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Abstract: Autonomously driving vehicles in car factories and parking spaces can represent a com-
petitive advantage in the logistics industry. However, the real-world application is challenging in
many ways. First of all, there are no publicly available datasets for this specific task. Therefore, we
equipped two industrial production sites with up to 11 LiDAR sensors to collect and annotate our
own data for infrastructural 3D object detection. These form the basis for extensive experiments. Due
to the still limited amount of labeled data, the commonly used ground truth sampling augmentation
is the core of research in this work. Several variations of this augmentation method are explored,
revealing that in our case, the most commonly used is not necessarily the best. We show that an
easy-to-create polygon can noticeably improve the detection results in this application scenario. By
using these augmentation methods, it is even possible to achieve moderate detection results when
only empty frames without any objects and a database with only a few labeled objects are used.

Keywords: 3D object detection; infrastructural LiDAR; data augmentation; autonomous driving

1. Introduction

The vision of autonomous driving is becoming more and more of a reality, not only in
individual transport, but also for industrial applications to automate processes, simplify
workflows, and increase safety. For example, the transportation of goods through ware-
houses can be handled by autonomous vehicles. Or even newly built vehicles can drive
through parts of production facilities without the help of human drivers. This application of
autonomous factory driving will be investigated in this work. In our use case, the vehicles
are to drive autonomously at low speed for part of the final production route through the
plant premises. The entire system required to solve such a complex task can be divided
into several parts. In this paper, we focus on the 3D object detection (3D OD) task, as it is
an essential part of this pipeline, since the results of many other functions are based on
its output.

Most of the publicly available datasets and benchmarks for 3D OD on LiDAR data
are recorded from the point of view of a single ego vehicle [1–6]. Unfortunately, these
are unsuitable for the stated problem, as an overall view of the production site that is as
occlusion-free as possible is required to maneuver several vehicles safely at the same time.
Therefore, an infrastructural LiDAR sensor setup is to be used. Using the ego-vehicle-based
data for training would be a big domain shift to this setup. Although there are public
datasets with infrastructural sensors [7–10], these are rather limited in availability, size and
quality [11,12]. Furthermore, due to the domain shift, it is not possible to use these for
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training and direct inference. Therefore, data had to be recorded and annotated accordingly.
During the process of creating a suitable dataset, we encountered many sources of delay.

As a result, only a fraction of the pre-validated data could be labeled and prepared.
This scarce data basis was addressed by using suitable methods such as heavy data aug-
mentation. The most potent augmentation method for our case is ground truth (GT)
sampling [13] as it touches the border to simulation. In GT sampling, a database of objects
is created. During training time, objects are randomly selected from this database and in-
serted into the current frame. This work aims not only to provide a solution for the specific
application but to investigate further the influence of GT sampling. Several experiments
show its effectiveness even with very little data available. In addition, this work explores
the idea that GT sampling can be better utilized in a fixed environment. For this scenario, a
more sophisticated GT sampling method utilizing an easy-to-create polygon is proposed
to compensate for the lack of data. Unfortunately, for legal reasons, the data can only be
shown in parts within this publication and cannot be published in its entirety.

The rest of this paper is structured as follows: First, the related work that is relevant to
this task will be reviewed. The specific sensor setup and the resulting dataset, the networks
used for the experiments, the GT sampling augmentation variations, and the evaluation
metric used will afterwards be discussed. The results of the experiments are then presented.
Finally, a conclusion and an outlook on future extensions of the proposed methods will
be given.

2. Related Work

In the following, the current state-of-the-art is discussed with regard to the main topics
of this paper. Note that some officially unpublished papers on arXiv are also considered for
the state-of-the-art research, as they provide additional insights.

