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Abstract: Buildings are responsible for around 30% and 42% of the consumed energy at the global
and European levels, respectively. Accurate building power consumption estimation is crucial for
resource saving. This research investigates the combination of graph convolutional networks (GCNs)
and long short-term memory networks (LSTMs) to analyze power building consumption, thereby
focusing on predictive modeling. Specifically, by structuring graphs based on Pearson’s correlation
and Euclidean distance methods, GCNs are employed to discern intricate spatial dependencies, and
LSTM is used for temporal dependencies. The proposed models are applied to data from a multistory,
multizone educational building, and they are then compared with baseline machine learning, deep
learning, and statistical models. The performance of all models is evaluated using metrics such as
the mean absolute error (MAE), mean squared error (MSE), R-squared (R2), and the coefficient of
variation of the root mean squared error (CV(RMSE)). Among the proposed computation models,
one of the Euclidean-based models consistently achieved the lowest MAE and MSE values, thus
indicating superior prediction accuracy. The suggested methods seem promising and highlight the
effectiveness of GCNs in improving accuracy and reliability in predicting power consumption. The
results could be useful in the planning of building energy policies by engineers, as well as in the
evaluation of the energy management of structures.
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1. Introduction

At the global level, buildings consume around 30% of produced energy, and they are
also responsible for 26% of energy-related emissions [1]. Furthermore, in the European
Union, the energy utilized in buildings represents 42% of energy use and more than 30%
of greenhouse gas emissions [2]. Consequently, buildings in general could be considered
as one of the largest energy consumers. Therefore, accurate building energy prediction
is vital for engineers to design policies that lead to high levels of energy efficiency, for
stakeholders to make investment decisions, and for consumers and businesses to save
energy and money.

Building energy prediction is based on three main methodologies: physical, hybrid,
and data-driven models. Physical or “white box” models dynamically describe the thermal
behavior of a building using heat and mass transfer equations. EnergyPlus, TRNSYS,
and DOE-2 are some of the available software packages for building energy modeling [3].
Hybrid or “gray box” methods incorporate physical and data-driven approaches to predict
building energy consumption, such as the proposal by Dong et al. [4], which combines
building geometry (physical) and historical power consumption data to predict air condi-
tioning and total power consumption for a group of residences. Furthermore, data-driven
or “black box” models learn from the historical data of the target values, as well as envi-
ronmental and exogenous factors, to forecast power utilization. Data-driven algorithms
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are distinguished into statistical and machine learning (ML) models. The former include
methods like linear regression (LR), autoregressive moving average (ARMA), and autore-
gressive integrated moving average (ARIMA), while the latter comprise methods such as
regression tree, support vector regression (SVR), artificial neural networks (ANNs), deep
learning (DL), and ensemble [5,6].

In the last decade, machine learning methods have gained the interest of researchers
and have been extensively used in building power prediction. For instance, ML and
DL algorithms were used for forecasting electrical demand in airports [7], offices [8–10],
educational institutions [11–13], and residential [14,15] buildings. In more detail, the re-
current neural network (RNN) algorithms, namely long short-term memory (LSTM) [16],
convolutional neural network (CNN), hybrid CNN-LSTM [17], and gated recurrent units
(GRU) [18], perform well in power prediction due to their ability to extract the temporal
dependencies between energy usage and other features such as occupancy, lighting condi-
tions, and equipment usage. A brief summary of building energy prediction applications
utilizing LSTM models is presented in [19].

Graph neural networks (GNNs) are deep learning algorithms for analyzing and
modeling complex relationships, and they have been successfully applied to different
scientific fields including social networks, citation networks, molecular structures, physics,
chemistry, road networks, finance, etc. [20,21]. The fundamental idea behind GNNs is to
extract the spatial correlation of the nodes based on their topological connections. GNNs
demonstrate versatility and effectiveness in real-world challenges, and they have shown
notable success in various applications, including chemical reaction prediction, question
answering, image classification, disease classification, and time-series prediction [22].

Building-related prediction applications, such as energy usage, indoor environmental
conditions, occupancy, etc., have known problems such as time series prediction; however,
significant progress has been made with the incorporation of graph neural networks
(GNNs), which represent a novel approach to modeling complex relationships within
building structures. Inspired by the success of GNNs in capturing dependencies within
graph-structured data, Hu et al. [23] introduced a novel graph-based hybrid model (a
spatio-temporal graph convolutional network (ST-GCN)) to embed solar-based building
interdependencies in urban building energy modeling in order to predict the energy usage
of several buildings in a university campus. They performed a solar analysis to construct
a directed-weighted graph of the project, where nodes represent buildings and edges
represent the solar impacts. Guo et al. [24] combined GCN and GRU to predict the future
energy consumption of 140 locations in a large-scale aluminum profile plant located in
Guangdong, China. Lu et al. [25] proposed a GCN-based model for the estimation of the
design loads of complex-shaped buildings.

