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Abstract: Facing above-knee amputation poses a significant hurdle due to its profound impact
on walking ability. To overcome this challenge, a complex adaptation strategy is necessary at the
neuromuscular level to facilitate safe movement with a prosthesis. Prior research conducted on
lower-limb amputees has shown a comparable amount of intricacy exhibited by the neurological
system, regardless of the level of amputation and state of walking. This research investigated the
differences in muscle synergies among individuals with unilateral transfemoral amputations during
walking at three different speeds of transient-state gait. Surface electromyography was recorded from
eleven male transfemoral amputees’ intact limbs (TFA), and the concatenated non-negative matrix
factorization technique was used to identify muscle synergy components, synergy vectors (S), and
activation coefficient profiles (C). Results showed varying levels of correlation across paired-speed
comparisons in TFA, categorized as poor (S1), moderate (S3 and S4), and strong (S2). Statistically
significant differences were observed in all activation coefficients except C3, particularly during the
stance phase. This study can assist therapists in understanding muscle coordination in TFA during
unsteady gait, contributing to rehabilitation programs for balance and mobility improvement, and
designing myoelectric prosthetic systems to enhance their responsiveness to trips or falls.

Keywords: transfemoral amputee; surface electromyography; muscle synergy; concatenated
non-negative matrix factorization; statistical parametric mapping

1. Introduction

Muscle synergies refer to the coordinated activation of groups of muscles to perform a
particular movement. In healthy individuals, muscle synergies are well-coordinated and
lead to efficient movement [1,2]. However, in individuals with limb amputations, the loss
of a limb can significantly affect the coordination of muscle activation [3]. Transfemoral
amputees (TFA), in particular, face challenges in achieving a smooth and coordinated gait
due to the absence of the knee and ankle joints, which has an effect on the intact limb
(IL) [4].

Transfemoral amputees rely on prosthetic devices to walk, which can cause significant
changes in their gait patterns. These changes can lead to abnormal activation patterns of the
intact and residual muscles, which can further affect the coordination of muscle synergies
during walking [5,6]. Therefore, understanding the changes in muscle coordination from
high and low levels, i.e., muscle activations and synergies in transfemoral amputees’ intact
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limbs, can provide insights into the underlying mechanisms of gait impairment in this
population and potentially help therapists improve the quality of movement of amputees.
In addition, this study of muscle coordination may yield important information for the
creation of advanced prostheses.

While most studies on walking patterns focus on consistent, steady-state walking, it is
also important to understand other states of gait in amputees, including gait initiation, the
transient-state between gait initiation and steady-state walking, and the transition back to
upright standing [3,5,7,8].

When transitioning from standing to walking, the body goes through a transient-state
where the gait pattern is not yet fully established. During this phase, the body’s muscles
must work together to maintain balance and control movement. Recent studies have shown
that the speed at which a person walks during this transient-state can have a significant
impact on muscle coordination patterns [2,3,5]. Specifically, slower walking speeds have
been shown to require greater muscle activation and recruitment to maintain stability
and balance. This highlights the importance of understanding the effects of walking
speeds during the transient-state on muscle coordination, particularly in populations with
compromised gait patterns such as older adults, individuals with neurological disorders or
lower limb amputees, as this may result in falls [9–11].

1.1. Muscle Synergy Analysis at Different Speeds

Several studies showed that muscle synergies are shared and basic activation coeffi-
cient profiles held stable and consistent during steady-state walking over a wide range
of speeds [12–14]. That is to say, the central nervous system (CNS) implements the same
groups of muscle synergies, proportionally increasing the intensity of the activation coeffi-
cient profiles to satisfy the kinematic and kinetic demands of increased steady-state walking
speed. In addition, other studies showed the shape and pattern of the four to six activation
coefficient profiles have been impacted very little by changes in walking direction [15], loco-
motion mode [1,12,15–17], and loading and unloading of the body [18,19]. The similarity of
the average activation coefficient profiles suggests each temporal component is shaped with
respect to the total duration of the stride so that the resulting muscle activation has a long
duration at low speeds and a short duration at high speeds [20]. However, some studies
showed muscle synergies dependent on locomotion mode and speed. Kibushi et al. [21]
concluded that the activation coefficient is flexibly controlled by the CNS in the regulation
of walking speed. Yokoyama et al. [22] reported that different sets of muscle synergies were
extracted depending on the task and speed. Other researchers reported that the timing
and weighting of the patterns might significantly differ with changes in walking direction,
speed, and loading and unloading of the body [18,19].

