Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1028 KiB  
Review
Role of Immersive Virtual Reality in Motor Behaviour Decision-Making in Chronic Pain Patients
by Javier Guerra-Armas, Mar Flores-Cortes, Consolacion Pineda-Galan, Alejandro Luque-Suarez and Roy La Touche
Brain Sci. 2023, 13(4), 617; https://doi.org/10.3390/brainsci13040617 - 5 Apr 2023
Cited by 4 | Viewed by 3293
Abstract
Primary chronic pain is a major contributor to disability worldwide, with an estimated prevalence of 20–33% of the world’s population. The high socio-economic impact of musculoskeletal pain justifies seeking an appropriate therapeutic strategy. Immersive virtual reality (VR) has been proposed as a first-line [...] Read more.
Primary chronic pain is a major contributor to disability worldwide, with an estimated prevalence of 20–33% of the world’s population. The high socio-economic impact of musculoskeletal pain justifies seeking an appropriate therapeutic strategy. Immersive virtual reality (VR) has been proposed as a first-line intervention for chronic musculoskeletal pain. However, the growing literature has not been accompanied by substantial progress in understanding how VR exerts its impact on the pain experience and what neurophysiological mechanisms might be involved in the clinical effectiveness of virtual reality interventions in chronic pain patients. The aim of this review is: (i) to establish the state of the art on the effects of VR on patients with chronic pain; (ii) to identify neuroplastic changes associated with chronic pain that may be targeted by VR intervention; and (iii) to propose a hypothesis on how immersive virtual reality could modify motor behavioral decision-making through an interactive experience in patients with chronic pain. Full article
(This article belongs to the Special Issue Advances in the Study of Mechanisms Underlying Touch and Pain)
Show Figures

Figure 1

11 pages, 691 KiB  
Article
Olfactory Impairment Is the Main Predictor of Higher Scores at REM Sleep Behavior Disorder (RBD) Screening Questionnaire in Parkinson’s Disease Patients
by Paolo Solla, Qian Wang, Claudia Frau, Valentina Floris, Francesco Loy, Leonardo Antonio Sechi and Carla Masala
Brain Sci. 2023, 13(4), 599; https://doi.org/10.3390/brainsci13040599 - 31 Mar 2023
Cited by 4 | Viewed by 1642
Abstract
Introduction: Olfactory impairment and REM sleep behavior disorder (RBD) are common non-motor symptoms in Parkinson’s disease (PD) patients, often preceding the onset of the specific motor symptoms and, thus, crucial for strategies directed to anticipate PD diagnosis. In this context, the specific interaction [...] Read more.
Introduction: Olfactory impairment and REM sleep behavior disorder (RBD) are common non-motor symptoms in Parkinson’s disease (PD) patients, often preceding the onset of the specific motor symptoms and, thus, crucial for strategies directed to anticipate PD diagnosis. In this context, the specific interaction between olfactory impairment and RBD has not been clearly defined. Objective: The aim of this study was to determine the possible role of olfactory impairment and other clinical characteristics as possible predictors of higher scores at RBD screening questionnaire (RBDSQ) in a large population of PD patients. Methods: In this study, 590 PD patients were included from the Parkinson’s Progression Markers Initiative. Demographic and clinical features were registered. All participants completed motor and non-motor evaluations at the baseline visit. For motor assessments, the disease severity was evaluated by the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) pars III. Regarding non-motor symptoms assessment, Montreal Cognitive Assessments (MoCA), University of Pennsylvania Smell Identification Test (UPSIT) and RBD screening questionnaire (RBDSQ) were registered. Results: Among 590 PD patients included in this study, 111 patients with possible RBD were found (18.8%). RBD was less frequent in female PD patients (p  ≤  0.011). Among patients with or without possible RBD diagnosis, statistically significant differences in MDS-UPDRS III (23.3 ± 11.4 vs. 19.7 ± 9.1, respectively, p  ≤  0.002) and in UPSIT score (19.7 ± 8.3 vs. 22.6 ± 8.0, respectively, p  ≤  0.001) were found. Moreover, significant correlations between RBDSQ versus UPDRS III score and versus UPSIT score were observed. Multivariate linear regression analysis showed that UPSIT was the most significant predictor of higher scores at RBDSQ, while the other significant predictors were UPDRS III and age. Conclusions: The severity of olfactory impairment appears tightly correlated to RBD symptoms, highlighting the role of these biomarkers for PD patients. Additionally, according to this large study, our data confirmed that RBD in PD patients exhibits peculiar gender differences. Full article
(This article belongs to the Special Issue Neurobiology Research on Neurodegenerative Disorders)
Show Figures

