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Abstract: The increase in industrial activities has raised concerns regarding air quality in urban
areas within Malawi. To assess the source apportionment of air quality parameters (AQPs) and noise
levels, concentrations of AQPs (CO, TSP, PM 2.5, PM10) and noise levels were monitored at 15 sites in
Makata, Limbe, Maselema, Chirimba, and Maone during dry and wet seasons, respectively. Active
mobile multi-gas monitors and a Dylos DC1100 PRO Laser Particle Counter (2018 model) were used
to monitor AQPs, while Integrated Sound Level Meters were used to measure noise levels. Moni-
toring and analysis were guided by the World Health Organization (WHO) and Malawi Standards
(MS). A Positive Matrix Factorization (PMF) model was used to determine source apportionment
of AQPs, and matrix trajectories analysed air mass movement. In the wet season, the average
concentration values of CO, TSP, PM10, and PM2.5 were 0.49 ± 0.65 mg/m3, 85.03 ± 62.18 µg/m3,
14.65 ± 8.13 µg/m3, and 11.52 ± 7.19 µg/m3, respectively. Dry season average concentration values
increased to 1.31 ± 0.81 mg/m3, 99.86± 30.06 µg/m3, 24.35 ± 9.53 µg/m3, and 18.28 ± 7.14 µg/m3.
Noise levels remained below public MS and WHO standards (85 dB). Positive correlations between
AQPs and noise levels were observed, strengthening from weak in the dry season to moderately
strong in the wet season. PMF analysis identified key factors influencing AQPs accumulation, em-
phasizing the need for periodic sampling to monitor seasonal pollution trends, considering potential
impacts on public health and environmental sustainability. Further studies should look at factors
affecting the dynamics of PMF in Blantyre City.
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1. Introduction

Pollution refers to the introduction and presence of contaminants, pollutants, or
harmful substances into the environment, including air, water, or soil [1]. The issue of
global pollution poses a significant challenge for both developed and developing nations,
leading to adverse consequences for living and non-living entities. This challenge acts as
an impediment to the growth and prosperity of the affected nations [2]. Various sources
contribute to pollution, but industries play a significant role in accelerating environmental
degradation [3–5].

Air pollution is characterised as a harmful phenomenon affecting the ecological system
and the normal conditions of human existence and development. It occurs when specific
substances in the atmosphere exceed a particular concentration [6]. In Malawi, air pollution
is identified as the second-highest risk factor contributing to death and disability, following
poor water and sanitation. Overall, it is ranked as the fourth-highest risk factor, trailing
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malnutrition, unsafe sex, and poor water and sanitation [7]. Matrix trajectories are a
precise and efficient tool for analysing the movement pattern of air mass in a region. A
study by Lv et al. [8] analysed PM2.5 as well as backward air mass trajectories using a
HYSPLIT-4 model which characterized the way movements of air caused shifts in pollution
concentrations in four big cities in China.

Noise pollution is typically characterized by nuisance-causing sounds that impact not
only humans, but also animals [9]. Diverse noise sources contribute to environmental noise,
with industrial activities like machinery, heavy equipment, and transportation being the
predominant contributors. These noise sources not only affect the environment, but also
cause discomfort to the surrounding communities [10]. This is underscored by a study
carried out in Blantyre, Malawi, revealing that noise levels in most industries exceeded the
acceptable limit of 85 dBA [11].

Analysing sources serves as a fundamental analytical tool in preventing and managing
pollution [12]. Positive matrix factorization (PMF) exhibits superior capabilities in general
source allocation and can identify sources through a multivariate factor analysis [13]. A
three-factor solution of the PMF model is used to showcase the sources of air quality
parameters (AQPs) in a precise way [14].

There are a few studies associated with evaluating the air quality and noise levels of
Blantyre city. One of these studies examined outdoor air pollution of Blantyre City’s major
highway and industrial areas (Makata) and revealed that the presence of non-methane
volatile organic compounds (NMVOCs) and carbon monoxide (CO) levels contributed to
the deterioration of air quality in these locations [15]. Another was conducted at Queen
Elizabeth Central Hospital in Blantyre and showed that air quality thresholds considered
safe were consistently surpassed across various locations and time periods within the
vicinity of the shelter for caregivers and individuals undergoing HIV/AIDS treatment, thus
significantly affecting both staff and visitors within the premises [16]. A study conducted
in the Mpemba-Blantyre rural area showed that village residents experience elevated
levels of personal exposure to airborne particulate matter and carbon monoxide, primarily
attributed to cooking activities as the predominant source of exposure [17]. A single study
was conducted on noise level assessment in the Blantyre industrial area, and it indicated
that noise levels from industries ranged between 75 dBA and 102 dBA. The findings also
revealed non-compliance with MS on workplace noise by numerous industries [11]. This
further indicates a knowledge gap in industrial regions. Due to air quality and noise
pollution hazards presented by industrial sites, it is very important to monitor such areas.

