indexes, and, more specifically, 
based on the EAQI (proposed by EEA). The results highlight that the models’ performance 
was significantly affected by the density of the air quality monitoring network (number 
of stations and data points per station) as well as the specific patterns that characterize 
each pollutant’s concentrations. The training dataset is crucial for the networks’ develop-
ment and needs to be carefully selected in order to provide adequate information which 
will augment the networks’ generalization ability. This work can be utilized as an alter-
native for commonly used spatial interpolation methods in the field of air quality and 
further improvements can be made by using more advanced networks and/or adding me-
teorological parameters as inputs. 
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