Figure 1

14 pages, 2063 KiB  
Article
The Comorbidity of Depression and Anxiety Symptoms in Tinnitus Sufferers: A Network Analysis
by Xuemin Chen, Lei Ren, Xinmiao Xue, Ning Yu, Peng Liu, Weidong Shen, Hanwen Zhou, Ben Wang, Jingcheng Zhou, Shiming Yang and Qingqing Jiang
Brain Sci. 2023, 13(4), 583; https://doi.org/10.3390/brainsci13040583 - 30 Mar 2023
Cited by 6 | Viewed by 2022
Abstract
Objective: Sufferers of tinnitus, especially of the prolonged type, frequently suffer from comorbid depression and anxiety. From the perspective of the network model, this comorbidity is thought to be an interacting system of these two symptoms. In our study, we conducted a network [...] Read more.
Objective: Sufferers of tinnitus, especially of the prolonged type, frequently suffer from comorbid depression and anxiety. From the perspective of the network model, this comorbidity is thought to be an interacting system of these two symptoms. In our study, we conducted a network analysis of depression and anxiety comorbidity in tinnitus sufferers, aiming to identify the central and bridge symptoms and make informed suggestions for clinical interventions and psychotherapy. Method: A total of 566 tinnitus sufferers were enrolled in our study. The Patient Health Questionnaire-9 (PHQ-9) and the Generalized Anxiety Disorder 7-Item Questionnaire (GAD-7) were selected to evaluate depression and anxiety symptoms, respectively, followed by network analysis to construct the interacting networks. Results: The findings identified six edges of strongest regularized partial correlations in this network. Of these, three were depression symptoms and three were anxiety symptoms. The anxiety symptoms “Unable to control worry” and “Relaxation difficulty” and the depression symptom “Feeling depressed or hopeless” had the highest expected influence centrality. The analysis results also revealed three bridge symptoms: “Afraid something awful might happen”, “Feeling of worthlessness”, and “Trouble concentrating”. As for “Suicidal ideation”, the direct relations between this symptom and “Afraid something awful might happen” and “Feeling depressed or hopeless” were the strongest. Conclusions: The central and bridge symptoms of the interacting network of depression and anxiety symptoms in tinnitus sufferers can be considered a significant transdiagnostic intervention target for the management of this comorbidity. In particular, clinical prevention and psychotherapy should be implemented, targeting the symptoms that have the strongest associations with suicidal ideation. Full article
(This article belongs to the Section Psychiatric Diseases)
Show Figures