More than 80% of Malawi’s industrial sector, dominated by manufacturing, agriculture,
and construction materials production, increase the risk of environmental pollution [18].
There have been no extended studies involving an analysis of PM2.5, PM10, TSP, CO,
and noise levels, around the main industrial areas in Blantyre, namely Makata, Limbe,
Maselema, Chirimba, and Maone. This indicates a knowledge gap in industrial areas in
Blantyre. Other countries have conducted similar studies to assess the extent of pollution
in these areas, which is crucial for protecting public health and ensuring environmental
sustainability [3].

To investigate source apportionment of AQPs and examine their correlation with noise
levels, the concentrations of four AQPs (CO, TSP, PM2.5, PM10) and levels of noise were
studied in 15 sites, which were located in Makata, Limbe, Maselema, Chirimba, and Maone
industrial areas of Blantyre City during the months of January–February (wet season) and
August–September (dry season) of 2023. CO concertation was recorded using an active
mobile multi-gas monitor, whereas TSP, PM2.5, and PM10 concentrations were measured
using a Dylos DC1100 PRO Laser Particle Counter (2018 model), and lastly, noise levels
were measured using an Integrated Sound Level Meter. The environmental monitoring at
each site was in a set of three, with each set consisting 10 days, making the total number
of sampled days being 30 per monitored site. These three distinct sampling sets were
conducted in the period of the rainy season in January–February 2023 and the dry season
in August–September 2023. This has been revised. Sampling and analysis of air and noise
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employed the use of standardized methods detailed in the World Health Organization
(WHO) and Malawi Standards (MS). A Positive Matrix Factorization (PMF) model was
used to conduct source apportionment of AQPs. Matrix trajectories were used for analysing
the movement pattern of air mass in the sites. This study is crucial for protecting public
health, ensuring environmental sustainability and compliance with regulations, policy
enforcement, as well as raising community awareness. Therefore, in this work, AQPs
concentrations and noise levels were monitored, a correlation between AQPs and noise
levels was performed, and a quantitative analysis of AQPs sources using PMF model
was conducted.

2. Materials and Methods
2.1. Description of Study Area

Blantyre City is the urban centre of Blantyre District in Malawi, which is found in the
southern region of this nation at −15◦29′59.99′′ S, 35◦00′0′′ E and has an area of 240 km2.
Blantyre District has an overall population of about 1 million people [19].

The study was conducted at 15 sites selected from industrial zones, specifically Makata,
Limbe, Maselema, Chirimba, and Maone, as shown in Figure 1, with corresponding Ge-
ographical Positioning System (GPS) coordinates provided in Appendix A.1. Monitor-
ing of air quality concentrations and noise levels was performed in the rainy season
(January–February 2023) and dry season (August–September 2023). All industrial zones
are positioned alongside the main rivers or streams in Blantyre city, as they rely on water
in their line production process, leading to the generation of effluents that are subsequently
discharged into the water bodies [20]. Industries in Blantyre fall under the following cate-
gories: textile and leather products, paints, pharmaceuticals and other chemicals, metal and
wood processing, petroleum and plastics, power distribution, dairy products and abattoir,
beer breweries, tobacco processing, and food processing. The types of industries where
monitoring happened in this work included plastic, food, metal processing, soap, cement,
beverage, and furniture manufacturing industries.
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2.2. Air Monitoring

Air quality monitoring was performed using an active mobile multi-gas monitor
(Drager X-am 7000, manufactured by Dräger, Cheshire, UK) [21]. The monitor is equipped
with electrochemical sensors that measured continuous concentrations of CO. A Dylos
DC1100 PRO Laser Particle Counter (2018 model, manufactured by Dylos Coporation,
Riverside, CA, USA) was used to monitor Particulate Matter (TSP, PM2.5, and PM10). Before
sampling, the multi gas monitor was calibrated in air which was free of the gases measured
according to the instrument operational manual provided by the manufacturer [21]. In
all the locations, the equipment was placed at a minimum of 1.5 m from the ground to
simulate the average breathing height. Air quality assessments at each site were in a set of
3, with each set consisting of 10 days, making a total number of sampled days being 30 per
monitored site. The distance from the anticipated emission source was at least 30 m from
the nearest building [22]. During data collection, 10 min consecutive average measurements
were recorded in an Excel sheet during morning (09:00–10:30), midday (11:30–13:00), and
afternoon (15:30–17:00), providing 10 sets of values per session per day which assisted in
minimizing the volume of captured data. This was aimed at ensuring a wider range of
data, which could lead to a better reliability of results [22]. These 3 distinct sampling sets
were performed in the period of the rainy season in January–February 2023 and the dry
season in August–September 2023.

