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Abstract: Ionic additives affect the structure, activity and stability of lipases, which allow for solving
common application challenges, such as preventing the formation of protein aggregates or strength-
ening enzyme–support binding, preventing their desorption in organic media. This work aimed
to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in
the production of ethyl esters of fatty acids (EE). Industrial enzymes from Thermomyces lanuginosus
(TLL), Rhizomucor miehei (RML), Candida antárctica B (CALB) and Lecitase®, immobilized in commer-
cial supports like Lewatit®, Purolite® and Q-Sepharose®, were tested. The best combination was
achieved by immobilizing lipase TLL onto Q-Sepharose® as it surpassed, in terms of %EE (70.1%), the
commercial biocatalyst Novozyme® 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%).
Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized
TLL on Q-Sepharose® was assessed. It was observed that, when immobilized, in the presence of
sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a
93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty
acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial
biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop
biocatalysts with reduced enzyme consumption, a factor often associated with higher production
costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener
production approach compared to conventional methods.

Keywords: enzyme immobilization; biodiesel; ionic additives; lipase activation; lipase derivatives

Key Contribution: Herein is reported a novel derivative based on the lipase from Thermomyces
lanuginosus with the support of Q-Sepharose®, using SDS as additive (Q-SDS-TLL). This biocatalyst
requires enzyme consumption up to 82 times lower than a commercial equivalent, while producing a
similar yield of fatty acid ethyl esters (82%). This is likely to be attributed to the stabilization of the
open active form of the lipase when immobilized.

1. Introduction

Biocatalysis has been widely used at an industrial level (white biotechnology) due to
its advantages in terms of specificity, mild reaction conditions and as a green alternative to
the conventional catalysts—highly polluting and toxic solvents or reagents—resulting in the
intensification and higher sustainability of the processes [1–3]. An example of this occurs
in the energy sector, which has benefited from lipase-based biocatalyst implementation
for the production of fatty acid alkyl esters (EE) from vegetable oils, which are the main
component of biodiesel [4–6]. This is because the use of lipase-based biocatalysts reduces
the use of strongly oxidizing/corrosive agents like sulfuric acid or potassium hydroxide.
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Furthermore, this enables the use of lower-quality raw materials, reducing the purification
steps currently required for the conventional industrial process [4,6–8].

For this reason, in the production of EE using biocatalysts, it is not necessary to use
oils/fats which should be prioritized for human consumption, opening up the possibility
of exploiting oils/fats that are often the typical waste of industrial and domestic prac-
tices [9,10]. Furthermore, these wastes could ultimately lead to contamination of vast
quantities of water (1 L can contaminate 40,000 L of water) [9,11,12]. Thus, implementing
biocatalysis in the biodiesel industry would add value to waste oils, which would achieve
an approximation of the circular economy ideal [13].

Lipases are the third most commercialized enzymes, after proteases and carbohy-
dratases, and are applied to the industrial sector for their wide range of catalyzing reactions
and the substrates that accept them. Additionally, engineering tools are available to op-
timize their stability and activity under the required operating conditions [14,15]. In
particular, microbial lipases are the most used because, due to the adaptive processes of the
organisms of origin, a wide range of working conditions are available (pH, temperature,
ionic strength) [16]; they are typically active as monomers and do not need colipases [17].
Moreover, due to their extensive research, microbial lipases have the possibility for large-
scale production through strategies like recombinant DNA technology. This enables the
convenient and cost-effective extraction of lipases from complex systems or even utilizing
wild crops [18].

Focusing on the production of EE, it has been shown that short-chain alcohols, used
as raw materials, induce conformational changes that lead to protein aggregation and,
thus, their deactivation [19,20]. Lipase immobilization on mesoporous supports has been
investigated as a tool to mitigate such limitations [19,21]. One of the most used commercial
immobilized lipases is Novozyme® 435 (CALB immobilized on Lewatit® VPOC1600). Due
to the hydrophobic characteristic of the support, alcohol can induce immobilized lipase
aggregation and modify the support texture, generating desorption of the enzyme, thus
decreasing biocatalyst activity [19]. Therefore, there is still the need to find new strategies
to circumvent this hurdle.

Some lipases present conformational equilibrium [22,23]. In an aqueous environment,
they are typically in a closed, inactive form with a minority in an open, active state due
to the positioning of the lid [22,23]. The equilibrium changes in the presence of water–
lipid interfaces, leading to the interfacial activation in some lipases [22,24]. Creating
environments that stabilize the open conformation enhances catalytic activity, known
as “hyperactivation” [25,26]. An illustrative case of this phenomenon can be seen in
numerous instances involving free or immobilized lipases exposed to ionic or non-ionic
surfactants in aqueous solutions. It has been concluded that the hydrophobic part of the
surfactant interacts with the hydrophobic active site of the lipase, while the hydrophilic
part interacts with the medium, promoting its active form [27,28]. However, the extent
of the hyperactivation depends on the nature of the lipase, surfactant, reaction medium
and the substrate involved [29]. These surfactants not only impact lipase activity but also
influence their selectivity (substrate preference), and may serve as spacer arms connecting
a support material and the lipase itself [25,27]. Thus, it is necessary to collect data on the
effects that ionic additives may have on lipases, which allow us to understand and model
the interactions they generate for the design of lipase immobilizations focused on obtaining
highly efficient and operationally stable biocatalysts [25]. This requires tuning critical
parameters of the enzyme immobilization process, such as medium conditions (pH, ionic
additives, immobilization time, ionic strength, etc.) and support characteristics (structure,
pore size, etc.) [24,25].

Thus, in this research, obtaining immobilized lipases, also known as lipase derivatives,
for the production of fatty acid alkyl esters (EE) was attempted from the immobilization of
commercial lipases which are typically used in the biodiesel industry, such as those from
Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antarctica B (CALB) and
Lecitase® [6,7,21], on commercial supports such as Lewatit® VPOC1600, Q-Sepharose® and
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Sulfopropyl Sepharose®, among others [21,30]. In that context, we also included the use of
ionic additives that modulated lipases’ properties to obtain more efficient and potentially
scalable biocatalysts for the biodiesel industry.

2. Materials and Methods
2.1. Materials

CAL B, TLL, RML, Lecitase®, octyl-Sepharose®, sulfopropyl-Sepharose®, Q-Sepharose®,
p-nitrophenyl butyrate (p-NPB), Cetyltrimethylammonium bromide (CTAB), Ethylenedi-
aminetetraacetic acid (EDTA), Bicinchoninic Acid Kit (BCA), Bovine serum albumin (BSA),
ethanol (96%) and salts for buffering solutions were purchased from Sigma Chem. Co.
(St. Louis, MO, USA). Nekrolith® support was purchased from Mitsubishi Chemical. Other
supports, PEI-agarose and DexSO4-agarose, were prepared according to Guisan [31,32].
Palm olein was purchased in a local store. Unrefined palm oil and used cooking oil
were donated by Biocombustibles Sostenibles del Caribe S.A. (Ing. Carlos Velásquez) and
Redciclar (Foundation Crese), respectively. Novozyme® 435 and Lipozyme® TL IM (com-
mercial biocatalysts based on immobilized CALB and TLL) was a gift from Novozymes
(Bagsværd, Denmark). Other reagents and solvents were of analytical or HPLC grade.
Supports from Lewatite® (VP OC 1600 (LW), based on polymethacrylate/divinylbenzene
copolymer, and MP 800 (MP), based on cross-linked polystyrene functionalized with Type I
quaternary ammonium groups, were kindly donated by Lanxess® (Cologne, Germany) and
Purolite® ECR1604 (PU), based on based on polymethacrylate/divinylbenzene copolymer
functionalized with Type I quaternary ammonium groups, was donated by Purolite Ltd.
(Llantrisant, UK).