Figure 1

13 pages, 1004 KiB  
Article
Effectiveness of SGA-LAIs on Clinical, Cognitive, and Social Domains in Schizophrenia: Results from a Prospective Naturalistic Study
by Renato de Filippis, Filippo Antonio Staltari, Matteo Aloi, Elvira Anna Carbone, Marianna Rania, Laura Destefano, Luca Steardo Jr., Cristina Segura-Garcia and Pasquale De Fazio
Brain Sci. 2023, 13(4), 577; https://doi.org/10.3390/brainsci13040577 - 29 Mar 2023
Cited by 5 | Viewed by 1594
Abstract
We hypothesized that shifting from oral second-generation antipsychotics (SGA) to their long-acting injectable (LAI) counterpart would be beneficial for the psychopathological, cognitive, social, and general health domains in outpatients suffering from schizophrenia. We aimed to evaluate the prospective usefulness of SGA-LAI treatment by [...] Read more.
We hypothesized that shifting from oral second-generation antipsychotics (SGA) to their long-acting injectable (LAI) counterpart would be beneficial for the psychopathological, cognitive, social, and general health domains in outpatients suffering from schizophrenia. We aimed to evaluate the prospective usefulness of SGA-LAI treatment by carrying out a head-to-head comparison of two different medications (i.e., aripiprazole monohydrate (Ari-LAI) and paliperidone palmitate 1 and 3 month (PP1M, PP3M)) in a real-world setting, assessing the effectiveness and tolerability of Ari-LAI and PP1M/PP3M over a 15 month follow-up. A total of 69 consecutive individuals affected by schizophrenia were screened for eligibility. Finally, 46 outpatients (29 treated with Ari-LAI, 13 with PP1M, and four with PP3M) were evaluated through clinical, functional, and neuropsychological assessment administrated at baseline and after 3-, 12-, and 15-month follow-up periods. Moreover, periodic general medical evaluations were carried out. We estimated an overall improvement over time on the explored outcomes, without differences with respect to the type of LAI investigated, and with a global 16.4% dropout rate. Our findings suggest that switching from oral SGA to SGA-LAIs represents a valid and effective treatment strategy, with significant improvements on psychopathological, cognitive, social, and clinical variables for patients suffering from schizophrenia, regardless of the type of molecule chosen. Full article
(This article belongs to the Special Issue New Insights in Psychiatric Disorder Psychopharmacology)
Show Figures

Figure 1

14 pages, 1915 KiB  
Article
Effects on Corticospinal Tract Homology of Faremus Personalized Neuromodulation Relieving Fatigue in Multiple Sclerosis: A Proof-of-Concept Study
by Massimo Bertoli, Angela Tataranni, Susanna Porziani, Patrizio Pasqualetti, Eugenia Gianni, Joy Grifoni, Teresa L’Abbate, Karolina Armonaite, Livio Conti, Andrea Cancelli, Carlo Cottone, Franco Marinozzi, Fabiano Bini, Federico Cecconi and Franca Tecchio
Brain Sci. 2023, 13(4), 574; https://doi.org/10.3390/brainsci13040574 - 29 Mar 2023
Cited by 4 | Viewed by 1861
Abstract
Objectives: Fatigue in multiple sclerosis (MS) is a frequent and invalidating symptom, which can be relieved by non-invasive neuromodulation, which presents only negligible side effects. A 5-day transcranial direct-current stimulation, 15 min per day, anodically targeting the somatosensory representation of the whole body [...] Read more.
Objectives: Fatigue in multiple sclerosis (MS) is a frequent and invalidating symptom, which can be relieved by non-invasive neuromodulation, which presents only negligible side effects. A 5-day transcranial direct-current stimulation, 15 min per day, anodically targeting the somatosensory representation of the whole body against a larger occipital cathode was efficacious against MS fatigue (fatigue relief in multiple sclerosis, Faremus treatment). The present proof-of-concept study tested the working hypothesis that Faremus S1 neuromodulation modifies the homology of the dominant and non-dominant corticospinal (CST) circuit recruitment. Methods: CST homology was assessed via the Fréchet distance between the morphologies of motor potentials (MEPs) evoked by transcranial magnetic stimulation in the homologous left- and right-hand muscles of 10 fatigued MS patients before and after Faremus. Results: In the absence of any change in MEP features either as differences between the two body sides or as an effect of the treatment, Faremus changed in physiological direction the CST’s homology. Faremus effects on homology were more evident than recruitment changes within the dominant and non-dominant sides. Conclusions: The Faremus-related CST changes extend the relevance of the balance between hemispheric homologs to the homology between body sides. With this work, we contribute to the development of new network-sensitive measures that can provide new insights into the mechanisms of neuronal functional patterning underlying relevant symptoms. Full article
Show Figures