Furthermore, Jia et al. [26] proposed a graph-based model to predict the thermal load
of a building that incorporates graph attention neural networks (GATs) and gated recurrent
units (GRUs) to extract spatial and temporal dependencies, respectively. This model was
applied to a dataset from a simulated, single-story, and four-zone building with a general
prediction accuracy (MSE) of nearly 0.01. The researchers depicted the thermal zones of the
building as an unweighted and undirected graph to define the feature matrix. Moreover,
Zhang et al. [27] presented a spatio-temporal, graph-based data-driven model (GNN-RNN),
which showed enhanced accuracy compared to conventional deep learning models, for
the indoor environment prediction and optimal control of air conditioning systems. The
authors used a graph-based data representation of the central air conditioning system of the
building to integrate spatial and temporal data to the forecasting model. Regarding spatial
data, consider the air handling units’ and variable air volume boxes’ physical location and
the connections between them. In terms of occupancy prediction, Xie and Stravoravdis [28]
suggested a hybrid GCN-LSTM model, which is implemented in a generated occupancy
profile. The authors mapped each office layout as an undirected, unweighted graph, where
the nodes indicate each room in the floor plan and the edges represent their connection.
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In summarizing the recent literature on GNNs for building energy usage prediction,
to the best of the authors’ knowledge, not much emphasis has been given to the impact
of graph construction methods on the field of building power prediction. In this study,
several graph computation methodologies are examined and implemented over a GNN-
RNN model to forecast the zone-level and overall energy usage of a real-world multizone,
multistory building dataset.

The main contributions of this work are as follows:

1. An adaptation of graph computation techniques, which have previously been utilized
in other domains, for the purpose of building load prediction.

2. An investigation, adaptation, and implementation of generic methods to extract the
spatial information of building zones to build a graph that represents the relationship
between zones in pairs for a prediction application.

3. The generated graphs are implemented over a GNN-RNN forecasting model, and
their results are compared with a variety of statistical, machine, and deep learning
algorithms in terms of accuracy and the utilization of several error metrics.

This paper is divided into the following parts: Section 2 introduces and analyzes the
necessary actions related to the graph computation techniques and presents the forecasting
model. Dataset description, preprocessing, conducted experiments, and their results are
presented in Section 3. In Section 4, the results and limitations are discussed while some
directions for future work are suggested. This paper is then concluded in Section 5.

2. Materials and Methods

In this section, topics related to the prediction of building power consumption and
several major concepts will be presented. The preliminary Section 2.1 serves as a foun-
dational introduction in graph symbolization, prediction problem definition, and power
problem forecasting formulation, thereby providing essential context for the subsequent
analysis. Furthermore, in Section 2.2, the methodologies for adjacency matrix computation
are presented, which involves the exploration of the various computational techniques
employed to derive the crucial representation of graph structures that will be utilized
in the forecasting model described in Section 2.3. Lastly, in Section 2.4, a comparison of
the models that evaluate and contrast the efficacy of the proposed forecasting model is
presented, thereby providing invaluable insight into the relative strengths and limitations
of the proposed model.

2.1. Preliminaries

A multizone building power consumption prediction can be considered a spatio-
temporal or, even better, a micro spatio-temporal prediction application. In order to
describe the space layout or the quantitative relations between zones, a graph network
approach is introduced.

This graph is symbolized as G = (V, E), where V is a set of N nodes that denote each
building’s thermal zone, while E is an edges set that represents the association between
a pair of nodes. A Boolean (binary) adjacency matrix A, whose elements are 0 or 1, is
expressed as A∈RN×N , and it describes the links for each couple of nodes. The adjacency
matrix element aij is equal to 1 if nodes i and j are directly connected, otherwise aij = 0. In
this study, several methods are used for the computation of the adjacency matrix, and they
will be analyzed in Section 2.2.

The estimation problem is defined as a given sequence of power consumption values
in the time steps t + 1, t + 2, . . . , t + T, and the prediction of future power consumption
values is represented in the time steps t + T + 1, t + T + 2, . . . , t + T + h, where T is the past
historical input data and h the length of the prediction horizon.