2.2. Esterase Activity and Protein Determination

The esterase activity of soluble or immobilized enzymes against p-NPB (p-nitrophenyl
butyrate) was assayed at pH 7.0 (25 mM sodium phosphate buffer) and 25 ◦C as previously
described [33], with the following modifications: presence of Triton® X-100 (TX) 0.01%
for CALB or RML and CTAB 0.001% and TX 0.01% for TLL. In experiments involving
the variation of surfactant concentrations, the amounts of the surfactants were adjusted
correspondingly. One international unit (IU) is defined as the amount of enzyme required
to hydrolyze one µmol of p-NPB min−1 under the conditions described above.

Protein determination was performed according to the Protein Assay Kit protocol at
37 ◦C for 30 min using BSA (bovine serum albumin) as a standard (Pierce® BCA). The
quantity of protein was measured in proper dilutions of filtered aliquots of control and
immobilization supernatants after the decantation of the support. The protein loading
on the different immobilization supports was calculated from the difference in protein
content measured between the control and the respective immobilization supernatant after
24 h [34].

2.3. Immobilization of Lipases: Obtaining Lipase Derivatives

The production of highly loaded immobilized lipases (derivatives) was performed by
mixing 1.00 g of support and 40.0 mL of a solution with 2 mM EDTA, 10% glycerol, with a
protein concentration of 1.86 mg/mL and 10.0 mM buffer (sodium phosphate or citrate) for
24 h at 28 ◦C and at the desired pH. Once TLL and Q-Sepharose® were selected as the best
combination, CTAB (0.005%) or SDS (0.1%) were added to the immobilization solution and
the protein concentration was varied in order to produce derivatives with different enzyme
loads. Subsequently, the derivatives were concomitantly washed with immobilization
solution without enzyme and then with distilled water. Finally, the derivatives were stored
at 4 ◦C until use.

2.4. One-Step Solvent-Free Fatty Acid Ethyl Ester Production (EE)

A mass of 40 mg of selected lipase derivatives (wet basis, equivalent to 6% of the
oil mass) was added to 1.17 g of palm olein and ~190 mg of absolute ethanol (ethanol:oil
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molar ratio 3.1:1), without any solvents or additives. These components were combined
in hermetic vials, which were then placed on a Thermomixer® at 37 ◦C and 1700 rpm.
Samples of 50 µL were withdrawn at different times, and the content of fatty acid ethyl
esters (EE) was analyzed using FTIR-ATR spectroscopy [9].

For reuse of TLL- SDS-Q derivatives, at the end of the reaction time (6 h) the oil phase
was extracted and the biocatalyst washed with 350 µL of 0.1% SDS twice. Finally, the
derivative was washed with 10 mM phosphate buffer at pH 7.0 thrice and used in a new
reaction cycle.

2.5. Spectroscopic Measurements of Derivatives and Supports

For FTIR-ATR measurements, the derivatives or supports (0.2 g) were washed ten
times with 10 mL immobilization solution without additives and enzymes and then with
deionized water, then filtered and dried at 30 ◦C under vacuum overnight until obtaining
constant mass. FTIR-ATR spectra of the dried derivatives or supports were recorded using a
Perkin Elmer Spectrum (with the SpectrumTM Software) from 600–4000 cm−1 with 25 scans
and 4 cm−1 resolution and an ATR probe with a cleaned diamond 3-reflection plate at the
highest pressure for the Clamp (Pike MiracleTM technologies). Normalization and ATR
correction were performed using the SpectrumTM Software [35].

2.6. SDS-PAGE Characterization of the Biocatalysts

SDS-PAGE experiments were carried out following protocols previously reported by
Javier Rocha-Martin et al. [36], with some modifications. The derivatives’ samples were
diluted in 4% SDS (w/v) and 10% mercaptoethanol (v/v) to have a protein concentration
of 0.5 mg of protein/mL solution in the samples. Also, for the ionic derivatives alone,
NaCl was used to reach 1.0 M. The sample solutions were boiled for 10 min. The support
was discarded after centrifuging the suspension at 4000 rpm for 2 min. After taking 15 µL
aliquots of the supernatants of each sample and 7 µL of LMW-SDS Marker BioRad #1610374
(10–250 kDa), the samples were injected in 12% polyacrylamide gels, which were run at
100 V. Proteins were stained using Coomassie blue dye.

2.7. TLL-Additive In Silico Modeling

For the modeling of the enzyme–additive coupling, the docking software, PyRx, using
AutoDock 4 and AutoDock Vina, was used (http://pyrx.sourceforge.net, The Scripps
Research Institute, accessed on 17 May 2023) [37]. Three-dimensional crystalline structures
of open TLL (PDB ID = 6XOK) were downloaded from the Protein Data Bank (PDB,
http://www.rcsb.org/pdb/, accessed on 14 April 2023). Three-dimensional structures
for additives were obtained by converting MDL SDfiles to PDB files, using the SMILES
online structure generator and translator (https://cactus.nci.nih.gov/translate/, National
Cancer Institute/Chemical Biology Laboratory, accessed on 13 April 2023). In order to
facilitate the calculations, in the case of the polymers PEI and CMC, we decided to evaluate
their coupling using a representative oligomer of each (n = 29 for PEI; n = 7 for CMC with
substitution degree 0.7). The X, Y and Z coordinates of the grid center for the point of
binding of the additives were fixed over the entire enzyme area (X = 547,487; Y = 314,687;
Z = 820,317). Models with the highest free binding energy (lower coupling energy), ∆G,
were chosen to explore the additive’s position with respect to the enzyme via visualizing
docking results in open-access PyMOL software (https://pymol.org/2/, accessed on 17
May 2023).

2.8. Statistical Analysis

The experiments described were performed in triplicate. An ANOVA procedure
(p < 0.05) was used to evaluate significant differences among means.

http://pyrx.sourceforge.net
http://www.rcsb.org/pdb/
https://cactus.nci.nih.gov/translate/
https://pymol.org/2/
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3. Results and Discussion
3.1. Reversible Immobilization of Lipases in Different Types of Commercial Supports

The results of the immobilization of the commercial lipases TLL, RML, CALB and
Lecitase®, on different the commercial supports of reversible immobilization are summa-
rized in Table 1.

Table 1. Immobilized activity yield (%) of the lipases TLL, RML, CALB and Lecitase® on anionic,
cationic and hydrophobic exchange supports, in 24 h of immobilization. In the matrix type, the
type of interaction with the enzyme and the hydrophilic or hydrophobic characteristic of the matrix
is detailed.

Support Abbr. Matrix Enzyme Immobilization
pH

% Activity
Immobilized a

Sulfopropyl
Sepharose® (−) SP

Crosslinked agarose
Ligand: Sulfopropyl

Type: Anionic, hydrophilic

TLL 3.5 87.9
CALB 3.5 81.3
RML 3.5 87.7

Lecitase® 3.5 74.3

Q-Sepharose® (+) Q
Crosslinked agarose

Ligand: Quaternary amine
Type: Cationic, hydrophilic

TLL 8.0 85.9
CALB 10.0 70.6

Lecitase® 8.5 41.5

Dextran Sulfate
agarose (−) DexSO4

Crosslinked agarose
Ligand: Sulfonic acid

Type: Anionic, hydrophilic

TLL 3.5 85.9
CALB 3.5 79.6
RML 3.5 69.6

Lecitase® 3.5 58.0

Octyl-Sepharose® * OC
Crosslinked agarose

Ligand: Octyl groups
Type: Hydrophobic, hydrophilic

TLL 7.0 45.0 [38]
CALB 7.0 79.0 [39]

Lecitase® 7.0 45.0 [38]