2.3. Noise Monitoring

An Integrated Sound Level Meter (ISLM) was used for the assessment of noise levels.
The selection of ISLM was made due to its appropriate statistic averaging technique,
enabling the derivation of a succinct measure of the equivalent continuous sound pressure
level (Leq). Prior to conducting measurements at each chosen site, the meter underwent
calibration using the Castle Acoustic Calibrator, with the model specified as GA 601. The
calibration was carried out according to the instrument operational manual provided by
the manufacturer [23]. Noise measurement was conducted manually, with the instrument
held at a height of 1.5 m above the ground and positioned 30 m away from the potential
noise sources. The microphone was directed towards the primary noise source’s front,
following the guidelines outlined by Castle Group Ltd. [23], to minimize the sound field.
LAi (A-weighted instantaneous sound pressure level), which is an “A fast” scale, was used
to record 30 measurements through 10 min consecutive average measurements during
morning (09:00–10:30), midday (11:30–13:00), and afternoon (15:30–17:00), providing 10 sets
of values per session per day [24]. These time intervals were selected to ensure that samples
were collected during onset of production up to when the production was winding down.
Noise level monitoring at each site was in a set of 3, with each set consisting of 10 days,
making the total number of sampled days being 30 per monitored site. These 3 distinct
sampling sets were performed in the period of the rainy season in January–February 2023
and the dry season in August–September 2023.

2.4. Data Analysis

The open-source software R Studio version 4.3.1 was used to analyse the data [25]. A
t-test was used to observe the variations among the sample means and between the sample
types, respectively, at 95% confidence interval. The Microsoft Excel 2007 Windows program
was used to analyse data such as the geo-accumulation index. A significance level (α) of
0.05 was used for all statistical tests in this study. A Pearson (r) correlation examined the
relationship between the levels of parameters in air with those of noise [26].

To quantitively identify the source of the AQPs in the study area, the Positive Matrix
Factorization (PMF) model was used to analyse the data by using EPA PMF 5.0 (USA)
software [27].

The HYSPLIT model by Air Resources Lab (National Oceanic and Atmospheric Admin-
istration, Silver Spring, MD, USA) was used to collect and determine the movement pattern
of air pollutants through backward and forward trajectories as also used by Lv et al. [8].
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PMF was calculated using Equation (1) below, where Xij is composed of the j-th
compound concentration measured in the i-th sample, source contribution matrix gik
represents the contribution of the k-th source to the i-th sample, source profile matrix fkj is
made up of the j-th compound from the k-th source, and eij is the residual matrix.

Xij = ∑p
k=1 gij fkj + eij (1)

The objective of PMF analysis is to minimize Q as per Equation (2) below.

Q = ∑n
i=1 ∑m

j=1

[
xij − ∑

p
k=1 gik fkj

uij

]2

subject to gik ≥ 0 and fkj ≥ 0 (2)

PMF 5.0 requires the input of concentration of samples species as well as uncertainty.
Equation (3) below is used to calculate uncertainty of the concentrations.√

(error f raction × c)2 + MDL2

For
c ≤ MDL, uij = 5/6 × MDL For c > MDL, uij (3)

The factor numbers were configured to 2, 3, 4, 5, and 6, with 40 runs as a total to ensure
stability of the model [28].

3. Results
3.1. Air Quality Parameters and Noise Levels

The values for air quality concentrations and noise levels in Table 1 are presented in
comparison to the limits set by the World Health Organization and Malawi Standards for
specific parameters [22,24,29,30].

Table 1. The mean values of air quality parameters (µg/m3) and noise levels (dB) during the dry and
wet seasons.

Sampling
Point

CO
(mg/m3)

TSP
(µg/m3)

PM10
(µg/m3)

PM2.5
(µg/m3) Noise (dB)

Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season

Maone MH 0 ± 0.00 0 ± 0.00 30.5 ± 13.37 112 ± 39.02 13.8 ± 2.70 21.3 ± 8.41 10.3 ± 2.61 16 ± 6.21 38.5 ± 5.90 49.1 ± 10.23
Maone NM 0.667 ± 0.58 1.7 ± 1.13 45.4 ± 19.97 95.9 ± 29.47 25.4 ± 11.25 27 ± 12.98 19 ± 8.35 20.3 ± 9.80 42.4 ± 8.26 47.5 ± 3.88
Maone OF 0 ± 0.00 0 ± 0.00 15 ± 6.10 75.7 ± 9.00 5.33 ± 1.89 13.6 ± 3.65 3.67 ± 1.36 10.3 ± 2.65 34.8 ± 1.30 45.6 ± 1.22
Limbe AZ 0 ± 0.00 0 ± 0.00 66.3 ± 52.10 105 ± 44.09 17 ± 15.97 24.7 ± 7.15 12.8 ± 11.87 18.7 ± 5.16 48.9 ± 2.24 47.8 ± 2.58
Limbe MP 0.333 ± 0.58 1.67 ± 0.58 214 ± 76.46 147 ± 37.82 36.2 ± 17.72 47.8 ± 16.68 27.1 ± 13.32 35.8 ± 12.58 51.9 ± 2.82 50.8 ± 5.99
Limbe PC 0 ± 0.00 0 ± 0.00 23.9 ± 14.11 115 ± 11.57 6.93 ± 3.52 26.6 ± 6.65 5.17 ± 2.63 20 ± 4.95 43.4 ± 6.02 48.9 ± 6.26
Maselema BP 2 ± 3.46 4.33 ± 2.31 174 ± 90.06 184 ± 114.00 18.3 ± 8.24 25.7 ± 7.91 13.8 ± 6.17 19.3 ± 5.91 58.4 ± 1.69 58.1 ± 2.69
Maselema PP 2.67 ± 3.06 3.67 ± 2.08 46.7 ± 25.67 184 ± 5.86 13.5 ± 7.82 25.7 ± 4.49 10.1 ± 5.84 19.3 ± 3.30 41.1 ± 1.10 47.4 ± 1.14
Maselema RP 1.33 ± 1.53 3 ± 2.00 44.9 ± 20.32 105 ± 27.59 4.3 ± 0.17 45.7 ± 13.36 12.5 ± 15.93 34.3 ± 10.00 39.4 ± 1.83 47.4 ± 3.32
Chirimba AP 0 ± 0.00 0.667 ± 1.15 319 ± 319.35 52.3 ± 5.61 23.1 ± 17.63 13.6 ± 5.98 17.1 ± 13.34 10.1 ± 4.61 53.5 ± 2.47 52.4 ± 5.09
Chirimba BC 0.33 ± 0.58 1.33 ± 0.58 18.3 ± 5.44 76.3 ± 37.86 5.07 ± 1.01 13.3 ± 6.91 3.6 ± 0.85 9.83 ± 5.27 39 ± 3.60 46.2 ± 0.67
Chirimba VZ 0 ± 0.00 0 ± 0.00 26.4 ± 6.92 68.7 ± 15.72 7.03 ± 2.03 15.7 ± 1.81 5.13 ± 1.46 11.8 ± 1.32 38.7 ± 3.95 46.7 ± 1.93
Makata AP 0 ± 0.00 1.33 ± 0.58 22 ± 6.75 51 ± 20.44 9.23 ± 2.35 21.6 ± 19.92 6.87 ± 1.76 16.4 ± 14.85 40.3 ± 2.27 51.6 ± 3.23
Makata CM 0 ± 0.00 0.667 ± 1.15 41 ± 3.79 50.4 ± 29.98 9.5 ± 2.51 17.1 ± 15.70 7.1 ± 1.91 12.7 ± 11.84 52.5 ± 4.82 47 ± 1.96
Makata LF 0 ± 0.00 1.33 ± 0.58 188 ± 272.32 75.6 ± 22.86 25.1 ± 27.10 25.9 ± 11.34 18.6 ± 20.50 19.4 ± 8.66 38.9 ± 5.53 42.5 ± 0.66
Malawi
Standard 10 mg/m3 230 µg/m3 150 µg/m3 25 µg/m3 85 dB
WHO
Standard 10 mg/m3 N/A 45 µg/m3 15 µg/m3 110 dB

Values are in the form of mean ± standard deviation.

3.1.1. Carbon Monoxide (CO) Concertation Levels

In the wet season, the range of CO concentration in the air was from 0 to 2.67 mg/m3,
while in the dry season it was from 0 to 4.33 mg/m3 (Table 2). A comparison of the results
showed that the dry season CO concertation levels were significantly higher (p < 0.05) than
the wet season values. This might be attributed to washout of the pollutants by rainfall in
the wet season. The air sampled from Maselema BP showed the highest concentrations of
CO, measuring 2 mg/m3 during the wet season and 4.33 mg/m3 during the dry season.
The concentration of CO was generally below the limit of Malawi [22] and WHO standards



Air 2024, 2 127

of 10 mg/m3 [29], as shown Figure 2. These elevated levels, potentially originating from
vehicle emissions due to the nearby highway, align with the air mass trajectory at 500 m
(shown in Figure 3). The figure indicates a predominant flow of air mass from the western
side, contributing to the peak CO concertation levels at the site.
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Figure 3. NOAA HYSPLIT MODEL backward trajectory generated during the wet (a) and dry
(b) season for Maselema BP located in the Maselema industrial area.