1.2. Muscle Synergy in the Pathological Population

There have been studies focusing on pathological populations that show the number
of muscle synergy groups is lower in people with Parkinson’s disease, cerebral palsy, stroke,
and spinal cord injuries than in normal subjects [13,23–28], suggesting a lower complexity in
motor control. Clark et al. [13] showed two of the muscle synergies in healthy subjects might
be merged in post-stroke patients during steady-state walking. This merging of muscle
synergies was observed in incomplete spinal cord injury [28], Parkinson’s disease [23],
the upper extremity [27], and the lower extremity of stroke patients [26]. However, two
studies have found no difference in the number of modules between healthy subjects and
post-stroke patients [29,30]. The contradiction in the results of these studies could be due to
the methodology, analysis, number and choice of muscles included, locomotion performed,
chronicity of pathology, and heterogeneity of deficits inherently present following stroke.

1.3. Muscle Synergy in Lower Limb Amputees

In prior studies, muscle synergy analysis was implemented to investigate the motor
modules of a transtibial amputee during steady-state walking [31], ramp ascending [32],



Biomechanics 2024, 4 16

and ramp descending [33], as well as transfemoral amputees during self-selected normal-
speed steady-state and transient-state walking [5,6]. The same number of muscle synergies
were found between the lower limb amputees and healthy subjects, indicating analogous
complexity implemented by the CNS, which does not depend on the level of amputation.
In addition, these studies found the activation coefficient was significantly different at some
regions of the gait cycle (GC) by means of statistical parametric mapping [31,32]. However,
the main limitation of these studies was that they only accounted for self-selected normal
speed steady-state and transient-state walking.

1.4. Aims and Objectives

This study aimed to record the muscle activities of individuals with unilateral trans-
femoral amputations in their intact lower limbs while walking at three distinct, self-selected
transient-state speeds. The utilization of muscle synergy analysis served as a method of
decomposition in order to evaluate the disparities among the synergy components of TFA
at varying velocities. The primary hypothesis was that there would exist certain muscle
coordination patterns that are frequently necessary for the task, along with distinct patterns
that signify the biomechanical requirements and adaptations resulting from speed change.

2. Materials and Methods
2.1. Subjects

This study involved eleven male volunteers who had undergone unilateral trans-
femoral amputation, with an average age of 55 years (SD = 8), a weight of 78 kg (SD = 15.3),
and a height of 170.9 cm (SD = 7.9). The cause of amputation for all participants was trauma,
with five cases related to war. The time elapsed since amputation was over 20 years for
ten participants and 18 years for one, with a mean duration of 34.45 (SD = 7.61) years.
All participants experienced amputation before the age of 30, with a mean age of 21.82
(SD = 4.83) years. Prior to the experiment, all subjects provided written, informed con-
sent. The ethical review boards at the Djavad Mowafaghian Research Centre of Intelligent
Neuro-Rehabilitation Technologies in Tehran, Iran, and the University of Leeds in the UK
approved the experimental protocol.

2.2. Experimental Protocol

The participants were asked to walk at three self-selected speeds: comfortable (normal),
slow, and fast, according to their own perception. It means a slow or fast speed has been
defined by the participants according to their comfortable speed. Initially, they walked
along the path several times at their comfortable speed without any data recording, allowing
them to become familiar with the tests and identify the starting point to ensure both feet
hit the force platforms cleanly. The next gait cycle after gait initiation of leading or trailing
limbs was considered such that the gait would still be in a transient state [8,9,21,34]. At
least three walking trials for each participant were included at each speed.

2.3. Data Collection

Ten muscles in the TFA intact limb were recorded using Myon wireless surface EMG
(Myon AG, Schwarzenberg, Switzerland), disposable, self-adhesive Ag/AgCl dual snap
electrodes with a 20 mm center-to-center distance. The Rectus femoris (RF) and vasti (vastus
medialis (VM) and vastus lateralis (VL)), biceps femoris long head (BFLH), semitendinosus
(SEM), tensor fascia latae (TFL), tibialis anterior (TA), and triceps surae (gastrocnemius
medialis (GM), gastrocnemius lateralis (GL), and soleus (SOL)) activity were captured fol-
lowing the Stegman and Mermans’ guide for locating muscle bellies [35]. The participants
were asked to walk at their slow and fast speeds after data on comfortable walking speeds
had been gathered.

A 6-camera motion analysis system (Vicon Motion Systems, Oxford, UK) and two
40 cm · 60 cm and 80 cm · 60 cm Kistler force platforms embedded in the floor were
synchronized with Wireless Myon Surface EMG. Fourteen mm spherical passive reflective
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markers were fixed on the skin of anatomical landmarks to define body segments for
later kinematical analysis (Figure 1). Marker tracking was performed using Nexus 2.5
(Vicon Motion Systems, Oxford, UK). A 12-segment body model was created by using
the markers for 3D coordination in Visual 3D 5v. Visual 3D provides the kinematics of
each segment, including its center of mass (COM) position and its speed during any
movement. The walking speed of the TFA was determined to be 0.61 ± 0.09 m/s (slow),
0.76 ± 0.16 m/s (normal), and 0.97 ± 0.14 m/s (fast) (see Supplementary Material for
probability distributions of walking speeds).
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2.4. Processing Surface EMG and Preparation for Muscle Synergy Analysis