Polyethyleneimine—
agarose (+) PEI

Crosslinked agarose
Ligand: Ethyleneimine

Type: Cationic, hydrophilic

TLL 8.0 67.2
CALB 9.5 25.2

Lecitase® 8.5 94.1

Nekrolith® (+) NK
DVB/styrene tertiary amine

groups [40]
Type: Cationic, hydrophobic

TLL 8.5 74.5
CALB 9.5 72.6
RML 8.0 80.7

Lecitase® 8.5 94.1

Lewatit® VPOC1600 VPOC

DVB/Crosslinked
polymethacrylate

Ligand: None
Type: Hydrophobic, Hydrophobic

TLL 8.0 87.7
CALB 8.0 97.0
RML 8.0 82.0

Lecitase® 8.0 90.0

Lewatit® MPSP112H MPSP
DVB/Crosslinked polystyrene

Ligand: Sulfonic acid
Type: Anionic, hydrophobic

TLL 3.5 72.0
CALB 3.5 30.0

Lecitase® 7.0 80.0

Lewatit® MP800 MP800
DVB/Crosslinked polystyrene

Ligand: Quaternary amine
Type: Cationic, hydrophobic

TLL 8.0 94.0
CALB 9.5 27.0

Lecitase® 8.5 82.0

Purolite® ECR1604 PL®
Polystyrene

Ligand: Quaternary amine
Type: Cationic, hydrophobic

TLL 8.0 80.0
CALB 9.5 26.0

Lecitase® 8.5 83.2

DVB-Divinylbenzene. a The immobilization yield under defined immobilization conditions (Section 2.2) was cal-
culated as 100% (1−XSI × XCS −1), where XSI and XCS indicate the total activity content after the immobilization
time in the supernatants that were in contact before the measurements with and without support, respectively [9].
In every enzyme immobilization 75 mg of protein per g support was offered. Values are the mean of three different
experiments where the standard deviation was never >5% of the mean value.

According to the above results, the Lewatit® VPOC 1600 support had an immobilized
activity performance above 82% for all lipases used, due to the natural affinity of this
type of enzyme to lipid–water interfaces [22,24,41]. In addition, it can be inferred that
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immobilization via ion exchange interactions is also high (up to 94.1% for Lewatit® MP800),
given that the quantity of the ionic groups on the enzyme’s surface is lower compared
to the hydrophobic groups (Figure S1), especially in the close lipase conformation; this
phenomenon could be attributed to the increased strength of the ionic protein–support
interactions in comparison to the hydrophobic protein–support interactions [42]. In addi-
tion, a greater dispersion of the ionic groups was observed, favoring the anchoring of the
enzyme to the support at a greater variety of angles, enabling a multipoint union with the
activated groups and the appropriate protein–support coupling [43]. CALB obtained the
lowest percentages of immobilization on anion exchange supports, presumably because it
has the highest pI among the lipases studied here (8.12) in addition to the most balanced
amount of positive and negative charges (Figure S1) [42,44]. In the case of ion exchange
immobilizations, the enzyme–support linking will be beneficial at a pH different from the
pI, as is the case for the lipases TLL, RML and Lecitase® that, having more negative residues,
achieved better immobilization yields using anion exchange supports [9,45] (Figure S1).

3.1.1. Synthesis of Ethyl Esters of Fatty Acids Using Lipase Derivatives

The activity of the derivatives was evaluated according to their ability to catalyze the
transesterification of fatty acids with ethyl alcohol to obtain ethyl esters of fatty acids (EE).
In the Table 2 the results are shown in terms of %EE for the lipase derivatives obtained.

As a general trend, cation exchange immobilizations did not produce active deriva-
tives. This may be because, during immobilizations performed at an acidic pH, a general
pattern was observed, since the studied lipases gradually formed a precipitate accompa-
nied by a more significant decrease in activity than in other conditions; see Table S1 (see
Supplementary Material) [46,47]. Other effect to consider is the that ligands of the cation
exchange supports: groups such as sulfonates or phosphonates have been reported to
bind to the catalytic serine of hydrolase enzymes covalently, mimicking the second tetrahe-
dral intermediate that occurs during the catalytic cycle, thus inactivating the enzyme [48].
Hence, it is reasonable to consider that the sulfonyl groups present in the support could
also exert a comparable role within the transesterification reaction. This phenomenon,
coupled with the reduced stability of lipases at acidic pHs, can synergistically contribute to
the production of derivatives with lower EE yields (EE < 5%, Table 2) [15,48].

The activity of derivatives with hydrophobic interactions are those that produced
the highest %EE (Lewatit® VPOC1600- TLL 86.2%). On the other hand, the derivatives
obtained via anion exchange also presented a %EE comparable to the commercial lipase
derivatives Novozyme® 435 (52.7%) and Lipozyme® TL IM (71.3%). It is important to
consider that in the industry, alcohol is typically added gradually during transesterification
to prevent enzyme inactivation. [7]. The conditions used here are expected to be more
challenging to biocatalysts as all alcohol is added at the onset of the reaction, which would
explain the relatively low values for Novozyme® 435 (52.7%) with regard to what has been
previously reported [6,8,49].

Focusing on the hydrophobic supports that are the most common for lipases [44,49–51],
the lipase derivatives immobilized on Lewatit® VP OC 1600 were compared with Novozyme®

435 (which is based on Lewatit® VP OC 1600) and Lipozyme® TL IM (based on silica)
(Table 2 and Figure S2) [49,51,52] as commercial references. The best results in %EE were
obtained with TLL, both the commercial reference and the one obtained here, with a higher
percentage (71.3% and 86.0%, respectively) compared to Novozyme® 435 (52.7%). Regard-
ing the anion exchange derivatives, it should be noted that the PEI-Lecitase® derivative also
had comparable results (68.4%) to the reference. However, this was the only combination
with which said enzyme achieved this performance, which shows that Lecitase® is less
versatile than TLL, which, in supports such as Lewatit® VP OC 1600, Q-Sepharose and
Lewatit® MP800 (+), showed higher yields. Considering that the latter commercial supports
are easily accessible, derivatives based on TLL sound promising for immediate application
to biodiesel production at an industrial scale [7,21,50].
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Table 2. Yield (%) of ethyl esters fatty acids (EE) produced from each lipase derivative in 24 h of
reaction, using 3.1:1 ethanol: oil, 37 ◦C, 1700 rpm [9].

Support Enzyme %EE CI

Sulfopropyl Sepharose® (−)

TLL 3.3 0.4
CALB 4.4 0.6
RML 2.9 0.4

Lecitase® 3.6 0.5

Q-Sepharose (+)
TLL 70.1 5.6

CALB 5.7 0.5
Lecitase® 50.7 4.1

Dextran Sulfate agarose (−)

TLL 3.2 0.4
CALB 4.4 0.6
RML 3.4 0.4

Lecitase® 3.7 0.5

Octyl-Sepharose® CALB 32.4 2.6

Polyethyleneimine-agarose (+)
TLL 4.7 0.4

CALB 35.8 2.9
Lecitase® 68.4 5.5

Nekrolith® (+)

TLL 51.3 4.1
CALB 30.4 2.4
RML 20.6 1.6

Lecitase® 22.8 1.8

Lewatit® VPOC1600

TLL 86.2 6.9
CALB 47.4 3.8
RML 70.7 5.7

Lecitase® 11.4 0.9

Lewatit® MPSP112H (−)
TLL 11.0 0.9

CALB 9.0 0.7
Lecitase® 10.0 0.8

Lewatit® MP800 (+)
TLL 65.1 5.2

CALB 27.2 2.2
Lecitase® 55.0 4.4

Purolite® ECR1604
TLL 54.2 4.3

CALB 10.1 0.8
Lecitase® 16.3 1.3

Novozyme® 435 52.7 4.2

Lipozyme® TL IM 71.3 5.7
Values are the mean of three different experiments where the standard deviation was never >5% of the mean
value (Section 2.4). CI: confidence interval.