2.1. 3D Object Detection with Infrastructural LiDAR Sensors

The current state-of-the-art in terms of 3D OD for autonomous driving is mainly
divided by the input format of the LiDAR point cloud as well as the number of stages used
for the detection network [14,15]. Most current approaches use the point cloud directly
as input [16–19] or convert it into a discrete voxelgrid [20–28]. While one-stage detectors
predict the objects directly [15,16,21,23,27,28], two stage detectors first produce proposals,
which are refined to the final predictions in the second stage, resulting in better detection
accuracy but slower run time [17,19,20,23,25–27]. The current state-of-the-art for 3D OD
on infrastructural LiDAR uses only one-stage voxel-based detectors. The most commonly
used network is PointPillars [10,21,29–31] or more or less strong extensions of it [32–34].
For example, the authors of [33] propose an extension of PointPillars with attention, a
multi-task head, and other minor additions. Otherwise, Ref. [27] uses CenterPoint [12]
and ref. [35] uses VoxelNet [28] for 3D OD. The surveys [36,37] provide an overview of the
research field of infrastructural 3D OD.

Unlike ego-vehicle-based detection, where a selection of datasets has become the
standard [1–6], for the task of infrastructural detection many different smaller datasets
exist. The authors of [35] use CARLA [38] to create a synthetic dataset of a T-junction
and a roundabout. The authors conduct experiments related to the number of LiDAR
sensors in the simulated setups and the stage of the fusion of the different point clouds. It
is shown that early fusion of overlapping sensors is able to increase the detection results.
In [30] also mainly simulation data is used to perform 3D OD. It is likewise shown that
an early fusion of the point clouds increases the detection results. The authors of [32] also
work with simulation data from Carla. They experiment with the placement of different
LiDAR sensors in an infrastructure setup for the task of 3D OD and with varying fusion
schemes. Their experiments show that a LiDAR setup that leads to higher uniformity and
coverage of the objects of interest is beneficial for 3D OD. The authors of [33] perform 3D
OD on the IPS300+ [8] and the A9 dataset [7] as well as semi-synthetic data. An early
fusion of the point clouds is also performed here. In [34] a follow-up to [33] with the use of
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synthetic data is presented. In [12] a semi-automated annotation pipeline for infrastructure
LiDAR data is introduced. Their dataset features only one LiDAR sensor, so no fusion is
required. The authors claim the release of their dataset named FLORIDA, but at the time of
writing, it had not yet been published. The authors of [31] again use the A9 dataset. They
utilize the three LiDAR sensors as well as the roadside cameras for 3D OD by fusing the
results of conventional methods as well as deep learning approaches. In addition to the
already mentioned datasets with real recordings for infrastructural LiDAR object detection
IPS300+ [8] and A9 [7], there are other small datasets that are publicly available, such as the
Baai-vanjee dataset [9], in which an intersection in Bejing was captured with two LiDAR
sensors, or the datasets of intersections in Germany proposed in [39] or [40]. Infrastructural
LiDAR data can further be extended with point clouds recorded by vehicles. There are
several papers for this extended task [11,41,42], which work with simulated data or the
DAIR-V2X dataset [10]. Further works in this direction have been published, but since this
deviates from the task of this work, we will leave it at this point with this selection.

2.2. Data Augmentation

There are a variety of different augmentation methods for the task of 3D OD on LiDAR
data. In the two papers [43,44] the most common methods for 3D OD were applied and
experimented with different parameter sets, networks and datasets. These are simple
transformations of the entire point cloud and the GT boxes such as rotation, scaling, and
translation. These transformations can also be applied at object level. Here, only the
GT boxes and their inner points are transformed. Other augmentation methods such as
frustum-based deletion and noise of points [45], shifting different parts of one object [46], or
mixup [47] also exist, but are applied much less frequently. Another very common method
included in the standard catalog of augmentation methods is GT sampling, which was first
introduced in [13]. GT boxes and their inner points are collected in a database, and during
training, objects are drawn from this database and inserted into the current point cloud.
This GT sampling method was further developed in several ways. The placement of the
objects, which were originally inserted at the position where they were cut out, was a key
area of research. Thus, the placement of the objects on the previously estimated ground
plane has established itself as the standard in the community [44,48–50]. In [51,52], the
semantic segmentation of corresponding camera images was used to find semantically
meaningful positions, such as the placement of cars on the road and pedestrians on the
sidewalk. The authors of [48] introduce a ValidMap for position generation. A grid is
created from the number of points within a cell and their height information in relation to
the ground. Additionally, the objects are inserted occlusion-aware, so that inserted objects
cast a shadow in the point cloud. In [50] an estimation of roads and sidewalks is performed
for better placement of objects. Occlusion handling is also used here. The authors of [26]
propose a pattern-aware down sampling of objects from the database so that they can be
realistically placed further distances away.