Figure 1

13 pages, 785 KiB  
Article
Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study
by Rosaria De Luca, Mirjam Bonanno, Angela Marra, Carmela Rifici, Patrizia Pollicino, Angelo Caminiti, Milva Veronica Castorina, Andrea Santamato, Angelo Quartarone and Rocco Salvatore Calabrò
Brain Sci. 2023, 13(4), 578; https://doi.org/10.3390/brainsci13040578 - 29 Mar 2023
Cited by 5 | Viewed by 2712
Abstract
Executive dysfunction is among the most common and disabling facets of cognitive impairment following traumatic brain injury (TBI), and may include deficits in reasoning, planning, mental flexibility, some aspects of attention and orientation, awareness and behavior. Rehabilitation programs based on cognitive-behavioral approaches to [...] Read more.
Executive dysfunction is among the most common and disabling facets of cognitive impairment following traumatic brain injury (TBI), and may include deficits in reasoning, planning, mental flexibility, some aspects of attention and orientation, awareness and behavior. Rehabilitation programs based on cognitive-behavioral approaches to retrain planning and problem-solving and other executive deficits may improve such cognitive dysfunction. The purpose of this study is to investigate the effects of non-immersive virtual reality-based training to improve executive abilities and to reduce anxiety and depression symptoms in patients with TBI. Twenty patients with moderate to severe TBI were enrolled at our Neurorehabilitation Unit and divided to receive either the standard cognitive training or the virtual reality (VR) based cognitive training using the virtual reality rehabilitation system (VRRS-Evo). Each group received the same amount of rehabilitative training, including ROT (Reality Orientation Therapy) and Executive Training (ET), but using a different approach, i.e., a paper and pencil and an advanced approach. All patients were evaluated with a specific psychometric battery before (T0) and after the end (T1) of each program. Comparing pre- and post- treatment scores, in the VR-CT group, we found statistically significant differences in all administered outcome measures for cognitive and executive functioning, i.e., MoCA (p < 0.005), FAB (p < 0.005), TMT-A (p < 0.005), TMT-B (p < 0.005), TMT-BA (p < 0.001), and mood, i.e., HRS-D (p < 0.008). In the Conventional cognitive training (C-CT) group, we found a significant improvement only in MoCA (p < 0.03), FAB (p < 0.02) and in TMT-BA (p < 0.01). Coping strategies also improved, with better results in the VR-CT group. Our results suggest that VR rehabilitation, using the VRRS system, may be a valuable and motivational approach to improve visuo-executive abilities and coping strategies as well as mood in chronic TBI patients. Full article
Show Figures

Figure 1

22 pages, 912 KiB  
Review
Sleep Deprivation and Insomnia in Adolescence: Implications for Mental Health
by Sara Uccella, Ramona Cordani, Federico Salfi, Maurizio Gorgoni, Serena Scarpelli, Angelo Gemignani, Pierre Alexis Geoffroy, Luigi De Gennaro, Laura Palagini, Michele Ferrara and Lino Nobili
Brain Sci. 2023, 13(4), 569; https://doi.org/10.3390/brainsci13040569 - 28 Mar 2023
Cited by 11 | Viewed by 10925
Abstract
Sleep changes significantly throughout the human lifespan. Physiological modifications in sleep regulation, in common with many mammals (especially in the circadian rhythms), predispose adolescents to sleep loss until early adulthood. Adolescents are one-sixth of all human beings and are at high risk for [...] Read more.
Sleep changes significantly throughout the human lifespan. Physiological modifications in sleep regulation, in common with many mammals (especially in the circadian rhythms), predispose adolescents to sleep loss until early adulthood. Adolescents are one-sixth of all human beings and are at high risk for mental diseases (particularly mood disorders) and self-injury. This has been attributed to the incredible number of changes occurring in a limited time window that encompasses rapid biological and psychosocial modifications, which predispose teens to at-risk behaviors. Adolescents’ sleep patterns have been investigated as a biunivocal cause for potential damaging conditions, in which insufficient sleep may be both a cause and a consequence of mental health problems. The recent COVID-19 pandemic in particular has made a detrimental contribution to many adolescents’ mental health and sleep quality. In this review, we aim to summarize the knowledge in the field and to explore implications for adolescents’ (and future adults’) mental and physical health, as well as to outline potential strategies of prevention. Full article
(This article belongs to the Special Issue Effects of Sleep Deprivation on Cognition, Emotion, and Behavior)
Show Figures