After selecting TLL as the most versatile lipase in this study, and upon comparing the
EE yields of the respective derivatives (Table 2 and Figure S3), it is evident that, overall,
those derived from anion exchange supports exhibited the most favorable outcomes (51%
to 70%). This observation holds true with the exception of the derivative originating from
PEI-agarose, with its yields being akin to those achieved using the commercial biocatalysts.
This suggests that quaternary amino-type cationic groups facilitate the stabilization of
a highly active form of TLL once immobilized, whereas secondary amino groups (such
as those found in PEI-agarose) achieve this to a lesser extent [53]. On the other hand,
structurally, the ligand in Q-Sepharose® has methyl and methylene groups that can make
the local environment more hydrophobic, which together with quaternary ammonium
could simulate the activating effect that interfaces or surfactants have on lipases (e.g.,
CTAB) [25,41,43].
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While the derivatives are intended for use in the synthesis of the alkyl esters of fatty
acids (EE), saline enzyme–support bonds present in derivatives as Q-Sepharose® are ideal
when compared to the hydrophobic ones, because they may grant the derivative the advan-
tage of being less susceptible to presenting the phenomena of enzyme leakage or poisoning
via the adsorption of the predominantly hydrophobic species present during transester-
ification. In addition, the matrix selection was also one parameter to consider [42,53].
In this sense, hydrophilic agarose-based supports tend to present less adhesion effects on
the oil components used on the surface of the derivative. Also, agarose-based supports such
as Sepharose® are obtained from renewable resources and biodegradable. Thus, this matrix
emerges as a remarkable alternative with restricted application in the realm of biocatalyst
design for EE synthesis. Our prior utilization of glyoxyl-agarose stands as one of the scarce
instances of this [34]. Taking into consideration that one of the objectives of this study
is to utilize additives like surfactants, which have demonstrated the ability to modulate
lipase behavior, and to observe how these effects are manifested in the obtained derivatives,
opting for a hydrophobic support is not the most suitable choice. This is because, in these
cases, surfactants tend to diminish the quantity of enzyme that can be immobilized onto
such supports, leading to derivatives with reduced activity [42]. Another reason to avoid
hydrophobic supports is to prevent the immobilized lipase aggregation induced by short-
chain alcohols [19]. Thus, the combination of Q-Sepharose®, a hydrophilic agarose-based
support, with TLL, a versatile enzyme, holds promising potential, making it the central
focus for studying the effects of additives on both of these, as will be seen below.

3.2. Effects of the Ionic Additives CTAB, SDS, PEI and CMC on the Hydrolytic Activity of TLL

These kind of additives have shown a capacity for tuning lipase properties as demon-
strated previously for immobilized TLL in hydrolysis and for CALB in fatty acid ester
synthesis [25,54,55]. Furthermore, they are readily available on the commercial market
and widely utilized in both research and industrial applications [56,57]. Studying the
impact of these additives on free TLL will also assist in defining the optimal conditions
for immobilizing the enzyme (Section 3.3) onto the selected support, ultimately yielding
derivatives with improved properties.

TLL shows changes in its activity in the hydrolysis of para-nitrophenyl butyrate
(p-NPB) in the presence of ionic polymers such as poly(ethylenimine) (PEI) and carboxy-
methylcellulose (CMC), Figure 1. With PEI, enzyme activity increased 4.3 times, while with
CMC, a 39% decrease in activity was observed, each to 0.1% p/v.

At pH 7.0 of the activity determinations, the TLL surface is negatively charged (be-
tween −5 and −12 of the net charge) [58], so the most intense additive–enzyme interactions
would be, in the case of the polymers used, with the PEI, which is a polycation [38,58].
With the results, a molecular docking analysis was performed using an open conformation
TLL structure (PDB:6XOK) and a representative oligomer structure of the CMC and PEI
ionic polymers (Figures 2 and S4). It can be deduced that the electrostatic interaction PEI-
TLL could be preventing the formation of protein aggregates through their hydrophobic
pockets, mainly by modifying lipase–lipase interactions and allowing the active site of the
individual enzymatic units to be more available for binding to the substrate, that is, to
present a greater activity [38]. Similar to that observed in Section 3.1.1, groups with positive
charge improve enzyme activity, whereas groups with negative charge do not, which is
a reasonable explanation of the mild promoter effect of these additives on the hydrolytic
activity of lipase; it is not directly related to the active site domain (Figure 1) [22,23,59].
The observed increase with the CMC may be due to the opposite case of this phenomenon:
the repulsion caused by similar charges between CMC and TLL could be favoring the
formation of lipase–lipase aggregates through their hydrophobic pockets, thus decreasing
the total activity of the enzyme [58,60]. On the other hand, although the energy, according
to the results in Figure 2, proposes that the cluster with CMC is more stable than that of
PEI, this is most likely due to the constraints of the docking process, wherein the employed
force field fails to consider ionic interactions [61].
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Figure 1. TLL p-NPB hydrolytic activity in the presence of CMC (red) and PEI (blue). Enzyme 

activity in the absence of polymer = 1 (0.037 IU). Measurements at pH 7.0 and 25.0 °C. 
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Figure 1. TLL p-NPB hydrolytic activity in the presence of CMC (red) and PEI (blue). Enzyme activity
in the absence of polymer = 1 (0.037 IU). Measurements at pH 7.0 and 25.0 ◦C.
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Figure 2. Representative cluster using AutodockVina of TLL in open conformation PDB: 6XOK (in
blue). Oligomers were used as these are a representation of the polymer but with a reduced freedom
degree, otherwise calculations will not converge. Here it is observed that PEI oligomers with n = 29
(represented in green) prefer to dock on regions with mainly enzymatic surfaces and not on regions
near the active site (in red) or the domain of the lid (orange), this may be due to the large size of the
oligomer chosen or the number of charges it has. Also, using Discovery Studio, the interactions are
here represented in 2D: van der Waals (green light), salt bridge and attractive charge (orange), carbon
hydrogen bond (blue light) and unfavorable interactions (red).

As previously reported, TLL experiments display a drastic increase in hydrolytic ac-
tivity in the presence of ionic surfactants, as seen in Figure 3 [25,29]. The highest activation
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was obtained with the cationic surfactant CTAB, approximately 48 times that of the en-
zyme’s activity without the surfactant and at a relatively low concentration of the surfactant
(0.005% (w/v)). The anionic surfactant SDS also promoted considerable activity, 37 times
higher than the enzyme without the surfactant, but at higher concentrations (0.05–0.1%),
compared with CTAB.
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Figure 3. Hydrolytic activity of TLL against p-NPB in the presence of CTAB (blue) and SDS (red). 

Relative enzyme activity in the absence of surfactant = 1 (0.054 IU for SDS and 0.107 IU for CTAB). 
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Figure 3. Hydrolytic activity of TLL against p-NPB in the presence of CTAB (blue) and SDS (red).
Relative enzyme activity in the absence of surfactant = 1 (0.054 IU for SDS and 0.107 IU for CTAB). The
dotted brown and light blue lines represent the approximate value of critical micelle concentration
for the SDS and CTAB, respectively, in SBF and 25.0 ◦C (3 mM).