The analytical work was implemented in MATLAB R2017 (Mathworks, Inc., Natick,
MA, USA). The GCs segmentation was determined by analyzing the trajectories of reflective
markers located on the foot’s instrumented parts, namely the calcaneus and the first
metatarsal. This analysis was carried out after the foot made contact with the force platform.
The surface EMG signals were processed by first demeaning them, then applying a fourth-
order Butterworth bandpass filter with a cut-off frequency of 20–500 Hz. Next, the signals
were full-wave rectified and low-pass filtered using a zero-lag 2nd-order Butterworth filter
at 6 Hz. Finally, the signals were normalized in amplitude with respect to the highest
peak observed across all trials and walking speeds and then time-normalized to generate
101 data points for each GC [36–39].

2.5. Concatenated Non-Negative Matrix Factorization (CNMF) Frameworks

We extracted motor modules using a concatenated non-negative matrix factorization
(CNMF) algorithm for each speed separately [2,40]. In this technique, AC is an n-by-m
(n = number of subjects × number of gait cycles × 101 and m = number of muscles) and CC

is an n-by-k (k = number of synergy groups), which are concatenated, whereas S is a k-by-m
(fixed synergy) [31,32,40]. The objective function of CNMF is as follows: Equation (1)

J =
Ns

∑
i=1

∥Ac
i − CC

i S∥F
∥Ac

i ∥F
(1)

where ∥Ac
i ∥F represents the Frobenius norm of a vector defined as

√
tr(AAT) (tr = ma-

trix trace and AT = matrix A conjugate transpose, CC
i is a concatenated coefficient, S is

a fixed synergy vector, and Ns is the number of subjects. In this paper, CNMF has been
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implemented due to an a priori hypothesis that accounts for the similarities in a popula-
tion, which can be considered a model of a variation of homogeneous people rather than
an individual.

2.6. CNMF MATLAB Implementation

Random values of C and S were chosen (rand function in MATLAB) in order to initiate
the CNMF. An alternating least squares algorithm was used to attain optimal C and S.
These values must satisfy the Frobenius norm to minimize the error ∥Ac

i − CC
i S∥F . Norm 2

of each Si was normalized to 1 to avoid the indeterminacy of matrix factorization. To ensure
reliability, perturbations were introduced to the data. In order to find the final optimal
solution for S and C, three iterations were performed for the whole framework. However,
the perturbation was not applied in the last iteration [32,40]. See [2,40] for more details.

2.7. Dimensionality (Variance Accounted for)

To reconstruct the original signal, the number of synergy groups must be identified.
This is accomplished by examining the changes in total Variance Accounted For (VAF) as
the number of muscle synergies is adjusted [36,38]. VAF was defined as the uncentered
Pearson correlation coefficient between the original and reconstructed EMG data [41] in
Equation (2). A high VAF criterion ensured that each muscle tuning curve would be
precisely reconstructed, thereby enabling the muscle synergies to effectively elucidate the
essential spatiotemporal properties of each muscle activation pattern.

VAFc = (1 − ∑n
o=1 ∑m

p=1 e2
op/ ∑n

o=1 ∑m
p=1 A2

op)× 100 (2)

where the indices o and p stand for the rows and columns of the quantities e and A, and e is
the error, or A-CS. A VAF value greater than 0.80 is considered the minimum threshold
for determining the appropriate number, unless an additional factor increases the VAF by
less than 0.05 [42]. The standard for evaluating the quality of muscle reconstruction was
established using the intra-class correlation coefficient (ICC) test, with a value greater than
0.5 being considered the minimum threshold for each individual muscle [31,32].

2.8. Synergy Output Normalization

The process involved normalizing the activation coefficient profiles by setting their
maximum values as the normalization factor. The muscle synergy vectors were then scaled
using the inverse of the normalized activation coefficient profile. This standardized both
the activation coefficient profile and muscle synergy vector, ensuring that they represented
muscle recruitment and amplitude information within a range of 0 to 1. The goal was
to capture temporal modulation in muscle recruitment and amplitude information using
arbitrary units [42].

2.9. Between Population Synergy Sorting

In order to account for significant variations in data variability, a functional sorting
technique were employed. This involved rearranging the indices of muscle synergy and
the coefficient for a specific speed based on their relationship with other speeds. A refer-
ence point was chosen to sort the muscle synergy components, taking into account the
similarity of S and/or C values using the maximum coefficient of determination (R2) metric.
By rearranging the order of synergy components, it became possible to make statistical
comparisons between different groups. In the study mentioned, the muscle synergy com-
ponents for slow and fast speeds were sorted based on the muscle synergy components for
the normal speed [38,43].