Figure 1

13 pages, 831 KiB  
Article
Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment
by Ruoyao Cao, Yao Lu, Peng Qi, Yanyan Wang, Hailong Hu, Yun Jiang, Min Chen and Juan Chen
Brain Sci. 2023, 13(4), 539; https://doi.org/10.3390/brainsci13040539 - 24 Mar 2023
Cited by 4 | Viewed by 1531
Abstract
Purpose: The aim of this study was to verify the value of collateral circulation and B-type natriuretic peptide (BNP) in predicting clinical outcomes of patients with acute ischemic stroke (AIS) and their biomarker value for stroke subtypes before endovascular treatment (EVT). Patients and [...] Read more.
Purpose: The aim of this study was to verify the value of collateral circulation and B-type natriuretic peptide (BNP) in predicting clinical outcomes of patients with acute ischemic stroke (AIS) and their biomarker value for stroke subtypes before endovascular treatment (EVT). Patients and Methods: In this retrospective study, 182 patients who underwent EVT for unilateral anterior circulation large-vessel occlusion between March 2016 and January 2022 were analyzed. The modified collateral circulation scoring system on four-dimensional computed tomography angiography (4D CTA-CS) was used to assess collateral status, and stroke subtypes were determined according to the TOAST classification criteria. Patients were divided into good (mRS ≤ 2) and poor outcome (mRS > 2) groups based on their modified Rankin Scale (mRS) score at 3 months. Results: 4D CTA-CS was an independent predictor of the clinical outcome for all AIS patients (odds ratio = 0.253; 95% CI, 0.147–0.437; p < 0.001), CE stroke patients (odds ratio = 0.513; 95% CI, 0.280–0.939; p = 0.030), and LAA stroke patients (odds ratio = 0.148; 95% CI, 0.049–0.447; p = 0.001). The BNP was a biomarker for clinical outcome prediction in CE (odds ratio = 1.004; 95% CI, 1.001–1.008; p = 0.005) but not in LAA patients. Combined with BNP, 4D CTA-CS improved predictive values for clinical outcomes (p < 0.05). Conclusion: Collateral status and BNP could be used as independent predictors of clinical outcomes in AIS patients and could determine stroke subtypes (CE stroke or LAA stroke). In addition, the model of 4D CTA-CS combined with BNP was the most effective in predicting clinical outcomes compared with collateral status or BNP alone. Full article
(This article belongs to the Topic Diagnosis and Management of Acute Ischemic Stroke)
Show Figures