The trajectory in Figure 3 shows that the air was moving from the study area going
towards the southeast. The concentrations recorded corresponded well with a study
conducted by Mapoma et al. [15] on spatial variation of volatile organic compounds
and carbon monoxide in Blantyre City, Malawi, which showed that the CO levels were
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found to be significantly higher (p < 0.05) than those found in a similar study of 2004. In
research conducted by Ukpebor et al. [31] in Benin City, Nigeria, examining the effects
of enhanced traffic control measures on air quality and noise levels in both commercial
and unrestricted traffic areas, comparable findings were observed. The study revealed
that CO levels ranged from 1.30 to 3.20 ppm after the implementation of traffic control
measures. In the dry and wet season, 100% of CO values were within the Malawian and
WHO Standards, respectively.

3.1.2. Total Suspended Particle Concertation Levels

In the wet season, maximum TSP concentration in the air was 319 µg/m3, while in the
dry season it was 184 µg/m3 (Table 2). A comparison of rainy season and dry season air
TSP values indicated no significant difference (p > 0.05). During the wet season, the highest
TSP concentration was observed from air sampled at Chirimba AP, and was 319 µg/m3.
During the dry season, the highest TSP concentration was observed from air sampled at
Maselema BP and Maselema PP, both with values of 184 µg/m3. It was also observed that
in some cases, the concentrations of TSP were higher in the wet season than during dry
seasons. For example, during dry season monitoring, some sites such as Chirimba AP and
Makata LF had lower concentrations of TSP in the higher season as compared to the dry
season due to the fact that production was not at full capacity in these industries. This
confirms that industries are contributing to pollution because once there is no production,
the air quality seem to be better than when production is in full swing. The concentration
of TSP was generally below the limit of Malawi Standard [22] of 230 µg/m3, as per Figure 4.
These concentrations may have come from operations-related emissions, as more air mass
at 500 m trajectory was moving from the sampling point to other surroundings within
Malawi during the wet season, while in the dry season the levels could be emanating from
surrounding areas, as per the trajectories shown in Figure 5. The concentrations recorded
were much higher than 75 µg/m3, as recorded by Sarpong et al. [32], who studied PM2.5,
PM10, and TSP exposure in the Tema Metropolitan area of Ghana, as well as by Sabuti and
Mohamed [33], who found the level of TSP to be within the range of 13 to 74 µg/m3. In the
wet season, 93% of TSP values were within the Malawi Standard, while 7% were above it,
and in the dry season, 100% of the TSP values were within the allowable Malawi Standard.
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3.1.3. PM10 Concertation Levels

In the wet season, the range of PM10 concentration in the air was from 4.3 to 36.2 µg/m3,
while in the dry season it was from 13.3 to 47.8 µg/m3 (Table 2). The dry season PM10
values were significantly higher (p < 0.05) than the wet season values. The concentration
of PM10 was generally below the limit of the Malawian [22] and WHO [29] standards
of 150 and 45 µg/m3, as per Figure 6. The highest PM10 concentrations were observed
from air sampled from Limbe MP, and were 36.2 µg/m3 as well as 47.8 µg/m3 during the
wet season and dry seasons, respectively (which may have come from operations-related
emissions, as more air mass at 500 m trajectory was moving from the sampling point to
other surroundings within Malawi in the wet season, while in the dry season, the levels
could be emanating from surrounding industries in Malawi, as per trajectories in Figure 7).
The concentrations recorded were lower than 56.24 µg/m3, recorded by Sarpong et al. [32],
who studied PM2.5, PM10, and total suspended particle exposure in the Tema Metropolitan
Area of Ghana, but were higher than the 20.7 µg/m3 concentration recorded in 2017 found
by Rovira et al. [34] in a study conducted in Catalonia, Spain, on air quality, health impacts,
and burden of disease due to air pollution (PM10, PM2.5, NO2, and O3). In the wet season,
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100% of TSP values were within the Malawian and WHO Standards, respectively. In the
dry season, 100% of the values were within Malawi Standard and 87% were within the
WHO standard, while the remainder (13%) were above this international standard.
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3.1.4. Particulate Matter 2.5 Concentration Levels

In the wet season, the range of PM2.5 concentration in the air was from 3.6 to 27.1 µg/m3,
while in the dry season it was from 9.83 to 35.8 µg/m3 (Table 2). The dry season PM2.5
values were significantly higher (p < 0.05) than the dry season values. The concentration
of PM2.5 was generally below the limit of the Malawian [22] and WHO [29] standards
of 25 and 15 µg/m3, as per Figure 8. The highest PM2.5 concentrations were observed
from air sampled from Limbe MP, and were 27.1 µg/m3 as well as 35.8 µg/m3 during the
wet season and dry seasons, respectively (which may have come from operations-related
emissions, as more air mass at 500 m trajectory was moving from the sampling point to other
surroundings in the wet season, while in the dry season the levels could be emanating from
surrounding industries, as per the trajectories in Figure 9). The concentrations recorded
were lower than 38.09 µg/m3, recorded by Sarpong et al. [32], who studied PM2.5, PM10,
and total suspended particle exposure in the Tema Metropolitan Area of Ghana, but were
higher than the 11.8 µg/m3 concentration recorded in 2017 found by Rovira et al. [34], in a
study conducted in Catalonia, Spain, on air quality, health impacts, and burden of disease
due to air pollution (PM10, PM2.5, NO2, and O3). In the wet season, 93% of PM2.5 values
were within the Malawian standard while 7% were above this standard, and 73% of the
values were within the WHO Standard while 27% of these were above it. In the dry season,
93% of the values were within Malawi Standard while 7% were above this standard, and
40% were within the WHO standard while the remainder of 60% of were above it.
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3.1.5. Noise Levels