2.10. Statistical Analysis

The evaluation of similarity between the reconstructed and original signals for each
muscle involved the calculation of the ICC value. ICC assessed the similarity in patterns.
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Additionally, to assess the similarity of concatenated C values across trials or subjects,
ICC(C,k) based on two-way mixed models with average measurements and no interactions
was utilized. According to [44], ICC values below 0.5 indicated a low correlation, values
between 0.5 and 0.75 indicated a moderate correlation, and values above 0.75 indicated a
high correlation.

A comprehensive statistical evaluation of all activation coefficients was performed
across the gait cycle to investigate the hypothesis regarding the entire time series rather
than specific time points. This analysis utilized the MATLAB R2017 software and em-
ployed an ANOVA repeated measure based on the Statistical Parametric Mapping (SPM)
approach [45].

3. Results
3.1. Dimensionality

The VAF comparison was performed for each group between speeds. The group-
muscle criterion is to select the lowest number of synergies that accounted for >80%, and
the next synergy group will not increase VAF by more than 5%. Figure 2 shows the VAF of
TFA during transient-state walking at different speeds. Three to seven synergy groups in
slow and normal and two to seven in fast met the group-muscle criterion (>80%). However,
four synergies were selected as the optimal number of groups based on the 5% criterion for
all speeds.
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Figure 2. VAF comparison as a function of the number of synergies in TFA at slow, normal, and
fast speeds.

3.2. Intra-Class Correlation Coefficient (ICC)

ICC takes the signal pattern comparison into account and allows for multiple com-
parisons to be made. ICC was used for two purposes in this study: (1) to assess the
similarities between reconstructed and original muscle EMG signal (within-subject and
between-subject for individual-muscle criterion); and (2) to evaluate the repeatability of
coefficients between trials/subjects.

Figure 3 shows a correlation between the reconstructed and the original individual
muscle signals in TFA at three different speeds. All muscles within their respective speeds
showed a moderate to high correlation.

3.3. Inter-Subject Variability of C

As shown in Table 1, high repeatability (ICC > 0.75) was perceived as the ICC value for
between trials/subjects similarities in each speed category was above 0.80 except in TFA C4
normal speed. The ICC for TFA C4 showed 0.29, indicating poor repeatability (ICC < 0.5).
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Table 1. TFA activation coefficient profiles (C1–C4) repeatability between trials/subjects using ICC.

TFA Intra-Class Correlation Coefficient

C1 C2 C3 C4

Slow 0.89 0.80 0.97 0.87

Normal 0.98 0.94 0.90 0.29

Fast 0.98 0.97 0.94 0.85

3.4. TFA Muscle Synergy Description

TFA S1 was related to the recruitment of TFL in slow (during early stance (ES) and
terminal swing (TSW)), SOL and TFL in normal (during ES-midstance (MS), terminal stance
(TS), and TSW), and knee extensors in fast walking (during ES-MS) across speeds (Table 2).
TFA S2 related to body support and forward propulsion, in which the plantarflexor muscles
were primarily involved across speeds (Table 3). TFA S3 was related to the activation of the
knee extensors during ES and TSW of slow and normal walking and SEM and VL during
ES and MS-TSW of fast walking (Table 4). TFA S4 related to the leg swing as well as the
transition from swing to stance, in which the dorsiflexor muscle was primarily involved
across speeds (Table 5). The TFA muscle synergy description is based on Figure 4A,B.

Table 2. TFA muscle weighting contribution and corresponding activation timing profile of S1 across
speeds. Abbreviations: Rectus femoris (RF) and vasti (vastus medialis (VM) and vastus lateralis
(VL)), biceps femoris long head (BFLH), semitendinosus (SEM), tensor fascia latae (TFL), tibialis
anterior (TA), and triceps surae (gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and
soleus (SOL)). Initial contact (IC), loading response (LR), early stance (ES, i.e., (IC-LR)), midstance
(MS), terminal stance (TS), initial swing (ISW), midswing (MSW), and terminal swing (TSW).

TFA Synergy 1 (All Speeds)

Module Muscle Activation

Primary (>0.5) * Secondary (<0.5) *

Fast VM, RF, VL TFL, BFLH, SOL, GM ES, TSW

Normal SOL, TFL GM, BFLH, VM, RF, VL ES-MS, TS, TSW

Slow TFL TA, VL, SOL, RF, GM, SEM IC-LR, MS
* Muscle weighting: primary > 0.5 and secondary < 0.5.
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synergy group. In (B), the thick lines represent the mean trajectory of activation coefficient profiles,
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Table 3. TFA muscle weighting contribution and corresponding activation timing profile of S2 across
speeds (Refer to Table 2 for abbreviations).