The present and historical values of the power consumption of all zones are defined
as X = (X1, X2, . . . , XT), while the values xi

t for every zone i at every sampling time t are
summarized in a feature matrix Xt = (x1

t , x2
t , . . . , xN

t )∈RN×D, where D is the number of
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input features. Furthermore, the sequence of the building power consumption estimation
for a prediction time t is defined as X̂t = (x̂t

1, x̂t
2, . . . , x̂t

N) ∈ RN×h.
Consequently, in incorporating the abovementioned definitions, the power prediction

is formulated as X̂t+T+h = F(X, G), where F is the GNN-RNN model.

2.2. Adjacency Matrix Computation

Constructing a graph from the geographical location data of elements in a two-
dimensional space is an unambiguous task. For instance, in traffic speed prediction research,
the values aij of the adjacency matrix, which constructs the graph, could be the inverse pro-
portion of the geographical distance of points i and j. In contrast, in a multistory building
energy prediction study, the thermal zones are in a three-dimensional space, in which case,
the impression to a graph is complicated. In this section, the methods that are used for
adjacency matrix computation are presented and analyzed.

The methods that are used in this study are divided into two categories: correlation-
based and distance-based.

2.2.1. Correlation-Based Methods
Pearson Correlation Coefficient (PCC)

As stated by Li et al. [29] and utilized by Zhang et al. [27], the similarities among
node vectors (also known as node attributes) can serve as a quantitative measure of the
correlation between nodes. Therefore, in this first method, the elements aij of the adjacency
matrix A are calculated using Pearson’s correlation coefficient [30] (Equation (1)) between
the two zones vi and vj and the power consumption, which are described in Equation (2):

r =
∑n

k=1(Pvik − Pvi)(Pvjk − Pvj)√
∑n

k=1(Pvik − Pvi)2 ∑n
k=1(Pvjk − Pvj)2

, (1)

where Pvi and Pvj are the power consumption of zones vi and vj, Pvik and Pvjk are the
individual power consumption data points, Pvi, Pvj are the mean values, and n is the
number of data points.

aij =

{
1, PCC(vi, vj) > σ and i ̸= j
0, otherwise

, (2)

where PCC is the Pearson correlation coefficient and σ∈[−1, 1] is a threshold to control the
distribution and sparsity of the matrix A. Only the nodes that have a correlation value
greater than the threshold are connected.

Absolute Pearson Correlation Coefficient (PCCA)

This method, as presented in Equation (3), is nearly similar to the previous one (PCC),
with the only difference being that the absolute value of PCC is chosen, which will produce
a graph different from the previous method in the case where the correlation matrix has a
sufficient number of negatively correlated values.

aij =

{
1,

∣∣PCC(vi, vj)
∣∣ > σ and i ̸= j

0, otherwise
. (3)

Pearson Correlation Coefficient Scaled (PCCS)

In this last correlation-based method, the entries of the PCC matrix are scaled (Equation (4))
in space [0,1] using Equation (5).

Xscaled =
X − Xmin

Xmax − Xmin
· (max − min) + min, (4)
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where Xmin and Xmax are the minimum and maximum values of the input data X, and min
and max are the desired range to transform the input data.

aij =

{
1, PCCscaled[0,1](vi, vj) > σ and i ̸= j
0, otherwise

. (5)

2.2.2. Distance-Based Methods

Inspired from other works on traffic prediction and molecular science, we represent
the Euclidean data in a non-Euclidean space of a graph using the following method. The
floors of the building are placed in a three-dimensional Cartesian coordinate system, where
the lower left corner of the ground floor of the building is considered as the point zero of
the three axes while the coordinates of each zone’s center is assumed.

Euclidean Distance Scaled (EDS)

A matrix with dimensions N×N was created, where each element is the spatial
distance between zones i and j, which is calculated by Equation (6) and deals with the
Euclidean distance in three-dimensional space, as is depicted in Figure 1. The matrix is
then scaled (Equation (4)) in space [0,1]. A filter, i.e., the threshold value σ, is applied to the
matrix elements, where only the values lower than the threshold are kept. The adjacency
matrix is computed according to Equation (7).

ED =
√(

xi − xj
)2

+
(
yi − yj

)2
+

(
zi − zj

)2, (6)

where xi, yi, zi and xj, yj, zj are coordinates in the three-dimensional space of nodes i and j,
respectively.

aij =

{
1, EDscaled[0,1](vi, vj) < σ and i ̸= j
0, otherwise

, (7)

where EDscaled is the Euclidean distance between a pair of thermal zones and σ is a thresh-
old value.

Figure 1. Euclidean distance computation in a Cartesian space between zones. This figure represents
two floor plans, A and B, with the relevant zones of A and B.