In the wet season, the range of Noise level was from 34.8 to 58.4 dB, while in the dry
season it was from 42.5 to 58.1 dB (Table 2). Comparison of wet season and dry season
Noise level values indicated a significant difference (p = 0.0011). The highest Noise level
readings were observed from Maselema BP, and were 58.4 dB as well as 58.1 dB during the
wet season and dry seasons, respectively (which may have come from vehicle movement
and honking, as the highway is in proximity). Higher Noise level readings were recorded
from Chirimba AP and Limbe MP. Chirimba AP noise level readings were 53.5 dB as well
as 52.4 dB during the wet season and dry seasons, respectively. Limbe MP noise level
readings were 51.9 dB as well as 50.8 dB during the wet season and dry seasons, respectively.
The concentrations recorded by Manojkumar et al. [5], who conducted the assessment,
prediction, and mapping of noise levels in Vellore City, India, were much higher and were
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within the range of 67–87 dB. A study on the impacts of improved traffic control measures
on air quality and noise level in Benin City, Nigeria, by Ukpebor et al. [31] found different
results of noise levels which were much higher, in the range of 70 to 79 dB, after traffic
control measures were put in place. The Noise level was generally below the limit of the
Malawian [24] and WHO [30] standards of 85 and 110 dB, respectively, as per Figure 10. In
the wet and dry seasons, 100% of the Noise level values were within the Malawian and
WHO Standards.
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3.2. Source Apportionment (Examination of Sources) for Air Quality Parameters from the
Industrial Areas

After using the PMF model with a factor count of six, the difference between Qtrue
and Qrobust were minimum and stable. The scaled residuals for air quality parameters
exhibited values ranging from 0.00746 to 0.00773 during the dry season, while registering
at 0.00002 during the wet season. This suggests that the parameters follow a normal
distribution, as the values fall within the range of +3 to −3 [27]. Furthermore, this means
that the model is reliable and the Factor Analysis in the Section above is accurate. In the
dry season, the signal-to-noise (S/N) ratios for all air quality parameters varied between
0.609 and 3.693, while during the wet season, the range was 0.091 to 2.314 (Table 2). This
variability indicates that CO, TSP, PM10, and PM2.5 exhibited signals ranging from “poor” to
“strong,” with TSP registering the highest concentration. This underscores the importance
for industries engaged in metal processing and beverage manufacturing to enhance their
emission management practices throughout both the dry and wet seasons.

Table 2. The signal-to-noise ratio of air quality parameters during the dry and wet seasons.

S/N Values

Species Dry Season Wet Season
CO 0.609 0.091
TSP 3.693 1.843
PM10 2.426 2.314
PM2.5 2.466 1.528

As per Figures 11–14 below, during dry season in Factor 1, TSP, and CO provided
25.1% and 0.6% respective contributions. The contribution of the various parameters to
each factor was shown in the factor fingerprints (Figures 12 and 14). During the wet season
in Factor 1, PM2.5, PM10, and TSP provided 14.8%, 14.1%, and 12.7% of the respective
contributions. As demand for cement is high for development purposes, TSP levels are
usually high around cement production plants [35]. Furthermore, the outcome of a study
conducted by Olatunde et al. [36] present important data on pollution of soils by heavy
metals around Dangote cement factory, Ibese, which showed the need for an overhaul of
the waste management initiatives of the factory and an emphasis on complying with the
regulatory from relevant agencies. Another study by Egbe et al. [37] highlighted that that
cement production processes are a source of pollutants through deposition. This makes
Factor 1 linked to cement manufacturing industries.

During dry season in Factor 2, CO, PM2.5, and PM10 provided 55.1%, 13.6%, and 13.5%
respective contributions. During the wet season in Factor 2, CO, PM2.5, and TSP provided
100%, 3.5%, and 2.1% respective contributions. As shown in a previous study by Mapoma
et al. [15], the increased levels of CO may be due to emissions coming from the moving
vehicles along the roads. Another study conducted by Zhu et al. [38] stated that industrial,
facilities such as factories, emit a variety of pollutants such as CO. Studies conducted by
many authors showed that one of the well-known types of air pollutants found in urban
areas is CO, which is mostly sourced from fossil fuel use such as coal and gasoline [39–42],
which the sampling sites utilize during production processes. As such, whilst considering
the parameter concentration distribution as well as aspects in Section 3.1.1 to 3.1.4, Factor 2
represents the food production industries.