TFA Synergy 2 (All Speeds)

Module Muscle Activation

Primary (>0.5) Secondary (<0.5)

Fast SOL, GM, GL BFLH, RF, TFL MS, TS

Normal GL, SOL GM, SEM, BFLH, VL, RF MS, TS

Slow SOL GM, GL, BFLH, RF, VM, SEM MS, TS

Table 4. TFA muscle weighting contribution and corresponding activation timing profile of S3 across
speeds (Refer to Table 2 for abbreviations).

TFA Synergy 3 (All Speeds)

Module Muscle Activation

Primary (>0.5) Secondary (<0.5)

Fast SEM, VL BFLH, GL, TA, RF, GM, TFL ES, MSW-TSW

Normal VL RF, SEM, VM, TA, GL, BFLH, TFL IC-LR, TSW

Slow VM, RF, VL BFLH, GL, TFL, TA, GM, SOL, SEM IC-LR, TSW

Table 5. TFA muscle weighting contribution and corresponding activation timing profile of S4 across
speeds (Refer to Table 2 for abbreviations).

TFA Synergy 4 (All Speeds)

Module Muscle Activation

Primary (>0.5) Secondary (<0.5)

Fast TA TFL, VM, SOL, SEM IC-LR, TS, ISW, TSW

Normal TA GM, SOL, SEM, VL, TFL IC-LR, TS-PSW-ISW, TSW

Slow TA, SEM GL, VL, GM, BFLH IC-LR, PSW-ISW, TSW

3.5. Synergy Vector Comparison

As shown in Table 6, TFA normal-slow R2 showed a low correlation with S1, a moder-
ate correlation with S4, and a strong correlation with S2 and S3. The comparison between
the modules of normal and fast illustrated low (S1), moderate (S3), and strong (S2 and
S4) correlations. The correlation between TFA fast-slow R2 revealed a low (S1 and S3),
moderate (S4), and strong (S2) relationship between muscle synergies. The module average
goodness of fit for each muscle synergy across speeds illustrated a low correlation for S1
(0.04), a moderate correlation for S3 (0.53) and S4 (0.65), as well as a strong correlation for
S2 (0.83). Overall average R2 of all four modules combined (S1–S4) showed low correla-
tion between fast-slow (R2

Average = 0.40) and moderate correlation between normal-slow
(R2

Average = 0.53) and normal-fast (R2
Average = 0.61) gait.

Table 6. R2 values for four muscle synergies (S1–S4) in TFA at different speeds; the module average
obtained column-wise represents the average correlation of each module with respect to all paired-
wise speed comparisons. The overall average value obtained row-wise represents the average
correlation of all muscle synergies with respect to each pair-wise speed comparison.

S1 S2 S3 S4 Overall Average

Normal vs. Slow 0 0.78 0.72 0.61 0.53

Normal vs. Fast 0.13 0.83 0.66 0.83 0.61

Fast vs. Slow 0 0.89 0.2 0.5 0.40

Module Average 0.04 0.83 0.53 0.65
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3.6. Activation Coefficient Profile Comparison

A priori hypothesis was to investigate the effect of speeds on individual activation
coefficient profiles during gait. Therefore, a one-way repeated-measures ANOVA (repre-
sented as a black trajectory in Figure 5) was implemented to investigate the within-subject F
statistics. It is worth mentioning that a one-way ANOVA was performed between-subjects
for demonstration (represented as a red trajectory in (Figure 5); however, this is not an ap-
propriate test since the same subjects performed transient-state walking at different speeds.
Moreover, the between-subject analysis yields a small F value because between-subject
variability is large relative to between-condition variability. The within-subject analysis
yields a large F value because paired effects are large relative to paired variability. Post hoc
analysis was carried out to further investigate the differences between speeds. Multiple
post hoc paired or two sample t-tests increase the chances of making a type I error (false
positive). Therefore, alpha was corrected according to the number of comparisons made
to decrease the likelihood of a type I error, increase the critical threshold, and ensure the
false positive error rate was appropriate for the number of comparisons made. In this case,
a Bonferroni threshold of p = 0.017 was adopted for the three walking speeds to retain a
family-wise error of α = 0.05, which was then used for inference calculation.
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speeds, which revealed C1 was significantly different between fast-normal at 0–8% (p = 
0.001) as well as fast-slow at 0–14% (p = 0.0) and 95–100% (p = 0.014) GC (Figure 6). As 

Figure 5. TFA C1 parametric RM ANOVA within- and between-subjects, depicting significant
differences between speeds. The horizontal red dotted line indicates the critical threshold of 8.02.
Suprathreshold clusters are shown in gray where p < 0.05. Black line is RM ANOVA (Within) and red
line is ANOVA (Between).