Euclidean Distance with Threshold (EDT)

In this method, the matrix elements aij are equal to 1 when the Euclidean distance is
smaller than the threshold value, as illustrated in Equation (8). In other words, only the
nodes whose distance is less than the value of the threshold are connected.

aij =

{
1, ED(vi, vj) < σ and i ̸= j
0, otherwise

. (8)



Dynamics 2024, 4 342

Euclidean Distance with Gaussian Kernel (EDGK)

In this last distance-based method, the elements aij of the adjacency matrix are de-
termined by the Gaussian kernel weighting function [31], which has been adapted in this
study and is presented in Equation (9).

aij =

{
1, exp(− [ED]2

2θ2 ) if ED < σ and i ̸= j
0, otherwise

, (9)

where ED is the Euclidean distance, and σ and θ are the distance and distribution thresholds
among the zones, respectively.

2.3. Forecasting Model

In the field of predicting building energy consumption, combining graph convolu-
tional networks (GCNs) with long short-term memory (LSTM) models provides a powerful
approach for capturing the complex spatial and temporal relationships found in building
energy systems. GCNs are highly effective in analyzing complex relationships within
graph-structured data, such as building networks, by aggregating the information from
neighboring nodes. This capability is especially valuable for modeling the spatial relation-
ships among various components of a building, such as rooms, floors, and zones. On the
other hand, LSTM models stand out by capturing temporal patterns and dependencies over
time, which are crucial for forecasting energy consumption dynamics. Thus, the utilization
of a GCN-LSTM model in building energy prediction tasks extracts spatial and tempo-
ral variations, thereby representing an improved predictive performance and a deeper
understanding of energy consumption dynamics in complex building environments.

2.3.1. Graph Convolutional Networks

Graph convolutional networks (GCN) are one of the most straightforward and ex-
tensively utilized variants of graph neural networks (GNNs). Their operation is based on
the aggregation of the attributes of neighboring nodes via a weighted average, where the
weights are determined by the edge connections [32].

A simplified version of a GCN [33] takes a graph as the input with a set of node
features X, thereby utilizing this information to produce node embeddings that use the
graph convolution operation, which is expressed as a nonlinear function, as is illustrated in
the following layer-wise propagation formula:

H(l+1) = f
(

H(l), A
)
= σ

(
AH(l)W(l)

)
, (10)

where A is the adjacency matrix of graph G, Hl∈RN×C and H0 = X∈RN×D represent the
output and input vectors of lth GCN layer, σ(·) is denoted the activation function, and W(l)

is a layer-specific trainable weight matrix.
In this study, in order to extract spatial information, a single-layer GCN was used in

the prediction model, as is shown in Equation (11).

f (X, A) = ReLU
(

AXW(0)
)

, (11)

where ReLU(·) is applied as an activation function and W(0) is randomly initialized using
a Glorot initializer [34].

2.3.2. Long Short-Term Memory

Long short-term memory (LSTM) [35] is a variation of recurrent neural networks.
It presents tremendous prediction effectiveness in numerous tasks, such as time series
prediction, speech recognition, and natural language processing, due to its ability to capture
temporal dependencies in sequential data.

LSTM bears a similarity to the standard RNN formation, but it uses a specialized
memory unit capable of retaining or discarding information over sequential data. The
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memory unit or cell has four layers that interact in a special way. The computation method
is explained in Equation (12) [36], and the architecture is depicted in Figure 2.

ft = σ(W f · [ht−1, xt] + b f )

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc)

ct = ft · ct−1 + it · c̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(ct).

(12)

More specifically, t is the time step and xt is the input to the current time step. W, b, σ,
and tanh are the weight matrices, bias vectors, sigmoid activation function, and hyperbolic
tangent activation function, respectively. Forget Gate ft decides what information of the
previous unit state to forget, while Input Gate it controls the new information to store in
the memory unit. Furthermore, ct is the memory unit that stores the long-term information
from previous time steps and combines the information from the forget and input gates
to update the memory unit. Finally, Output Gate ot determines the output of the LSTM
memory unit.

Figure 2. The LSTM memory unit architecture.

2.3.3. The Proposed Model: GCN-LSTM

The structure of the GCN-LSTM model utilized in this study, as shown in Figure 3, is
a subset of the generic GNN-RNN prediction models. It consists of an input layer, a GCN
layer, a LSTM layer, and a fully connected layer as the output. Each layer is extensively
described in the following list.

Input layer: A graph G with N nodes. These represent the number of building zones
that are generated using the similarities in the power consumption or distance information
between the zones. The input of the GCN-LSTM model is the historical values of the N
zones at T time points before the prediction window T + h.

GCN layer: A GCN layer with a ReLU activation function is used to extract the spatial
correlations between the neighbor nodes. The GCN layer uses weights to aggregate the
information from the neighbor nodes based on the acquired correlation between zones.