In both cases, a similar initial growth behavior is observed in catalytic activity, fol-
lowed by a decrease to higher concentrations of surfactants, although consistently superior
to control. Similar hyperactivation observations have been obtained for this lipase in pre-
vious studies with concentrations of CTAB (0.005%) [25] and SDS (0.1% ≈ 3 mM) [29,62],
in addition to the behavior of its activity profile in broad concentration ranges of these
surfactants. This is related to the relative maximum point of activation reached by con-
centrations close to the critical micellar concentration value of each of the surfactants in
the phosphate-buffered solution (SBF) that was used for the determinations [63,64]. This
would seem to indicate that the observed activation phenomenon is due to the adsorption
of the micelle on lipase in its open form that appears when surfactant micelles are formed
(interfacial activation). However, Mogensen et al. demonstrated that it is the interaction
of individual surfactant molecules with critical points of the enzymatic surface that is
responsible for this phenomenon; no evidence of the formation of micelles is found or,
including premicellar aggregates, at the surfactant concentrations at which hyperactivation
occurs [29].

In contrast to the docking outcomes observed for ionic polymers, the interaction
between CTAB (∆G = −5.5 kcal/mol) and SDS (∆G = −5.2 kcal/mol) with the active site of
TLL yielded negative free energy values (∆G < 0) (Supplementary Figures S5 and S6). This
suggests a pronounced spontaneous tendency for the positioning of these surfactants within
the enzyme’s hydrophobic pocket, aligning well with the findings reported in the existing
literature [25,27–29] and in accordance with experimentally obtained activity results. The
main location of its carbon chain appears to be next to the hydrophobic residues such as Trp,
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Phe, Leu and Ile that surround the catalytic triad of the enzyme (Figures 4 and S5) [59,65–67],
allowing it to establish strong van der Waals interactions, while its unique ionic end is
exposed to the medium. In addition, the TLL-surfactant clusters obtained with the substrate
p-NPB were evaluated using a receptor (Figure S7), which revealed that the presence of the
surfactant in the active site domain does not interfere with the affinity it has to the ester for
both cases (∆G = −5.6 kcal/mol).
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Figure 4. Representative cluster using AutodockVina between open TLL (blue) and CTAB
(green/red/orange). The catalytic triad (red) and the residues closest to the detergent (orange)
are highlighted. Also, using Discovery Studio the interactions in 2D are here represented: van der
Waals (green light) and alkyl and Pi-Alkyl (pink).

On the other hand, it is observed that, although both surfactants have the ability to
significantly increase hydrolytic activity, the activation presented using CTAB was higher
(48 times CTAB/37 times SDS); this could be due to an acceleration of the reaction by the
formation of a cationic complex between the product of p-NPB hydrolysis and a molecule of
CTAB (Le Châtelier principle) [68,69]. In addition, beyond the critical micelle concentration,
there is a decrease in hydrolytic activity allegedly attributed to the fact that once micelles are
formed, they slightly reduce the effective concentration of the substrate because a portion
of hydrophobic characteristic of the substrate may be encapsulated in the micelle [70].

3.3. TLL Immobilization on Q-Sepharose® Supports Using Ionic Surfactants

As mentioned in Section 3.2, lipases have a conformational balance between an inactive
closed and active open form, which is also evidenced in slightly immobilized lipases [25,26,66].
Although the closed form is the most stable, the active form can be stabilized in the presence
of ionic surfactants. In addition, it has been shown that the use of this type of ionic surfactant
not only activates the enzyme [25,66,70], because the hydrophobic rest of the surfactant can
remain adsorbed in the active site, but the charged rest is also adsorbed in an ionic charge
exchanger opposite to the surfactant. Thus, surfactants may connect the active lipase form
with the ionic support [25]. Taking advantage of the results discussed in Sections 3.1 and 3.2,
that the polymer’s effect was diminished compared to the surfactants, here the impact of
the ionic surfactants on the immobilization of TLL onto Q-Sepharose® was investigated
due to its potential to yield positive effects in the resulting derivatives.

3.3.1. Effect of Ionic Surfactants on the Immobilization Process

This exploration is particularly relevant because both the Q-Sepharose® support and
the additives have demonstrated the capability to enhance the activity. Figure 5 shows the
results obtained in monitoring the immobilization process in the absence (WA) and the
presence of the different ionic surfactants tested with the free enzyme.
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Figure 5. Percentage of immobilized hydrolytic activity (p-NFB) (Left Panel continuous line of 
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Figure 5. Percentage of immobilized hydrolytic activity (p-NFB) (Left Panel continuous line of
squares) and expressed activity (Right Panel dotted line of triangles) of TLL derivatives in Q-
Sepharose® concerning the immobilization target, in the absence (WA), and presence of additives
(CTAB, 0.005%; SDS, 0.1%; PEI, 0.1%), pH 7.0 at 28 ◦C. A total of 1.86 mg of protein per g of support
was offered, and the activity offered for each case was: Q/WA: 2.9 ± 0.2 UI, Q/CTAB: 3.8 ± 0.1 UI,
Q/SDS: 1.89 ± 0.04 UI. Expressed activity was defined as the percentage difference between the
activity of the derivative (Xed) and the activity of the supernatant (Xsb) divided by the activity of the
immobilization control (Xcs) (enzyme solution mixed with non-activated agarose) and the activity of
the derivative (Xed) (100 (Xed − Xsb)/Xcs) [34].

High percentages of immobilization (84–99%) were obtained for TLL in the anion
exchange support for all immobilization conditions without significant differences. In
contrast, the results of the activity expressed vary during immobilization (Figure 5), tending
to increase as the immobilization time does. The period of 24 h was chosen as the expressed
activity was almost maintained and as the longer the immobilization time, the higher the
derivative’s stability against deactivating agents [71], which is desirable in the challenging
conditions of the production of EE.

Once the derivatives had been washed, the esterase activity of each derivative in
the absence of surfactant was determined, which was generally too low to make direct
comparisons between them. Therefore, it was necessary to add ionic additives to make said
comparison. However, it is noteworthy that, in contrast, the TLL derivative obtained using
SDS in Q-Sepharose® showcased remarkable activity, even in the absence of modifiers
(1.02 UI). This value stands notably higher—ranging between 11 to 102 times—than the
activity levels observed in other prepared derivatives (ranging from 0.010 to 0.09 UI).
Impressively, this activity is also 93 times greater than that exhibited by the free enzyme
during its corresponding 24 h immobilization target (0.011 IU) (Table 3).
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Table 3. Expressed activities of the derivatives obtained, measured in the absence of surfactants in
the activity solutions. The activity relative to the immobilization target without additives (0.011 IU) is
shown. Here comparisons were made using 0.06 mg of free or immobilized protein for measurement.

Derivative
(Support/Additive during

Immobilization)

Surfactant-Free Derivative
Esterase Activity (UI)

Ratio between Expressed and
Initial Activity

Q-Sepharose®/WA 0.09 ± 0.01 8.2
Q-Sepharose®/CTAB 0.048 ± 0.007 4.4
Q-Sepharose®/SDS 1.02 ± 0.09 92.7

The remarkably elevated esterase activity observed in Q-TLL/SDS suggests that, under
these specific conditions, a substantial quantity of the enzyme was successfully stabilized
upon immobilization in its hyperactivated state. This heightened activity persists both after
immobilization and even in the absence of the additive SDS. This phenomenon, referred
to verbatim as “bio-imprinting” by certain authors [72,73], appears to be inapplicable to
derivatives obtained here in the absence of SDS. Similar observations were obtained for TLL
immobilized on sulfopropyl- Sepharose® (SP), a cation exchanger, in the presence of CTAB
at relatively high concentrations (0.3%) [25]. Although the immobilization mechanism is
not yet determined on a molecular scale, this may involve an enzyme–surfactant–support
interaction, in which the surfactant forms a kind of cluster bridge due to its hydrophobic
end interacting with the active site of the enzyme and its ionic end adsorbing strongly with
to the surface of the carrier with the opposite charge (Figure 6) [25].
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Figure 6. Immobilization representation of TLL on Q-Sepharose® support in its open form through
surfactant molecules (SDS, blue). The illustrated phenomenon scheme draws parallels to ion-pair
chromatography [74], although it is characterized by the distinction that, in this instance, ion-pairs
form between the stationary phase (embodied by the support) and the surfactant or surfactant–protein
complexes. In turn, this interaction would hypothetically result in the apparent hydrophobization
of the support, thus mimicking an oil/water interface that could potentially activate lipases, such
as TLL.