3. Methods

The datasets for infrastructural LiDAR 3D OD presented in the previous section do not
meet the requirements for the task in this paper. The datasets IPS300+ [8] and Lumpi [40]
come closest to the requirements. However, the first could not be download due to region
lock, while no labels were available for the second at the time of writing. Furthermore,
the public datasets are not released for commercial use. For this reason, own data were
recorded at the relevant sites. Following related work, single-stage detectors were used
and the point clouds were fused at an early stage. In contrast to previous work in this
area, this paper focuses on compensating for the limited data available, mainly using
the GT sampling augmentation method and applying it to the specific case of the fixed
environment. In the following subsections, the acquired dataset, the object detectors, the
augmentation methods and the evaluation metrics for the experiments are explained.
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3.1. Sensor Setup & Data

For data collection, we equipped two factory sites with infrastructural LiDAR sensors
and cameras so that all regions of interest are clearly visible. A mix of automotive-grade
fisheye (1MPix, 190◦ FoV) and pinhole cameras (1MPix, 120◦ FoV) cover the near and long
range, respectively. At the time of writing, two different facilities are supported. referred to
as K and G. Site K has three HESAI XT32 LiDAR sensors, nine fisheye cameras, and four
pinhole cameras. The fused point cloud of all LiDAR sensors can be seen in Figure 1. Site G
is larger and more complex than site K. Therefore, eleven LiDAR sensors, nineteen fisheye,
and fifteen pinhole cameras were required to cover the area.

Figure 1. Excerpt of a fused LiDAR point cloud from the infrastructural setup of factory site K
recorded with three LiDAR sensors. Labeled ground truth boxes are shown in pink. Point color
decodes the height from blue as the lowest to yellow as the highest. LiDAR positions are shown with
small coordinate axes each. Big coordinates axes mark the world coordinate origin.

The bounding boxes are labeled on the fused point cloud of all available LiDAR sen-
sors. Spatial registration was done by extrinsic calibration, whereby all point clouds were
transferred to a world system. Temporal alignment was done using PTP synchronization
using the GPS time for all sensors and then aligning the point clouds based on minimal
timestamp difference. The box parameters are the center position in 3D, the dimensions
and the heading angle. Although more classes are labeled, cars and pedestrians are most
relevant for the task. Therefore, only these two are considered in the following experi-
ments. A total of 175, 932 cars and 17, 377 pedestrians were labeled. For site K there are
39 sequences and 1411 frames. For site G there are 90 sequences and 3119 frames. For
the experiments, these two were considered as one dataset and split into training (60%),
validation (20%), and test (20%). For this purpose, all recorded sequences were divided
into subsets, whereby care was taken to ensure that the number of objects belonging to the
car and pedestrian classes roughly corresponded to the defined ratios. The result was a
training set with 95, 270 cars and 10, 426 pedestrians, 39, 743 cars and 3455 pedestrians for
the validation, and 40, 917 cars and 3494 pedestrians for the test split.

3.2. 3D Object Detectors

For our experiments, two different 3D object detectors were chosen according to their
usability for the described task and the aforementioned state-of-the-art. The implementa-
tions of both networks are based on the OpenPCDet framework [53]. Consequently, most
of the hyperparameters are taken from the configuration files provided by OpenPCDet,
unless otherwise stated. The two networks are briefly presented below.