LSTM layer: This layer is adopted as a temporal feature extraction module to capture
the long-term sequential dependencies of the power consumption between zones.

Output layer: A fully connected (Dense) layer returns the power consumption predic-
tion sequence.



Dynamics 2024, 4 344

G
C

N

LSTM

LSTM

LSTM
…

..

kW

Spa�al Dependencies 
Extrac�on

Temporal Dependencies 
Extrac�on

OR

Euclidian 
Distance

Power 
Correla�on

Adjacency 
Matrix

Feature
 Matrix

Dataset Preprocessing

D
en

se

Mul�-horizon 
Predic�on Results

…
..

…
..

…..

…
..

…..

…..

…..

…..

…..

…..

…..

…..

…..

h

N

Figure 3. The GCN-LSTM model structure.

2.4. Comparison Models

The presented adjacency matrix computation methods in combination with the GCN-
LSTM model are compared with some statistical, machine, and deep learning models
for multi-output multistep building power prediction. These baseline models are intro-
duced below:

Historical average (HA): This is a statistical model that does not utilize online data
for making predictions. The strategy underlying its prediction is as follows: For each
prediction value, the average of historical values is used. Therefore, considering the mean
value, the prediction horizon can be determined from one step up to multiple steps ahead.
This model is quite simple but lacks the ability to capture abrupt value changes.

Multilayer perceptron (MLP) [37]: This neural network model works by taking the
historical data as the input and using multiple layers of interconnected neurons to learn
patterns and relationships within the data. These patterns help the model make predictions
about future values. During the training process, the model adjusts its internal parameters
through backpropagation, and it compares its predictions to the actual values and updates
its synaptic weights to minimize the forecast errors.

Convolutional neural network (CNN) [38]: This is a kind of deep learning model that uses
sequential data as the input and convolutional layers to extract the features and patterns
from the data over time. These features capture local dependencies within the time series,
thereby aiding in learning the relevant information for forecasting. The main architecture
of this model consists of convolutional layers; pooling layers, which the model applies
to reduce dimensionality and further extract essential features; and one or more fully
connected layers, which are used to make the final predictions.

Long short-term memory (LSTM): LSTM is a variant of RNN, as described in Section 2.3.2.

3. Experiments
3.1. Dataset Description

In order to verify the effectiveness of our methods, several experiments were con-
ducted on the following real-world dataset.

The CU-BEMS [39] dataset was collected from a seven-story building with an overall
area of 11,700 m2 located in Bangkok, Thailand. The building is divided into 33 thermal
zones. The plan of each floor is shown in Figure 4. The dataset consists of measurements
of the electricity consumption, in kW, of the individual air conditioning units, lighting,
and plug loads of each zone. Furthermore, the indoor environmental conditions that were
recorded include temperature (°C), relative humidity (%), and ambient light (lux) values for
each zone. The data were gathered from 1 July 2018 to 31 December 2019, with a resolution
of one minute.
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This dataset has been used by other scholars to predict indoor temperature [40],
real-time thermal comfort [41], and energy use [42].

Zone 1

Zone 2

Zone 4 Zone 3

Zone 1

Zone 2Zone 3

Zone 4

Zone 5

Figure 4. The floor plans on Floors 1–2 (left) and Floors 3–7 (right) [39].

3.2. Data Preprocessing

For this study, the load measurements of the same zone were aggregated to one value
per time step, and the environmental measurements were discarded. The dataset does
not present missing values. The null-empty values, due to null power consumption, were
converted to zeros. The power consumption of Floor 1, Thermal Zone 3 appeared with a
peak value (i.e., it is 160 times larger than the previous and next value) for a certain time
step; thus, it was replaced with a linear interpolated value. The final dataset consists of
33 columns that represent the overall power consumption of each zone. Furthermore, the
variables of the dataset were standardized using the Standard Scaler function from the
Scikit Learn Python package before being used by the prediction algorithms. This function
rescales the distribution of values such that the mean of the values is 0 and the standard
deviation is 1.

3.3. Dataset Analysis

In this section, a brief analysis of the dataset is conducted. The dataset consists of
33 time series, with 790.560 observations, which correspond to the power consumption of
the relevant zones. Therefore, this dataset is described as “large data”, and a letter value
plot [43] is used to investigate the distribution and variability of the data. The letter–value
plot is an extension of the box plots, which shows only actual values, and it labels fewer
observations as outliers than the box plots.