As shown in Figure 5, the main SPM analysis found significant differences in TFA
C1 between three different speeds. Two suprathreshold clusters were found at 0–19%
(p = 0.0) and 94–100% (p = 0.27) GC. A post hoc paired t-test was conducted pairwise
between speeds, which revealed C1 was significantly different between fast-normal at 0–8%
(p = 0.001) as well as fast-slow at 0–14% (p = 0.0) and 95–100% (p = 0.014) GC (Figure 6).
As shown in Figure 7, SPM analysis revealed three suprathreshold clusters across speeds
in C2 within-subject at 19% (p = 0.049), 44–53% (p = 0.006), and 68% (0.05). No significant
differences were found between-subjects. A post hoc paired t-test showed a significant
difference between fast-normal and 45–49% (p = 0.010) GC (Figure 8). As shown in Figure 9,
SPM analysis showed no significant difference in TFA C3 across speeds. As shown in
Figure 10, SPM analysis showed a statistically significant difference in C4 within-subject
across speeds. One suprathreshold cluster occurred at 42–47% (p = 0.014). No significant
differences were found between-subjects. A post hoc paired t-test showed a significant
difference between fast-slow at 42–45% (p = 0.013) GC (Figure 11).
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Suprathreshold clusters are shown in gray where p < 0.05. Black line is RM ANOVA (Within) and red
line is ANOVA (Between).
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Figure 8. TFA C2 within-subject post hoc paired t statistic between pairs of walking speeds. The
red dashed lines indicate critical thresholds of t* = 5.04, 5.02, and 5.14 for (A–C), respectively.
Suprathreshold clusters are shown in gray where p < 0.02.
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4. Discussion
4.1. VAF

The number of muscle synergy groupings was determined according to the literature
(k = 4) [13,31,32,37,38,41,43]. Four modules were selected for the TFA in slow, normal, and
fast transient-state walking, which accounted for a VAF of 88%, 86%, and 88%, respectively.
A higher VAF using five synergies was obtained. However, four synergies were believed to
provide more distinct synergistic groups of muscle EMG contents. Moreover, since the VAF
value was higher than 80% and the difference between them was not more than 5%, four
synergies were chosen for TFA.

The comparable number of modules suggests that the neurological system’s complex-
ity in muscle recruitment is similar in amputees at different transient-state walking speeds.
The results of this study are consistent with prior research conducted on individuals with
transtibial amputations [31,32] and transfemoral amputations during self-selected steady-
state walking [6] in relation to the dimensionality of muscle synergy. These findings indicate
that the neurological system maintains a consistent strategy, regardless of the specific level
of amputation. The outcomes observed in individuals with TFAs and TTAs, with respect
to synergistic strategies, exhibit disparities when compared to other patient cohorts, such
as those recovering from stroke [13]. However, these outcomes demonstrate similarities
with joint injury groups, specifically individuals with orthopaedic injury (anterior cruciate
ligament deficiency) [39]. Hence, it seems that the complexity of neurological control, as
measured by the number of recruited modules, is not influenced by the level of amputation
or the gait state.

4.2. CNMF Activation Coefficient Profile Repeatability (ICC)

The ICC was also utilized to evaluate the consistency and similarity of activation
coefficients between different trials and subjects. This step is crucial because CNMF fixes
an unknown variable, S, while allowing variation in C. A strong correlation was observed
in TFA across different speeds. However, TFA C4 exhibited poor consistency (with high
variability between subjects), indicating differences in coefficient patterns between trials
and subjects at normal speed. However, the ICC does not indicate which phase of variability
is associated with this inconsistency. One possible explanation is that S4 consists of the
primary activity of the TA muscle, which contributes to slowing down the leg during the
early and late swing phases and facilitates foot clearance. Consequently, the instability
in the TFA prosthetic leg (due to feelings of insecurity) during the weight acceptance
phase before the opposite leg starts swinging may contribute to the inconsistency in the
shape of C4 between trials and subjects. Moreover, due to the presence of the triceps
surae muscle group during weight acceptance, the TA muscle co-contracts to stabilize the
ankle joint, which could lead to discrepancies in TFA C4. Additionally, previous research
has demonstrated considerable variability in TA muscle activity during walking among
different individuals [46,47].

Finally, it is possible to provide a psychological explanation for this phenomenon.
TFA individuals are accustomed to walking at a normal pace. However, walking at slower
or faster speeds, particularly during transitional states, presents a challenging task for
them. As a result, they become more cautiationous and adopt a careful walking pattern
when walking at speeds other than their comfortable and self-selected normal pace. The
increased cognitive load in these situations may lead to a reduction in variability in muscle
activities [48].

4.3. Within-Subject Comparison (Synergy/Module/S)

Previous reports illustrated similarity in the construction of muscle synergies among
non-amputees at different walking speeds during steady-state walking [12–14,37]. How-
ever, changes in muscle synergies between non-amputees and amputees have been illus-
trated at normal transient-state walking speeds [2,5]. Furthermore, Gui and Zhang [14]
showed similar motor modules across speeds, with modest changes in the timing of
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coefficients for the non-amputees to satisfy the kinematic and kinetic requirements of dif-
ferent steady-state walking speeds. However, others found that different muscle synergies
are recruited as the result of a change in steady-state walking speeds and locomotion
modes [18,19,22].