During the dry season in Factor 3, PM2.5 and PM10 provided 11.1% and 10.9% of the
respective contributions. During the wet season in Factor 3, PM2.5 and TSP provided 15.2%
and 4.5% of the respective contributions. A study conducted by Yuan et al. [43] showed
that the putty and sanding processes in furniture making increases levels of particulate
matter less than 2 µm. Another study by Zheng and Xu [44] showcased the role which
furniture manufacturing companies take in PM 2.5 emission and how the impact needs to
be mitigated. A study by Ro’in et al. [45] also illustrated that wood sanding production
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in the furniture production process exhibits the highest level of dust which means that
Factor 3 includes furniture manufacturing industries.
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During dry season in Factor 4, PM10, PM2.5, TSP and CO provided 57.8%, 57.6%,
46.2%, and 2.0% respective contributions. During the wet season in Factor 4, PM10, and
TSP provided 16.7% and 4.6% of the respective contributions. A study by Yusuf et al. [46]
highlighted that the levels of PM10 increased significantly in a plastic-processing indus-
try which corresponds with the percentage of carbon monoxide seen here. Aspects in
Section 3.1.1 to Section 3.1.4 should also be put into consideration. Another study by
Alves et al. [47] showed that the plastics industry was a source of PM 10 in road dust. A
study by Chirino et al. [48] also states that plastic manufacturing industries are one of the
main sources of PM10 emission into the environment. Therefore, Factor 4 represents the
plastic manufacturing industries.

During dry season in Factor 5, TSP and CO provided 26.7% and 24.7% respective
contributions. During wet season in Factor 5, PM10, PM2.5, and TSP provided 41.9%,
41.9%, and 1.5% contributions. Ashrafi et al. [49] stated that metal production is one of the
industrial processes causing the higher value of TSP. Another study conducted by Sonibare
and Akeredolu [50] stated that a common source of TSP is the metal processing industry as
the grinding and heating processes among others are employed. A study by Guol et al. [51]
iterated that the steel and iron producing industries were common sources of TSP. This
means that Factor 5 represents metal processing and manufacturing industries.

During dry season in Factor 6, CO, PM2.5, PM10, and TSP provided 18.2%, 17.7%,
17.6%, and 2% of the respective contributions. During the wet season in Factor 6, TSP, PM10,
and PM2.5 provided 74.4%, 27%, and 24.6% of the respective contributions. One of the
main sources of TSP and CO is the food and beverage industry through the heating, fuel
utilization, as well as machinery processing aspects [52]. Furthermore, a study conducted
by Jadoon and Nawazish [53], stated that some of the common sources of CO are industrial
boilers and incomplete combustion processes from food and beverage manufacturing
industries. As such, it reflects the percentages seen here, and may mean that Factor 6
represents the beverage manufacturing industries.
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As such, this means that during both wet seasons the plastic manufacturing industries
contribute highly towards TSP in the air around the industrial sites which means that
mitigation measures need to be implemented accordingly. This should be extended to
food manufacturing industries which are the highest contributing sources of CO in the
air during the dry and wet season. The other industries, namely metal processing and
beverage manufacturing are also sources of PM2.5, PM10, and CO and need to be targeted
for needed remedial actions.

3.3. Correlation between Air Quality Parameters and Noise Levels

Correlations were conducted between air quality parameters and noise levels for
both seasons. This was performed to determine whether air quality parameters can be
used as an indicator for noise level pollution. The following were the correlations as
per Table 3 below, which shows that air quality has an influence on noise levels. CO
correlation with noise is shown to be lower during the wet season as compared to the
dry season. It is also observed that air quality has an influence on noise levels with a sea-
sonality effect, as we can see the correlations between (TSP, PM10, and PM2.5) and noise
level changes from weak during dry season to moderately strong in the wet season. The
positive correlation between air quality parameters and noise levels suggests potential
shared sources or synergistic effects, and as such, further investigations are needed to
understand the mechanisms driving these associations. This kind of correlation is also
seen in various studies, such as the one conducted by Lacerda et al. [54], who compared
the hearing thresholds of two groups of workers—one exposed to both noise (90 dB)
and CO and another exposed solely to noise (90 dB). The findings indicated a significant
increase in hearing thresholds (at high frequencies of 3, 4, and 6 kHz) in the “noise + CO
group” when compared to the “noise group”.



Air 2024, 2 138

Table 3. Correlations between air quality parameters and noise level.

Variable Noise Level

Dry Season Wet Season
CO 0.205 (0.177) 0.062 (0.687)
TSP 0.241 (0.110) 0.401 (0.006)

PM10 0.011 (0.941) 0.358 (0.016)
PM2.5 0.011 (0.942) 0.306 (0.041)

Brackets have the significance levels.