Figure 5a presents a letter–value plot for each thermal zone, and Figure 5b shows the
horizontal bar plot of the median and mean values for each zone of the building. From
these two plots, it is noticeable that most of the zones presented a mean power consumption
that was lower than 10 kW and a median that was nearly 2 kW. Only a couple of the zones
presented mean and median values greater than 20 kW.

Furthermore, Figure 6 shows the letter–value plot for the total power consumption
of the building. It was discerned that the median was around 300 kW and that half of the
total observations were distributed at 300 kW and below; meanwhile, the remainder of the
total observed values were allocated between 300 kW and around 1750 kW.

Additionally, Figure 7 depicts a correlation plot that visualizes the relationships be-
tween the power consumption of the zones. It seemed that Zone 1 to Zone 4, which are
located on the first floor, had a low correlation compared to the other zones.



Dynamics 2024, 4 346

0 25 50 75 100 125 150 175
Zone power in kW

z1
z2
z3
z4
z5
z6
z7
z8
z9

z10
z11
z12
z13
z14
z15
z16
z17
z18
z19
z20
z21
z22
z23
z24
z25
z26
z27
z28
z29
z30
z31
z32
z33

Zo
ne

s

0 10 20 30 40 50 60
Power in kW

Median
Mean

(a) (b)

Figure 5. (a) Letter–value plot of the thermal zones. (b) Plot of the mean and median values of
each zone.
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Figure 6. Letter–value plot of the building’s total power.

z1 z3 z5 z7 z8 z1
1

z1
3

z1
5

z1
7

z1
9

z2
1

z2
3

z2
5

z2
7

z2
9

z3
1

z3
3

z1
z3
z5
z7
z8

z11
z13
z15
z17
z19
z21
z23
z25
z27
z29
z31
z33

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Correlation plot of the power between zones.



Dynamics 2024, 4 347

3.4. Predictions Evaluation

The performance of each model was evaluated by the following metrics: mean absolute
error in kW (MAE), mean squared error in kW (MSE), R-squared in percentage (R2), and
the coefficient of variation of the root mean squared error in percentage (CV(RMSE)). These
are also the most commonly used metrics in building power prediction tasks.

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (13)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (14)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (15)

CV(RMSE) =
RMSE

ȳ
, (16)

where yi denotes the actual values, ȳ is the mean of the yi values, ŷi represents the predicted
values, and n presents the observed samples. The RMSE is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (17)

The lower values of MAE and MSE [44] indicate a better prediction performance. The
R2 metric, when it is closer to 100%, represents a better model fitting. Moreover, as stated
by Chicco et al. [45], R-squared is more informative in regression analysis evaluation than
other metrics. Furthermore, the CV(RMSE) metric, when it shows values lower than 25%,
represents a model with satisfactory prediction according to ASHRAE Guideline 14 [46].

3.5. Software Environment and Experimental Setup

The research experiments were conducted in a Google Colab Platform with a Python
3 Google Compute Engine backend, and it utilized a GPU NVIDIA T4 with RAM 15.0 GB
system with RAM 12.7 GB and an available disk space of 78.2 GB. The 3.10 Python program-
ming language was used for code development, with the incorporation of the open-source
software library Tensorflow 2.15.0 and the Keras 3.0.2 high-level API for training and
testing the algorithms. Furthermore, the following Python libraries were used: Pandas
2.1.0 and Numpy 1.26.0 for data analysis, as well as Seaborn and Matplotlib for visualizing
the exploratory analysis and predicted results, respectively. Additionally, the NetworkX
Python library was used for graph analysis and visualization.

The architecture of our forecasting model consists of one graph convolutional layer, an
activation function ReLU, one LSTM layer with dropout, and one dense layer as the output.
The datasets were divided into 70%, 10%, and 20% for training, validation, and testing,
respectively. The root mean squared propagation (RMSprop) optimizer was utilized to
update the prediction model parameters with a learning rate of 0.001, while mean absolute
error was chosen as a loss function. The batch size was set to 256, and the historical data
were set to 10. Finally, an early-stopping regularization technique with a patience parameter
was used during the training process to prevent model overfitting. The patience parameter
value signifies the number of iterations at which no further enhancement in the prediction
performance is observed, thus leading to the termination of the training process. Multiple
trial intervals were experimented with, ranging from 5 to 10, in order to determine the best
fit for the patience parameter, which was determined to be 8.