PointPillars is a lightweight one-stage detector [21]. The input point cloud is con-
verted into a voxelgrid, where the voxels have an infinite height and thus form the namesake
pillars. A feature vector is calculated for each pillar, and the resulting feature pseudo image
is further processed by 2D convolutions. An anchor-based detection head generates the
final box predictions. Since PointPillars is an older model, an updated version of [54] is
used as it has high performance with comparatively low memory consumption and low
inference time, which is crucial for a real-time application.
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CenterPoint is another fast voxelization approach [27]. The input point cloud is first
converted to a voxelgrid, and again a pseudo-image feature map is created and further
processed by 2D convolutions. Unlike PointPillars, the predictions are not made via an
anchor head, but are based only on the prediction of object centers. The authors of [27] also
propose a second stage extension for CenterPoint, which refines the box predictions. The
one-stage variation is used for the experiments.

3.3. Ground Truth Sampling

GT sampling is one of the most commonly used augmentation methods for 3D OD
on LiDAR data. Objects from the training data are gathered in a database and inserted
into the current LiDAR frame during training time. Usually the insertion is done at the
same position and orientation as the original GT object. A common addition is to adjust the
insertion height to the previously estimated ground plane of the current frame to prevent
objects from floating above or below the ground. Before insertion, a collision check is
carried out based on the bounding boxes to prevent possible overlaps with other objects.
However, this can still lead to unrealistic placement of objects within unlabeled point
clusters such as walls. Furthermore, the original position of an object in the extraction
frame is not necessarily within the region of interest in the current frame. To counteract
this behavior, Ref. [48] propose a ValidMap based on the number of points and the height
of the points in relation to the estimated ground plane. Objects are only inserted at valid
positions on the map. Inspired by this approach, we also limit the insertion area. Unlike
for ego-vehicle-based data, the environment for our task is fixed. This makes it possible to
determine the regions in which objects are to be placed beforehand. For both sites K and G,
a polygon is drawn around the areas where objects should be inserted. The polygons can
be seen in Figure 2.

Figure 2. The two polygons drawn to restrict the area into which the objects are inserted by the GT
sampling method are shown. Left, the polygon for site K is depicted, right for site G. Hatched area
represents the valid space. LiDAR sensors are depicted as black squares. The axes indicated the scale
in meter.

Various methods for inserting the objects are also examined. A sketch for these
variations can be seen in Figure 3.

This means that not only the position and orientation of the original GT object is
used. A random selection of position and orientation from a uniform distribution is also
experimented with. In addition, a polar coordinate-based placement is considered, where
the polar distance of the object is kept within a perimeter of two meters around the original
distance. The relative angle to the world origin is used for orientation. Based on the
selected position, the orientation is calculated in such a way that the relative angle to the
world origin is always the same as the original. From a human perspective, this should
increase the realism of the augmentation method in the case of a single sensor. In our multi
sensor setup, the effects of these different insertion methods need to be investigated. The
combination of all these methods result in eight different variants of GT sampling, since
the GT orientation and the relative orientation for GT positioning are the same.
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Figure 3. A sketch is shown for all eight ground truth sampling variations. LiDAR sensor is depicted
as a black square. Boxes and points refer to an exemplary object placed with all eight variations.
The lines inside the boxes indicated the orientation. The colors of the boxes represent the position
variation, colors of their middle lines are the orientation variant. The dashed circle shows the polar
distance of the ground truth.

3.4. Evaluation Metrics

We use the common mean average precision (mAP) metric for evaluation. The method
used is similar to that in COCO [55] and is a non-interpolated version of the mAP as
opposed to, for example, KITTI [3]. The implementation is based on the one in MMDET [56]
and has been adapted to support IoU matching thresholds per class. The IoU thresholds
used are the same as in KITTI, 0.7 for cars and 0.5 for pedestrians. Two filters were applied
to the GT during training and evaluation. First, only boxes with at least 5 points in them
were used, and second, all boxes outside of the defined grid range were discarded.