To add evidence to the aforementioned enzyme–surfactant–support interaction, TLL
derivatives immobilized on Q-Sepharose® in the presence of SDS were characterized using
FTIR (Figure 7). The characteristic bands of the support in the infrared spectrum can be
observed as they are the stretching O-H in 3300 cm−1 and C-O in 1100 cm−1. Comparing the
spectrum of the Q-TLL and Q-SDS-TLL derivatives with the support without an enzyme,
it is observed that for both cases, the presence of enzyme is reflected in an increase in the
band of 1620 cm−1 due to the presence of the peptide bonds of TLL [34]. For its part in the
spectrum of the derivative Q-SDS-TLL, the bands can be seen in 2900 cm−1, characteristic
of the alkanes, and 1300 cm−1 of the stretch S=O, thus demonstrating the appearance of
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SDS as a constituent of the lipase derivative (Figure 7). As the derivatives were washed
concomitantly and filtered before this characterization, this demonstrated that SDS is
indeed bound to the support, probably through ionic interactions, or to the enzyme via
hydrophobic interactions.
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Figure 7. Comparative FTIR-ATR normalized transmittance spectra of derivative Q-Sepharose®-TLL
(Q-TLL, red), Q.Sepharose® (gray) and derivative Q-Sepharose®-SDS- (Q-SDS-TLL, blue). For TLL
derivatives, the carbonyl band (C=O) from the peptide bonds of the TLL enzyme is well known. The
spectrum of the derivative Q-SDS-TLL is the only one that appears as evidence of the presence of the
surfactant SDS: stretching S=O (1300 cm−1) and C-H (2900 cm−1).

One way to corroborate which type of interactions are predominant in the enzyme–
support derivative is to find the enzyme desorption conditions from the support [75,76].
Q-TLL and Q-SDS-TLL derivatives, along with typical hydrophobic derivatives (TLL-LW),
were subjected to as harsh desorption conditions as those used during the preparation of
samples for denaturing electrophoresis, such as high temperature (Section 2.6) and includ-
ing 4% (w/w) SDS or 1 M NaCl, the first to undo hydrophobic interactions and the second
for the ionic type. The obtained supernatants were injected into SDS-PAGE gels (Figure 8),
revealing whether the enzyme desorbs or remain bonded under the condition employed.

The results of SDS-PAGE show an intense band at 33 kDa, similar to the molecular
weight reported in the literature for TLL [77]. In the case of the hydrophobically interacting
derivative, TLL-LW, enzyme desorption can be accomplished solely with the use of SDS.
However, the presence of NaCl fails to induce enzyme desorption from LW (Lewatit®

VPOC1600). Conversely, for the ionic derivative Q-TLL, an opposite pattern of behavior
is observed [75,76]. Of particular interest, the Q-SDS-TLL derivative, in contrast to the
behavior observed in Q-TLL, exhibits a notably pronounced desorption when subjected to
SDS compared to NaCl. This distinctive response is attributed to the nature of the inter-
actions at play, highlighting that within the Q-SDS-TLL derivative, the enzyme primarily
forms hydrophobic interactions with the support due to the presence of immobilized SDS
(Figure 6).
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Figure 8. Images of SDS-PAGE gels of derivative supernatants, in order from left to right. (Panel A),
Lane A1 and A5: TLL-LW using NaCl, Lane A2 and A4: TLL-LW using SDS, and MW: BioRad
molecular weight marker. (Panel B), MW: BioRad molecular weight marker, Lane B1 and B2: Q-SDS-
TLL using SDS, Lane B3 and B4: Q-SDS-TLL using NaCl, Lane B5 and B6: Q-TLL using NaCl, and
Lane B7 and B8: Q-TLL using SDS.

In addition, in terms of esterase activity, the effect of different concentrations of
additives on Q-TLL derivatives was also evaluated. In general, they responded similarly to
the free enzymes. Table 4 summarizes the most representative results of this study and in
Figures S8 and S9 (see Supplementary Material), the respective activity curves for each of
the seven derivatives are presented.

Table 4. Representative results of the effect of surfactants and polymers on the esterase activity of
different Q-TLL derivatives.

Derivative
(Support/Condition of

Immobilization)

Additive Added to the Esterase Reaction
Medium (Concentration Yielding

Maximum Activity.)

Maximum Activity Observed

Relative (UI)

Q-Sepharose®/WA

Without additives 1 0.09± 0.01
CTAB (0.1%) 33 2.98 ± 0.06
SDS (0.01%) 14 1.24 ± 0.06
PEI (0.1%) 1.8 0.161 ± 0.006

CMC (0.1%) 1.4 0.13 ± 0.01

Q-Sepharose®/CTAB (0.005%)

Without additives 1 0.048 ± 0.007
CTAB (0.1%) 61 2.92 ± 0.06
SDS (0.01%) 30 1.43 ± 0.05
PEI (0.1%) 2 0.095 ± 0.007

CMC (0.1%) 2 0.086 ± 0.006

Q-Sepharose®/SDS (0.1%)

Without additives 1 1.02 ± 0.09
CTAB (0.01%) 0.51 0.52 ± 0.1
SDS (0.01%) 0.64 0.65 ± 0.01
PEI (0.01%) 0.60 0.61 ± 0.03

CMC (0.01%) 0.65 0.66 ± 0.02

As mentioned in Table 3, Section 3.3.1, the derivative Q-Sepharose®/SDS was the
one with the highest activity in the absence of additives, evidencing bio-imprinting. That
may explain why for this derivative the esterase activity results, shown in Table 4 imply
a slight activation or even a lower activity when adding the additives (Figure 9). It was
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only through the addition of a relatively elevated quantity of CTAB (0.1%) that a marginal
rise in activity (20%) was discernible. This could be attributed to the hyperactivation of
a small fraction of the enzyme population, which was likely immobilized in its closed
conformation, possibly via ionic interactions with the support. One of the most remarkable
benefits of the Q-TLL-SDS derivative is its ability to avoid the necessity for surfactants or
other additives to activate the immobilized enzyme, a crucial factor for potential hydrolysis
applications. Furthermore, the final reaction products would no longer require separation
from this type of additive, as they would reside within a different phase. Similarly, the
utilization of this derivative in transesterification would enable something that cannot
be achieved with other derivatives, which is the attainment the activating effect of SDS
without the need to add it to the reaction medium. Implementing such an addition would
result in the formation of emulsions that would complicate the purification process of
biodiesel [78,79].
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Figure 9. Esterase activity of the TLL derivative Q-Sepharose® /SDS in the presence of CTAB, SDS, 

PEI and CMC. The relative activity of the derivative in the absence of additives was 1 (1.02 UI). The 

point-to-point junction serves solely for the convenient visualization of the graph. 

Figure 9. Esterase activity of the TLL derivative Q-Sepharose®/SDS in the presence of CTAB, SDS,
PEI and CMC. The relative activity of the derivative in the absence of additives was 1 (1.02 UI). The
point-to-point junction serves solely for the convenient visualization of the graph.