3.6. Experimental Results

In this section, the different adjacency matrices and the results of the multistep predic-
tion experiments are presented. For the correlation-based adjacency matrix computation
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(AMC) methods, the value of the threshold σ was selected as 0.7 so as to compare the three
methods on the same basis. Figure 8 illustrates the adjacency matrices. As is presented in
Figure 8a,b, the PCC and PCCA methods produced the same graph with 220 edges. This
was due to the fact that the negative values of the correlations in the examined dataset when
they become positive did not affect the number of values that were above the threshold
value, as illustrated in the distribution plots of Figure 9. Additionally, the PCCS method
produced a graph of 289 edges, as is depicted in Figure 8c.
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Figure 8. (a–c): The generated adjacency matrix for each computation method. The edges be-
tween the nodes and zones are presented with a black color, e.g., for the PCC method, the nodes
with values lower than the threshold were not interconnected with the other nodes due to low or
negative correlations.
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Figure 9. The correlation value distribution plots of the PCC (a) and PCCA (b) methods.

On the other hand, for the distance-based AMC methods, the value of threshold σ
was chosen as the mean value of the Euclidean distances between the zones. Additionally,
the θ threshold value was selected as 10. Hence, the aim was to connect only the nodes
where the distances of the corresponding zones were smaller than the average distances.
The adjacency matrices that were made by the EDS, EDT, and EDGK methods are shown in
Figures 10a, 10b, and 10c, respectively.
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Figure 10. The generated adjacency matrices for the distance-based computation methods (a–c).

The above methods were evaluated at the zone and building levels for a prediction
horizon of 5, 10, and 15 timesteps ahead. Table 1 presents the mean power prediction errors
in the zones for the three prediction horizons across all of the forecasting methods. The
metrics include the mean absolute error (MAE) and the mean squared error (MSE), which
are measured in kilowatts (kW), as well as the coefficient of determination (R2), which is
expressed as a percentage. Furthermore, Figure 11 shows the alternation of the metrics
across the prediction horizons on the three randomly selected zones, and Figure 12 presents
a plot of a random zone for the predicted and the actual values.

Table 1. The zone-level mean prediction performance of the different models.

MAE (kW) MSE (kW) R2%

Prediction Horizon
Models 5 10 15 5 10 15 5 10 15

G
C

N
-L

ST
M PCCA 0.4410 0.6125 0.6180 5.0451 6.9455 7.0770 95.9628 91.5653 91.5658

PCCS 0.5328 0.8042 0.8613 4.2162 8.5785 9.3781 94.8608 89.4263 88.6511
EDS 0.3885 0.5087 0.5365 3.2260 4.9217 5.2070 97.0191 94.3589 94.1555
EDT 0.3629 0.5027 0.5149 2.7790 4.2133 4.4246 98.0799 95.1549 95.0108
EDGK 0.4417 0.5621 0.5926 4.8646 6.3391 6.6114 96.3522 93.3988 93.4145

Ba
se

lin
es LSTM 1.3350 1.3766 1.7868 14.5464 15.5639 22.6170 84.4698 84.5264 75.6387

CNN 1.4175 1.4626 1.6982 13.7222 16.1925 18.0752 82.2609 81.7772 78.0224
MLP 0.8228 1.0712 1.5381 7.5929 10.0303 18.7174 93.9786 90.3119 82.1446
HA 1.3698 1.8068 2.1499 16.6891 23.6742 30.7696 84.7380 79.9130 72.0788
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Figure 11. Prediction performance comparison of Zones 3, 11, and 33 for metrics MAE, MSE, and R2.
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In contrast, Table 2 presents the building-level power consumption forecasted perfor-
mance metrics for the forecasting models across different prediction horizons (5, 10, and
15), and the metrics are plotted in Figure 13. The metrics include the mean absolute error
(MAE), the mean squared error (MSE), and the coefficient of variation of root mean squared
error (CV(RMSE)). Additionally, Figure 14 depicts the predicted and actual values of the
building’s total consumed power.

Table 2. Building-level prediction performance of the different models.

MAE (kW) MSE (kW) CV(RMSE) %

Prediction Horizon
Models 5 10 15 5 10 15 5 10 15

G
C

N
-L

ST
M PCCA 9.2108 11.4480 11.6217 462.3184 856.3270 908.8390 9.9176 13.4975 13.9052

PCCS 12.7969 20.2977 22.3180 743.0862 2050.3345 2402.7141 12.5734 20.8856 22.6092
EDS 9.0959 12.3476 13.0835 292.8690 517.3485 543.3596 7.8935 10.4912 10.7517
EDT 8.2379 11.1851 11.6887 157.2238 293.3612 312.0810 5.7835 7.9002 8.1483
EDGK 10.0197 12.7862 13.6889 269.7044 438.5116 468.4237 7.5749 9.6588 9.9828

Ba
se

lin
es LSTM 22.6126 24.1234 31.0320 1590.3106 1810.7129 2977.6661 18.3940 19.6272 25.1694