4. Experiments

In this section, the experimental results for in total three different waves of experiments
are reported and discussed. In the first experiment, the effect of the different GT sampling
variants as well as the effect of the polygon will be investigated. The second experiment
will investigate how well GT sampling is suited for training with little available data. In a
third experiment, this is examined for the special case that only one empty frame without
any object occurrences is available for each site. Here, the usable training data is generated
only by GT sampling. Unless otherwise noted, all experiments are conducted using the
dataset presented previously for the car and pedestrian classes, and results are reported for
the test split. The validation split was used for hyperparameter tuning such as learning
rates, amount of epochs, and augmentation parameters. For all experiments, global rotation
drawn from U(−π, π), scaling drawn from U(0.95, 1.05), and flip around both ground
axes with a probability of 0.5 for each axes were applied. If GT sampling was performed,
10 cars and 10 pedestrians were tried to be inserted if no collision with another labeled
object occurred. Ground planes are utilized for the height placement. More advanced
augmentation methods were not applied to keep the interpretation of the experiments as
simple as possible and to avoid further obscuring the results. The networks were trained
for 100 epochs with an Adam-One-Cycle optimizer [57] with a learning rate of 0.001 for
PointPillars and 0.003 for CenterPoint, respectively. Each training was repeated six times to
counteract random effects during the training, and the median of the six results is reported.

4.1. Ground Truth Sampling Methods

In the first experimental wave, all eight meaningful combinations of the different
positioning methods (ground truth, random, polar) and orientation methods (ground truth,
random, relative) are evaluated with and without using the polygons. The results can be
seen in Table 1. Intuitively, before looking at the results in more detail, one would expect
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that using the polygon would improve the results in all cases. With all positioning methods,
placement of objects outside of reasonable boundaries is possible. These are prevented by
placing them inside the polygon, allowing the network to focus more on the actual region
of interest. Regarding the GT sampling methods, based on experiments with single sensor
setups one would expect the combination of polar positioning and relative orientation to
produce the best results. It is unclear whether this also applies to our multi sensor setup.

Table 1. The mean average precision (car and pedestrian) for PointPillars and CenterPoint on test
split with different combinations of GT sampling methods is shown. The left values for each cell
are without polygon. The right values are with polygon. Values next to network names are baseline
results without GT sampling. Reported values are the median of six trainings each. Higher values
are better. The best results are marked in bold for PointPillars and CenterPoint, respectively.

Position

Orientation mAP of Median in % ↑
PointPillars (62.82) CenterPoint (68.58)

Ground Truth Random Relative Ground Truth Random Relative

Ground truth 63.31/63.54 63.92/64.26 —/— 71.78/70.71 72.04/72.01 —/—

Random 63.92/66.61 63.22/65.49 64.35/65.70 72.14/72.95 72.51/72.96 72.46/72.64

Polar 64.16/65.16 63.84/64.81 63.63/65.72 72.32/73.50 72.27/72.02 72.16/71.58

Looking first at the results for PointPillars, it can be seen that the usage of the polygon
increases the mAP of the medians in all variations of GT sampling. The highest mAP is
achieved using the polygon and random positioning and GT orientation with 66.61%. The
lowest mAP is reached without polygon and random positioning and random orientation.
The two GT positioning variations benefit the least from the polygon, with 0.23 and 0.34
percentage points for GT and random orientation, respectively. Thus, the assumptions made
previously are only partially accurate. Although the polygon improves the mAP in all cases,
the impact on GT positioning is relatively small. This could be due to the restriction on
the number of objects inserted, as all objects outside the polygons are discarded. Contrary
to expectations, polar positioning and relative orientation do not perform best but are
second best. Due to the multi sensor setup, this variant is not necessarily the most realistic
in terms of scan pattern and distribution of points. The random positioning with the GT
orientation, which performed best, is not realistic as well. Due to the random positioning,
the orientation of the objects is not correct in most cases. Consequently, the random choice
of position and orientation should also give very good results. In fact, however, this variant
has only the fourth-highest mAP of 65.49%. Restricting the orientation angles to existing
angles in the dataset could make the difference here.