3.3.2. Application of Q-TLL Derivatives in Ethyl Ester Production

Regarding % of EE obtained as a function of time using the derivatives Q-TLL, Q-
CTAB-TLL and Q-SDS-TLL (Figure 10), the maximum production is around 70–80% in all
cases. It should be noted that for the derivative Q obtained with SDS, in the process of
immobilization (Q-SDS), the highest %EE (~80%) was obtained at 6 h, in contrast to the
other two derivatives that needed 48 h of reaction to reach %EE~70%. This is evidence
of this type of derivative’s potential, consistent with the high hydrolytic activity found
in Section 3.3.1 in the absence of surfactants in the reaction medium. This is, in turn,
another indication of the bio-imprinting phenomenon for Q-SDS-TLL that is maintained
even in the non-conventional medium of the transesterification reaction [25]. It is worth
noting that the SP-CTAB-TLL derivative previously characterized as bio-imprinted [25]
did not exhibit significant EE production (Figure 10). This might be attributed to CTAB
potentially obstructing the ingress of triacylglyceride (TG) into the active site, primarily due
to its aliphatic chain possessing a greater number of carbons (16), in contrast to the chain
length of SDS (12) [80]. Consequently, this could explain why both derivatives demonstrate
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comparable behaviors with diminutive substrates like p-NPB [25], while showing disparity
with larger substrates such as the triacylglycerides present in the transesterification reaction.
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Figure 10. Time-course of the production of %EE from palm olein as a function of time taken
for derivatives 20 mg TLL/gram support. Reaction at 37 ◦C at 1700 rpm using 40 mg by mass
of derivative (% 6 p/p against the amount of oil). Molar ratio 3.1: 1 EtOH: palm olein. For all
EE synthesis experiments, no additional surfactant was added other than that used to obtain the
derivative previously.

Building on its impressive performance, the Q-SDS-TLL derivative was chosen for
subsequent studies, including variations in enzyme concentration, reaction mixture and
exploring its reusability in transesterification. These investigations aim to enhance the
biocatalyst’s efficiency, with the goal of bolstering its potential for future large-scale pro-
duction. Figures 11 and S10 (see Supplementary Material) show the production of EE
with derivatives obtained by varying the protein load between 1 mg TLL/g support and
25 mg TLL/g support. Taking a reaction time of 3 h, as expected, they all show proportional-
ity between the amount of EE% synthesized and the concentration of immobilized enzyme
in the derivative, except for the 25 mg/g derivative. The latter can be explained due to
increasing the amount of enzyme above a specific maximum value (~20 mg/g); aggregation
effects at the surface level of the support could be promoted, leading to less enzymatic
activity and also minimizing the effectiveness of bio-imprinting by the effect of such an
interaction between proteins. The lower specific activity (%EE/mg immobilized protein
on the support) for derivatives with a greater amount of immobilized protein per gram
of support could be also related, with a greater difficulty for the substrate to saturate all
available active sites by the effect of the mass transfer phenomena [81,82]. It was important
that the specific activity of the derivative of 1 mg protein/g became up to 25 times higher
compared to the rest once the 6 h reaction threshold was exceeded. It is worth noting that
the derivatives Q-TLL and Q-CTAB-TLL had low percentages of EE (~31%) when tested
using enzyme charges below 20 mg/g, see Table S2 (Supplementary Materials), which
reinforce the choice of Q-SDS-TLL out of the Q-Sepharose® derivative types. Considering
the results of Figure 11, the enzymatic load 1 mg/g for Q-SDS-TLL was chosen, given its
consistent high specific activity and the low amount of enzyme required.
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Figure 11. Time-course tracking of palm %EE production over time for Q-SDS-TLL derivatives with
the amount of enzymes immobilized ranging from 1 mg TLL/g support to 25 mg TLL/g support.
Reaction conducted at 37 ◦C and 1700 rpm, utilizing 40 mg of the derivative in the reaction vessel.
For all EE synthesis experiments, no additional surfactant was added other than that used to obtain
the derivative previously.

As part of the evaluation of the reusability of the Q-SDS-TLL derivative, assays of
EE synthesis were conducted. Figure 12 shows the percentage decrease in synthesized EE
in each cycle. According to these results, up to the third cycle the EE yield losses did not
exceed 20%, however, after the fourth use, there was a considerable decrease. No evidence
of desorption of the enzyme in the derivatives was obtained (the amount of the protein
content in the derivative was maintained, and the hydrolytic activity per gram as well),
unlike in previous work with the derivative TLL-LW [9]. This decrease is mainly attributed
to the visually observed loss of the derivative mass between each cycle as a result of the
filtration and washing operations that had to be carried out. These losses could not be
quantified due to the low amount of biocatalyst used under the reaction conditions (40 mg).
It is expected that when larger reaction scales are used, or when using a continuous reactor,
the proportion of derivative mass lost due to reuse will be proportionally less than the one
observed here [83]. These results led us to study the effect of the amount of derivative on
the EE yield (Figure 13).

As expected, increasing the amount of derivative in the reaction mixture increases
its speed almost linearly in a period of 6 h (Figure 13). In more extended periods (24 h),
EE production is not significantly affected by reducing the mass amount between 40 and
20 mg of derivative. However, by reducing the quantity below 20 mg, which is 3% w/w
for oil, the EE generated decreased abruptly to below 10%EE. This is because, during the
experiment, it was observed that below these quantities, the dispersion of heterogeneous
catalysts within the reaction mixture was higher, causing the particles to be more exposed
to the ethanolic phase, inhibiting the process. Hence, it appears that the decrease in EE
yield during the reuse experiments may indeed be a result of a decrease in the derivative
mass in the reaction vessel.
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Figure 12. Reuses of the derivative type Q-SDS-TLL regarding %EE produced; each cycle represents
one use of the biocatalyst subjected to reaction for 3 h. Reaction at 37 ◦C at 1700 rpm using 40 mg by
mass of derivative with 1 mg/g charge. For all EE synthesis experiments, no additional surfactant
was added other than that used to obtain the derivative previously.
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Figure 13. Production of ethyl esters as a function of derivative mass (Q-SDS-TLL with 1 mg TLL/g
support). Reaction at 37 ◦C at 1700 rpm, molar ratio 3.1: 1 EtOH: palm olein (from 0.8–6% w/w) for
6 h. For all EE synthesis experiments, no additional surfactant was added other than that used to
obtain the derivative previously.

3.4. Comparison of EE Production of the Derivative Q-SDS-TLL Versus Lipozyme® TL IM

This section shows the behavior of Q-SDS-TLL and a commercial biocatalyst based on
TLL against oils that could not be used in industrial biodiesel production unless pretreated.
Table 5 shows that the behavior of Q-SDS-TLL (with just 1 mg protein immobilized/g)
is similar to using crude palm oil and greater in used palm oil compared to that of the
commercial biocatalyst (42 mg immobilized protein/g), but with much lower enzyme
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expenditure. The %EE is lower in unrefined oil presumably because in the unrefined oil
there may be phospholipids that can inhibit lipase activity [84].

Table 5. Comparison of EE production (%) of Q-SDS-TLL (1 mg/g) and Lipozyme® derivatives using
unrefined or used palm oil.

Unrefined Palm Oil Used Palm Oil

Time (h) Q-SDS-TLL Commercial
Derivative Lipozyme® Q-SDS-TLL Commercial

Derivativelipozyme®

1 28.5 ± 2.7 17.7 ± 0.3 28.1 ± 2.9 34.5 ± 3.2

6 45.9 ± 6.0 50.0 ± 5.8 62.6 ± 1.8 64.4 ± 1.7

24 67.5 ± 2.6 64.6 ± 4.0 79.3 ± 0.2 77.8 ± 0.8

The use of lower-quality oils for biodiesel production is one of the aspects that has
been mentioned as critical in the sustainability of this fuel in the future, since this raw
material constitutes the highest cost of production [10,85]. The need to use high-quality
oils as operational requirements for homogeneous acid or basic catalysts used in the global
biodiesel industry presents ethical dilemmas such as those related to using food in fuel
production [10], something that would be mitigated by biocatalysts based on promising
derivatives such as Q-SDS-TLL. The design of novel biocatalysts for EE with agarose-based
supports containing a quaternary amino group and SDS as an immobilization additive
form an effective strategy to improve biocatalyst EE yields. This was recently tested
when TLL was immobilized on a modified glyoxyl-agarose support that, in addition to
aldehyde groups, had quaternary amino groups (GxGT). The same improvement in %EE
was obtained by adding SDS as an immobilization additive: 34.6% for GxGT-TLL to 64.2%
for GxGT-SDS-TLL (Table S3 (see Supplementary Material)). These novel supports and
their derivatives have, additionally, the advantage of promoting covalent immobilization
which is expected to improve biocatalysts’ performance, mainly in their stability under
even harsher reaction conditions, something that will be exploited in future works.