4. Conclusions

This study determined the concentration levels of air quality (CO, TSP, PM2.5,
and PM10) and noise from industrial sites (Makata, Limbe, Maselema, Chirimba, and
Maone). During the wet season, CO, TSP, PM10, and PM2.5 averaged 0.49 ± 0.65 mg/m3,
85.03 ± 62.18 µg/m3, 14.65 ± 8.13 µg/m3, and 11.52 ± 7.19 µg/m3, respectively, whereas
in the dry season, the average concentrations rose to 1.31 ± 0.81 mg/m3, 99.86 ± 30.06 µg/m3,
24.35 ± 9.53 µg/m3, and 18.28 ± 7.14 µg/m3. In the wet season, the highest concen-
trations of CO, TSP, PM10, and PM2.5 were 2.67 ± 3.06 mg/m3, 319 ± 319.35 µg/m3,
36.2 ± 17.72 µg/m3, and 27.1 ± 13.32 µg/m3, respectively. Dry season highest con-
centrations were 4.33 ± 2.31 mg/m3, 184 ± 114.00 µg/m3, 47.8 ± 16.68 µg/m3, and
35.8 ± 12.58 µg/m3. Noise levels remained below MS and WHO standards. The study
also determination of movement pattern of the air pollutants using trajectory models
from the National Oceanic and Atmospheric Administration (NOAA). The study found
that the concentrations of air quality parameters generally remained within the per-
missible limits set by Malawi and the World Health Organization (WHO), except for
a limited number of samples. This deviation was attributed to the movement of air
masses, as indicated by the generated trajectories. Noise levels were found to be within
the maximum allowable standard of Malawi and the WHO. Correlations between air
quality parameters and noise levels were made which showed a seasonality effect, as
such air quality has an influence on noise pollution.

The analysis results of the Positive Matrix Factorization (PMF) model indicated that
there were six main factors affecting the accumulation of air quality parameters, namely:
(1) plastic manufacturing industries, (2) food manufacturing industries, (3) metal pro-
cessing and manufacturing industries, (4) cement manufacturing industries, (5) beverage
manufacturing industries, and (6) furniture manufacturing industries.

Recommendations

Future PMF assessments need to be performed to include other parameters such as
Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Volatile Organic Carbons (VOCs), which
are also important since they may be of concern to the health of people, but were not
included due to time and financial limitations. Further studies should be conducted to
better understand the factors affecting the PMF flow dynamics in the industrial zones
and their influence. These should include climatological factors (wind, precipitation, and
temperature). There is a need to collect samples during the nighttime, which was not
performed due to security concerns, since the sampling was not conducted within the
industrial compounds.
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Appendix A

Appendix A.1. Table of Coordinates for Sampling Points

Sampling Points Geographical Coordinate System

Maone Industrial Area (Latitude, Longitude) (UTM)
Maone OF −15.79248, 35.07676 722,465.48, 8,252,921.50
Maone MH −15.78429, 35.07958 722,776.63, 8,253,824.17
Maone NM −15.78332, 35.07571 722,362.96, 8,253,936.39

Makata Industrial Area
Makata LF −15.79132, 35.02744 717,182.33, 8,253,101.41
Makata AP −15.79029, 35.02339 716,748.68, 8,253,219.58
Makata CM −15.78641, 35.03355 717,841.57, 8,253,638.50

Chirimba Industrial Area
Chirimba AP −15.73752, 35.03059 717,577.34, 8,259,052.29
Chirimba BC −15.74260, 35.03074 717,587.15, 8,258,489.82
Chirimba VZ −15.74120, 35.02713 717,201.70; 8,258,647.93

Limbe Industrial Area
Limbe AZ −15.80686, 35.06551 721,243.21, 8,251,341.22
Limbe MP −15.80755, 35.06737 721,442.83, 8,251,262.55
Limbe PC −15.80511, 35.06359 721,442.83, 8,251,536.57

Maselema Industrial Area
Maselema PP −15.80506, 35.05091 719,681.90, 8,251,556.40
Maselema RP −15.80405, 35.05219 719,820.04, 8,251,666.62
Maselema BP −15.80644, 35.05758 720,395.01, 8,251,396.02

Appendix A.2. Statistical Analysis (Seasonal Variations Using Paired t-Test)

Mean
Difference

Confidence Interval t df Stderr
p-Value

(α = 0.05)

Variable lower upper

CO −0.824 −1.491 −0.158 −2.494 44 0.3306125 0.01647
TSP −9.507 −49.941 30.928 −0.474 44 20.06316 0.638

PM10 −10.418 −15.950 −4.885 −3.795 44 2.745143 0.0004478
PM2.5 −7.262 −11.612 −2.912 −3.3644 44 2.158538 0.001599
Noise −4.493 −7.075 −1.912 −3.508 44 1.280761 0.001053
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