TFA R2 results revealed poor (S1), moderate (S3 and S4), and strong (S2) correlations
across paired-speed comparisons (i.e., module average). The primary muscle weighing in
S1 is different across speeds, which led to poor correlation. On the contrary, the analogous
muscle group in S2 resulted in a strong correlation between speeds. The lowest correlation
in S1 (0) and S3 (0.2) between fast-slow walking was due to the difference in weighting
ratio (Table 6). The difference could be attributed to the significant change in speeds, which
resulted in neuromuscular modulation at the transition from stance to swing phase and
body support phase of the GC [14].

4.4. Synergy Vector Comparison with Literature

Prior research showed four synergy groups in TFA during normal transient-state
walking, which confirms the complexity of muscle coordination in TFA does not change as
compared to non-amputee individuals during transient-state walking [5]. In addition, a
study by [6] showed four muscle synergies in TFA during self-selected steady-state walking.
In the present study, the muscle synergies extracted from TFA during slow transient-state
walking match well with the four synergies in [6]. This is also in accordance with the
previous studies on muscle synergies during gait [20,37].

In addition, a study carried out by [37] showed five muscle activation modules were
sufficient to generate forward dynamics simulations of gait and their associations with
biomechanical subtasks of walking. The study reported that knee and hip extensors
contribute to weight acceptance and body support in early stance while acting to decelerate
forward motion (Module 1), plantarflexors contribute to body weight support, loading, and
propulsion in before toe off (Module 2), dorsiflexor and hip flexor muscles contribute to
deceleration of the leg in the early and late swing as well as trunk stabilization throughout
the swing phase (Module 3), knee flexors decelerate the leg in late swing (Module 4),
and hip flexors contribute to the acceleration of the leg forward in pre- and early swing
(Module 5) [37].

In TFA slow walking, S1, S2, S3, and S4 correspond to Module 3, Module 2, Mod-
ule 1, and Module 4 of [37], respectively. In TFA during normal walking, S2, S3, and S4
corresponded to Module 2, Module 1, and Module 4 of [37], respectively. In TFA during
fast walking, S1, S2, and S4 corresponded to Module 1, Module 2, and Module 4 of [37],
respectively.

The difference between the literature [37] and the present study with regards to S1
(primary: Sol, TFL) during normal walking as well as S3 (primary muscle: SEM and
VL) during fast walking seemed to be affected by the synergy analysis methods, task
performed (steady-state vs. transient-state), number and choice of muscles included, and
difference in speed. The neuromuscular modulation between muscle synergies of TFA
across speeds agreed with the study conducted by [22], suggesting changes in speeds lead
to the recruitment of different spinal locomotor networks.

4.5. Within-Subject Comparison (Activation Coefficient Profiles)

SPM RM ANOVA analysis showed a significant difference in TFA C1, C2, and C4
across speeds. The post-hoc TFA C1 between fast-normal and fast-slow showed significant
differences in ES and TSW. The muscle synergy comparison (i.e., S1 fast-normal and S1
fast-slow) showed that they were poorly correlated with R2 of 0.13 and 0, respectively.
The primary muscles in TFA C1 between slow (mainly activated TFL), normal (mainly
activated SOL), and fast (mainly activated RF) were different. One could suggest the
significant differences in activation timing between speeds are due to the different groups of
muscle recruitment, thereby each module contributing to different biomechanical subtasks
(Figures 5 and 6).
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Although a high correlation was observed between S2 across speeds (pair-wise speed
comparison), TFA C2 (mainly activated plantarflexor) showed to be significantly different
in MS, TS, and ISW between fast and normal speeds. Since the same set of muscles were
recruited across speeds, the reason for the discrepancy between the speeds may be due
to the higher activation and intensity required for the plantarflexor muscles of the IL to
stabilize the ankle joint during the single support stance phase and generate a larger push-
off in TS with increased speed. This is evident from the significant difference that occurred
during fast gait as compared to normal gait (Figures 7 and 8).

TFA C4 (mainly activated TA) was found to be significantly different in MS between
fast and slow-speed walking. The activation of SEM was coordinated with TA in S4
at slow walking, in which a moderate correlation (0.5) was observed compared to fast
walking. The higher magnitude of the second peak in the stance phase of fast walking (the
suprathreshold cluster) occurred before the second peak in slow walking. This could be due
to the kinematic and kinetic demands that altered TA activation timing (Figures 10 and 11).

Interestingly, TFA C3 showed no significant differences between speeds. The same
group of muscles (SEM and VL) is associated with S3 across speeds, except at fast speeds.
Observing the mean difference t-trajectory, one could observe that the black line at the end
of the swing phase is very close to the critical threshold (Figure 9). The results indicate no
adaptation strategy is required to augment the intensity of the temporal component.