The results can be roughly seen again for CenterPoint. The polygon also generally
improves the mAP, except for the two GT position variations. The mAP deteriorates by
1.06 percentage points from 71.78% to 70.71%, and by 0.03 percentage points from 72.04%
to 72.01% for GT positioning with GT orientation and random orientation, respectively.
The attempted explanation in the case of PointPillars remains valid here as well. Objects
outside the polygons are never added during the training. The best mAP is obtained for
CenterPoint from polar positioning and GT orientation using the polygon. Thus, the mAP
in this case reaches a value of 73.50%. The lowest mAP this time shows GT positioning and
GT orientation with polygon with 70.71%. The best GT sampling variation for CenterPoint
may differ from PointPillars, but still, the same argumentation applies for the orientation.
The GT orientation narrows the possible rotation angles to those occurring in the dataset
with corresponding distribution. Based on the results for both networks, it seems that
random or polar positioning with guidance of the polygons are beneficial compared to
GT positioning. One explanation could be the increased variety of object positions and,
consequently, the scenes created after augmentation.
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On the basis of these observations, the polygons are also used in the following ex-
periments. Since it is not possible to use the GT information for some of the upcoming
experiments, the random position and orientation are used in the following. On average,
these have the highest mAP value of the GT variants.

4.2. Reduction of Dataset Size

The amount of training data is one of the most critical factors for good results of a
deep learning approach. Therefore, the next wave of experiments will examine the ability
of the GT sampling augmentation to compensate for the lack of data. Thus, the size of the
training dataset is limited in this experiment to roughly 75%, 50%, and 25% of the original
size, respectively. These subdivisions of the training dataset were created in the same way
as train, valid, and test split. Thus, subsets of all training sequences according to the desired
object ratios were created. The iterations per epoch are set to the initial 100% training set
in all cases to allow a fair comparison. This is done by randomly reusing samples during
training until the wanted number of iterations per epoch is reached. The database for the
GT augmentation is adjusted to the current dataset size accordingly, such that only objects
available in the current train set are present in the object database. The results can be seen
in Figure 4. Before looking at the results, two things can be expected intuitively and based
on the related work. First, the GT sampling augmentation can be expected to enhance
the results in all cases for both networks. And secondly, it can be expected that the mAP
decreases the less data is used.

Figure 4. The mean average precision (car and pedestrian) on the test set for different sizes of the
training split for PointPillars and CenterPoint without (red) and with (blue) GT sampling is shown as
a boxplot. The differences in the medians between without and with GT sampling for each dataset
size are shown in the bottom left corner. Best seen zoomed-in and in color.

Indeed, these two observations can be made for most of the results. The mAP decreases
the less data is used with an exception at 75% to 50% dataset size. This is the only irregularity
of this kind. GT sampling increases the results for all four dataset sizes. The gains with
GT sampling amount to 2.92, 4.75, 5.67, and 7.83 percentage points, respectively. It can
be observed that the median differences increase the lesser data used for training. Thus,
it can be concluded that the GT sampling augmentation is not only able to increase the
quality of the training results but is also able to cushion the effect of fewer training data by
providing more variations of the available data. To reinforce this thesis, the experiments
are repeated for the CenterPoint object detector. Again, with the utilization of GT sampling
augmentation the median mAPs increase in all four cases. The differences between the
medians with and without GT sampling amount to 4.15, 5.18, 5.23, and 6.58 percentage
points, respectively. Therefore, the same observation as for PointPillars can be made. The
effects of the smaller dataset are mitigated by GT sampling.

The question arises about how this cushion effect of GT sampling applies to ego-
vehicle-based data. Therefore, the same experiment was performed on the KITTI dataset.
The initial 100% split is the common one for KITTI. The other splits are again created by
selecting whole sequences. Only CenterPoint is used for this experiment because its results
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are more stable and have lower variance. The GT sampling variation is set to GT position
and GT orientation. The common validation split is used for validation but not the official
KITTI benchmark evaluation. Instead, the evaluation described before is used here. Thus,
the results are only comparable to themselves, not with other publications regarding the
KITTI benchmark for 3D OD. Table 2 shows the results.

Table 2. Results for KITTI (car and pedestrian) on validation split for CenterPoint with different
training set sizes are shown. Reported are the results for the median of six training runs.