CNN 19.0131 22.1651 24.6825 821.2873 1243.6567 1739.2184 13.2185 16.2661 19.2358
MLP 12.7255 15.5074 25.6344 356.3368 545.5808 1919.0386 8.7069 10.7737 20.2058
HA 31.8453 39.3830 48.2358 3711.3302 4006.8004 6630.6853 28.0995 29.1967 37.5590
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Figure 13. Prediction performance comparison of the total power for the MAE, MSE, and
CV(RMSE) metrics.
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4. Discussion

In this study, the impact of several graph computation techniques that were applied
over the GCN-LSTM model was investigated to predict the energy usage of an educational
building. Among the computation models utilized, at the zone and building level, EDT
consistently achieved the lowest MAE and MSE values on all horizons, thus indicating a
superior prediction accuracy. PCCA and EDS also demonstrated competitive performance,
with relatively low MAE and MSE values. In contrast, the LSTM, CNN, and MLP models
exhibited higher MAE and MSE values, thereby suggesting less accurate predictions com-
pared to the other models. For LSTM and CNN in particular, this prediction behavior can
be explained due to the lack of exogenous features for the training of the models.

In terms of the building-level prediction metric CV(RMSE), all methods, except for
HA, produced prediction values below 25%, which shows a good model fit with a more
than satisfactory total power forecasting according to ASHRAE Guideline 14. For the mean
zone-level estimation metric R2, the EDT method presented the confounding model fitting
effect for the three prediction horizons in comparison with the other computation methods.
The HA model performed the worst across all metrics and prediction horizons, with
significantly higher MAE and MSE values, thus indicating poor predictive performance.

Additionally, as shown in Figures 12 and 14, the predictive accuracy of the various
models and time horizons for power forecasting at both the zone and building levels was
evident. It was apparent that the proposed models exhibited a high level of consistency
with the actual curve when compared.

However, several limitations warrant consideration. First, the present study examined
the computation of binary adjacency matrices over a simplified GCN-LSTM model for
spatio-temporal building power prediction. This simplified model does not take into ac-
count the weights of the edges. Second, exogenous parameters, such as weather conditions
and building usage in terms of occupancy, were not taken into consideration during model
training. Third, the finer sampling resolution (one minute) of the utilized dataset and the
educational use of the building, which presents a repetitive load shape, might lead to better
prediction results.

These findings suggest certain recommendations for future research, such as the ap-
plication of the proposed methodologies over a variation of the GNN forecasting models
proposed by other academics for time series estimation, like graph attention neural net-
works, GraphSAGE, etc. It may be of scholarly interest to explore the application of these
methods on datasets characterized by varying levels of granularity. Moreover, future stud-
ies should explore the analysis of how the choice of threshold value affects the prediction
outcomes. Additionally, the proposed methodologies can be implemented on a dataset
representing a composite building type, such as residential apartments, or on a group of
buildings forming a microgrid.

In summary, this study contributes valuable insights into the efficacy of graph neural
networks and the several graph representation methodologies that were used for the
building energy prediction.

5. Conclusions

In this paper, a comprehensive study was carried out to predict the energy consump-
tion of a multistory, multizone building for multiple prediction horizons. For this purpose,
several adjacency matrix computation methods were proposed over a GNN-RNN deep
learning model, and they were compared with the baseline machine and deep learning
models such as LSTM, MLP, CNN, and a statistical model. The proposed adjacency matrix
computation methods were divided into correlation-based and distance-based methods.
More specifically, the methods that are computed with the Pearson correlation matrix as
a basis are the Pearson Correlation Coefficient (PCC), the Absolute Pearson Correlation
Coefficient (PCCA), and the Pearson Correlation Coefficient Scaled (PCCS). Furthermore,
the methods that have Euclidean distance among zones as their basis are the Euclidean
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Distance Scaled (EDS), the Euclidean Distance with Threshold (EDT), and the Euclidean
Distance with Gaussian Kernel (EDGK).

Based on the results, all of the proposed computation methods yielded very high
performance, good model fit, and improved energy consumption prediction in contrast
with the baseline models. It is worth noting that the EDT method outperformed the
other computation methods in predicting the power at the zone and building level, and
the EDS, PCCA, EDGK, and PCCS methods followed in ascending order in terms of
prediction accuracy.

Overall, the present employed work will be useful for building managers and engi-
neers in terms of energy efficiency, financial savings, and occupant comfort. Also, this
study will be helpful for electrical grid managers for resource planning and grid stability.
The findings of this study could be applied to other building sectors, such as industrial and
residential, for obtaining more accurate conclusions.
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