The result of C3 was supported by the fact that the effect of speeds on the high-
dimensional sEMG activity of SEM showed no significant differences, suggesting the
low-dimensional and high-dimensional temporal components would be the same for this
muscle (Figure 12).
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4.6. Comparison of the Activation Coefficient Profile with Literature

The results of the present study appear to conflict with the previous reports, as
they suggested a small increase in activation coefficient timing at different walking
speeds [12–14,37]. It is worth mentioning that none of the studies conducted on muscle
synergies considered the whole time series as a means of comparison (i.e., using 1D SPM).
This could be attributed to the fact that discrete points in traditional statistical analysis (i.e.,
scalar) may result in a different interpretation. Therefore, one should consider the time-
normalized C waveforms, especially when there is no a priori hypothesis pertaining to the
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point of interest [45,49]. In addition, the present study did not consider steady-state walking
as opposed to the studies conducted in the literature [4,13,14,16,17,30–32,36–39,42,50]. In
summary, the difference could be attributed to the difference in muscle synergy methodolog-
ical consideration, state of walking (steady-state vs. transient-state), level of amputation,
number and choice of muscles included, and the difference in speed.

4.7. Potential Rehabilitative and Assistive Applications

One of the primary benefits of this study lies in its potential to enhance our com-
prehension of how the CNS acclimates to variations in velocity during transient-states.
This understanding holds significant value in identifying effective approaches to miti-
gate the occurrence of trips or falls [51]. This study can potentially provide insights for
therapists regarding the muscle coordination patterns adopted by lower limb amputees
during unsteady gait conditions. Additionally, it can contribute to the development of
rehabilitation programs that effectively enhance the balance and mobility of individuals
with amputations. Furthermore, the findings of this study have the potential to assist
prosthetic companies in the development of a myoelectric prosthetic system capable of
detecting and responding to trips or falls during various phases of human locomotion.

4.8. Limitations

Limiting muscle synergy analysis to only male participants among transfemoral
amputees poses a significant limitation in terms of the generalizability and applicability of
the findings. Gender differences in muscle composition, biomechanics, and neuromuscular
control could influence the observed synergies. Researchers should strive for a more
representative sample to ensure that the outcomes are relevant and applicable across
different demographic groups within the transfemoral amputee population.

Only ten muscles have been included in this study for the TFA. In the literature, the
number varies from 8 to 31 muscles during gait [13,16,52]. As reported by [52], the number
of muscles has an impact on the neuromuscular results. Therefore, the results may have
varied if more muscles were included in the study. Only superficial muscles were included
in the present study. Prior research focused on the effect of deeper muscles during activities
of daily living. However, it has been shown that the number of synergies is invariant when
compared to synergies extracted only from superficial muscles [16]. Finally, a larger pool of
homogenous amputees with a similar prosthesis is required to be able to generalize the
results of this study.

The methodology implemented in this paper was based on global muscle synergy
analysis (i.e., time domain), in which the linear envelope of signals was input to the
algorithm. Another approach to investigating the neuro-structure underlying muscle
activation is to extract spectral properties (i.e., time-frequency domain). This has been
proposed by Frere [36] to distinguish between descriptive and prescriptive analysis.

5. Summary

Overall, these results provide valuable insights into the adaptations and differences
in muscle synergies and their activations across different walking speeds in transfemoral
amputees. The findings highlight the importance of considering specific muscle groups
and their activation timing in relation to biomechanical subtasks during gait. The dis-
crepancies observed between speeds demonstrate the adaptability and specific demands
placed on different muscle groups. These insights can inform the development of reha-
bilitation strategies and prosthetic interventions aimed at optimizing gait performance in
transfemoral amputees.

6. Conclusions

TFA illustrated that four synergies are an optimal number of groups to match the
reconstructed and original EMG at all speeds. This suggests that the complexity of muscle
recruitment by the CNS is analogous in TFA and non-amputees. Therefore, there is no
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compensatory adjustment in TFA. The low correlation between TFA muscle synergies
across speeds could be attributed to the significant change in speeds that resulted in
neuromuscular modulations at the transition from stance to swing phase and body support
phase of the GC. The effect of speeds on individual activation coefficient profiles of TFA
showed significant differences (except TFA C3), indicating the CNS strategy to increase the
intensity of the activation coefficient profile to satisfy the kinematic and kinetic requirements
of different speeds. No significant differences were found in TFA C3, suggesting no
adaptation strategy is required to augment the intensity of the temporal component.
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ticipant’s slow walking trials during the transient-state; Figure S1: The probability density of TFA
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represents the fitted normal distribution for TFA slow speed. Table S2: Average of each participant’s
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Figure S6: The red bars depict the observed distribution speed and the black curve represents the
fitted normal distribution for TFA fast speed.
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