4. Conclusions

Among the numerous evaluated derivatives for ethyl ester (EE) production, Ther-
momyces lanuginosus (TLL) lipase showed remarkable versatility. It successfully immobilized
on both ionic and hydrophobic supports, delivering EE yields comparable to commercial
alternatives with reduced enzyme expenditure. Incorporating ionic additives enhanced
TLL’s hydrolytic activity, while molecular docking indicated that surfactants stabilize the
open lipase conformation. Immobilizing TLL on Q-Sepharose® using surfactants led to
varied derivative hydrolytic activity. Of the combinations evaluated, it was highlighted
that in the case using SDS, a biodegradable and commercially available additive [57], in the
immobilization process of TLL on Q (Q-SDS-TLL) this combination exhibited the highest
activity (1.02 UI), probably by retaining its open conformation even without adding extra
additives, potentially indicative of enzymatic “bio-imprinting”. Q-SDS-TLL also excelled
at minimal enzyme consumption (1 mg/g of support), displaying a good performance in
EE synthesis without using solvents and without the requirement more additives than the
one already bound to the derivative constituents, achieving comparable results than those
obtained using commercial derivatives such as Novozyme® 435, which use 82 times more
enzyme. This was observed even using used oil (79.3% compared with 77.8%). Leveraging
continuous bio-reactors might overcome reuse limitations, elevating the competitiveness
of biocatalysts. Future work could optimize the conditions for target EE yields (>96.5%).
When comparing Q-SDS-TLL’s EE yields with those obtained from refined, unrefined, or
used oils using other catalysts, it becomes evident that its advantages could eventually
lead to cost reductions and a decrease in the environmental impact of current biodiesel
production practices.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biotech12040067/s1, Figure S1: Representation of surface load
density of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antarctic B
(CALB) and Lecitase®; the isoelectric points are 5.36, 4.92, 8.12 and 5.64, respectively. Negative charge
residues are presented in red and positive charge residues in blue, the color intensity represents how
exposed the ion group is. The isoelectric point was calculated using the tool expasy, PDB: 6XOK (TLL),
3TGL (RML), 4K5Q (CALB), and the structure of the Lecitase was built via homology using phyre2
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index accessed on 15 October 2023), taking
into account that it is a chimeric enzyme composed of the sequence from residues 1–284 of TLL and
285–339 of F. oxysporum [44]. Figure S2: Biodiesel yield (% w/w) of the different enzymes immobilized
in Lewatit® VP OC 1600 and the commercial reference for TLL Lipozyme® TL IM, using 3.1:1 ethanol:
palm olein, 37 ◦C, 1700 rpm [9]. Figure S3: EE yield produced by TLL immobilized in different type of
supports. Reaction conditions: 3.1:1 ethanol: palm olein, 37 ◦C, 1700 rpm [9]. The abbreviations from
left to right correspond to: Novo® (Novozyme® 435), Lipo® (Lipozyme® TL IM), SP (Sulfopropyl
Sepharose®), Q (Q-Sepharose®), DexSO4 (Dextran Sulfate agarose), PEI (Polyethyleneimine-agarose),
NK (Nekrolith®), VPOC (Lewatit® VP OC 1600), MPSP (Lewatit® MPSP112H), MP800 (Lewatit®

MP800) and PL (Purolite®). Figure S4: Representative cluster using AutodockVina between open
TLL (blue) and CTAB (green/red). The catalytic triad (red) and the residues closest to the detergent
(orange) are highlighted. Also, using Discovery Studio the interactions in 2D are here represented:
van der Waals (green light), conventional hydrogen bond (green) and unfavorable interactions (red).
Figure S5. Representative cluster using AutodockVina between open TLL (blue) and SDS (green).
The catalytic triad (red) and the residues closest to the detergent (orange) are highlighted. Also,
using Discovery Studio the interactions in 2D are represented here: van der Waals (green light) and
alkyl, Pi-Sulfur (orange) and Pi-Alkyl (pink). Figure S6. Representative cluster using AutodockVina
between open TLL (blue) and p-NFB (green). The catalytic triad (red), the residues closest to the
substrate (orange) and the polar interactions between groups (yellow dotted line) are highlighted.
Also, using Discovery Studio the interactions in 2D are represented here: van der Waals (green
light), conventional hydrogen bond (green) and alkyl and Pi-Alkyl (pink). Figure S7. Representative
cluster TLL (PDB: 6XOK) open (blue) with CTAB (left) coupling with p-NPB substrate (right). The
catalytic triad (red) and the residues closest to the surfactant (orange) are highlighted. Here it is
observed that for both cases, the hydrophobic end is responsible for interacting with the active site
domain, calculated using AutoDock Vina (http://pyrx.sourceforge.net accessed on 15 October 2023),
The Scripps Research Institute [35]. Also, using Discovery Studio the interactions between cluster
enzyme-CTAB with p-NPB in 2D are represented here: van der Waals (green light) and alkyl and
Pi-Alkyl (pink). Figure S8. Hydrolytic activity of TLL derivative Q-Sepharose® obtained without
additives, adding to the reaction medium different quantities CTAB, SDS, PEI or CMC. Activity of the
derivative in the absence of modifiers = 1 (0.09 UI). The union between points is only to facilitate the
visualization of the graph. Figure S9. Hydrolytic activity of TLL derivative Q-Sepharose® obtained
in the presence of CTAB, by adding to the reaction medium different quantities of CTAB, SDS, PEI
or CMC. Activity of the derivative in the absence of modifiers = 1 (0.048 UI). The union between
points is only to facilitate the visualization of the graph. Figure S10. Time-course tracking of %EE
palm production for Q-SDS-TLL derivatives with enzyme loads between 1 mg TLL/g support and
25 mg TLL/g support. Reaction at 37 ◦C at 1700 rpm using 40 mg by mass of derivative. Table S1:
Percentage loss of enzyme activity (%) with respect to the initial activity as a function of pH in
20 h, free enzyme. Table S2: EE production (%) using Q-TLL and Q-CTAB-TLL derivatives with
immobilized enzyme loading of 1 mg/g and 10 mg/g. Table S3: EE production (%) using refined and
used oil, by derivatives based on glyoxyl-agarose support modified with quaternary amino groups
(GxGT), comparing when SDS is used and not used in the immobilization process.
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Abbreviations

BCA Bicinchoninic acid
BSA Bovine serum albumin
CALB Candida antarctica B
CMC Carboxy-methylcellulose
CTAB Hexadecyltrimethylammonium bromide
DexSO4 Dextran Sulfate agarose (−)
EE Ethyl esters fatty acids
MP800 Lewatit® MP800
MPSP Lewatit® MPSP112H
NK Nekrolith®(+)
OC Octyl-Sepharose® *
PEI Polyethylenimine
PL® Purolite® ECR1604
p-NPB p-nitrophenyl butyrate
Q Q-Sepharose® (+)
RML Rhizomucor miehei
SDS Sodium dodecyl sulfate
SP Sulfopropyl Sepharose® (−)
TLL Thermomyces lanuginosus lipase
TX Triton® X-100
VPOC Lewatit® VPOC1600
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