Training Data
mAP of Median in % ↑

100% 75% 50% 25%

KITTI + GT Sampling 51.90 51.08 47.35 45.25
KITTI − GT Sampling 48.18 46.95 42.45 34.48

Difference 3.73 4.13 4.90 10.78

The observations found on the infrastructural data can also be seen for the ego-vehicle-
based KITTI data. The mAP of the medians is higher for all four sizes of the training set
with GT sampling than without. Thus, the gain induced by utilizing the GT sampling
method amounts to 3.73 percentage points for 100% dataset size and 10.78 percentage
points for 25% dataset size. In the case of the KITTI dataset, the cushion effect of the GT
sampling method is even more substantial compared to the infrastructural data used for
the rest of this work. Therefore, the described effect of this augmentation method is not
exclusive to a fixed environment.

4.3. Empty Case Experiments

In this experiment, the size of the training data is reduced to only one frame for both
sites G and K, respectively, with no objects present. Thus, all meaningful training data is
produced by the GT sampling augmentation. The GT database is taken from the 100%,
75%, 50%, and 25% trainings split, respectively, to investigate the performance for different
amounts of objects. Once more, the experiments are performed with and without using the
polygons to further look into its impact in this particular case. The results are depicted in
Figure 5.

Figure 5. The mean average precision (car and pedestrian) on test set for different sizes of the GT
database for PointPillars and CenterPoint without (red) and with (blue) polygon is shown as boxplot.
The differences of the medians between without and with usage of polygon for each database size
are shown inside the box. Best seen zoomed in and in color.

Based on the previous experiments, it can be expected that the polygon can increase
the mAP. Furthermore, one could expect intuitively that the mAP decreases with smaller GT
sampling database. Nothing can be said about the size of the mAP, as such an experiment
has not yet been carried out in a similar form. Looking at the results, one of the previous
assumptions is directly refuted. Other than expected, the results are comparably stable for
the different sizes of the GT database. The largest difference between the four database
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variations is only 2.06 percentage points. Considering the amount of data samples dropped,
that is surprisingly small. Note that unexpectedly the mAP is highest for a database size of
75%. With utilization of the polygon the mAP is higher in all cases. Here, too, the results for
the different database sizes are surprisingly close together. Once more, it can be observed
that the mAP is highest for 75% database size. Looking at the results for CenterPoint, the
same observations can be made. The polygon increases the result in all cases by up to 4.90
percentage points, which is a higher gain as shown in Table 1. The polygon gains even
more value in the case of empty frames.

The number of objects is not as important as originally assumed. This might be caused
due to a low overall variance of objects in the data. Due to the drop of mAP compared to
the experiments regarding the dataset size, the exact positions and other physical effects,
such as occlusion and sampling patterns, have an even stronger influence than previously
expected. The better results of the 75% database compared to the 100% database indicate
that the sheer number of objects is not the most relevant factor.

5. Conclusions & Further Work

In this work, we investigated 3D OD on an infrastructural LiDAR setup for au-
tonomous factory driving. By using the GT sampling method, we were able to improve
performance while compensating for the lack of labeling. Results were generally improved
when a polygon was used to constrain the placement of objects. This restricts the placement
of objects and is easy to create for a fixed environment. Moreover, the most commonly
used variant of GT sampling, where objects are inserted in their original position and
orientation, does not perform best. It has been shown that the GT sampling method can
also mitigate the negative effect of less labeled data. This was demonstrated not only for the
infrastructural setup, but also with an ego-vehicle based dataset. Finally, the possibility of
training only with a database of objects inserted in the fixed environment was investigated.
Surprisingly, the size of the database was found to have a smaller impact than expected.

This last experiment could be the starting point for future work. A possible continua-
tion is the enrichment of the database for GT sampling with objects from other data sets.
This could further reduce the labeling effort. The insertion of object models through ray
casting is also an interesting extension that reaches the limits of simulation. Furthermore,
an additional consideration of occlusion could be implemented, or a placement of the
objects based on a probability map.
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