Figure 1

15 pages, 1459 KiB  
Article
Characterizing Touch Discrimination Impairment from Pooled Stroke Samples Using the Tactile Discrimination Test: Updated Criteria for Interpretation and Brief Test Version for Use in Clinical Practice Settings
by Yvonne Y. K. Mak-Yuen, Thomas A. Matyas and Leeanne M. Carey
Brain Sci. 2023, 13(4), 533; https://doi.org/10.3390/brainsci13040533 - 23 Mar 2023
Cited by 6 | Viewed by 3226
Abstract
Somatosensory loss post-stroke is common, with touch sensation characteristically impaired. Yet, quantitative, standardized measures of touch discrimination available for clinical use are currently limited. We aimed to characterize touch impairment and re-establish the criterion of abnormality of the Tactile Discrimination Test (TDT) using [...] Read more.
Somatosensory loss post-stroke is common, with touch sensation characteristically impaired. Yet, quantitative, standardized measures of touch discrimination available for clinical use are currently limited. We aimed to characterize touch impairment and re-establish the criterion of abnormality of the Tactile Discrimination Test (TDT) using pooled data and to determine the sensitivity and specificity of briefer test versions. Baseline data from stroke survivors (n = 207) and older neurologically healthy controls (n = 100) assessed on the TDT was extracted. Scores were re-analyzed to determine an updated criterion of impairment and the ability of brief test versions to detect impairment. Updated scoring using an area score was used to calculate the TDT percent maximum area (PMA) score. Touch impairment was common for the contralesional hand (83%) but also present in the ipsilesional hand (42%). The criterion of abnormality was established as 73.1 PMA across older adults and genders. High sensitivity and specificity were found for briefer versions of the TDT (25 vs. 50 trials; 12 or 15 vs. 25 trials), with sensitivity ranging between 91.8 and 96.4% and specificity between 72.5 and 95.0%. Conclusion: Updated criterion of abnormality and the high sensitivity and specificity of brief test versions support the use of the TDT in clinical practice settings. Full article
(This article belongs to the Special Issue Neuroscience and Touch after Stroke)
Show Figures

Figure 1

15 pages, 1703 KiB  
Review
Parkinson’s Disease, SARS-CoV-2, and Frailty: Is There a Vicious Cycle Related to Hypovitaminosis D?
by Sara Palermo, Mario Stanziano, Anna Nigri, Cristina Civilotti and Alessia Celeghin
Brain Sci. 2023, 13(4), 528; https://doi.org/10.3390/brainsci13040528 - 23 Mar 2023
Cited by 4 | Viewed by 3801
Abstract
The literature has long established the association between aging and frailty, with emerging evidence pointing to a relationship between frailty and SARS-CoV-2 contagion. The possible neurological consequences of SARS-CoV-2 infection, associated with physical and cognitive frailty, could lead to a worsening of Parkinson’s [...] Read more.
The literature has long established the association between aging and frailty, with emerging evidence pointing to a relationship between frailty and SARS-CoV-2 contagion. The possible neurological consequences of SARS-CoV-2 infection, associated with physical and cognitive frailty, could lead to a worsening of Parkinson’s disease (PD) in infected patients or—more rarely—to an increase in the Parkinsonian symptomatology. A possible link between those clinical pictures could be identified in vitamin D deficiency, while the whole process would appear to be associated with alterations in the microbiota–intestine–brain axis that fall within the α-Synuclein Origin site and Connectome (SOC) model, and allow for the identification of a body-first PD and a brain-first PD. The model of care for this condition must consider intrinsic and extrinsic variables so that care by a multidisciplinary team can be successfully predicted. A multidimensional screening protocol specifically designed to identify people at risk or in the early stages of the disease should begin with the investigation of indices of frailty and microbiota–intestine–brain axis alterations, with a new focus on cases of hypovitaminosis D. Full article
(This article belongs to the Special Issue Impact of COVID-19 Infection on Brain Structures and Functions)
Show Figures

Figure 1

13 pages, 653 KiB  
Review
Preventive Strategies for Cognitive Decline and Dementia: Benefits of Aerobic Physical Activity, Especially Open-Skill Exercise
by Takao Yamasaki
Brain Sci. 2023, 13(3), 521; https://doi.org/10.3390/brainsci13030521 - 21 Mar 2023
Cited by 10 | Viewed by 4256
Abstract
As there is no curative treatment for dementia, including Alzheimer’s disease (AD), it is important to establish an optimal nonpharmaceutical preventive intervention. Physical inactivity is a representative modifiable risk factor for dementia, especially for AD in later life (>65 years). As physical activity [...] Read more.
As there is no curative treatment for dementia, including Alzheimer’s disease (AD), it is important to establish an optimal nonpharmaceutical preventive intervention. Physical inactivity is a representative modifiable risk factor for dementia, especially for AD in later life (>65 years). As physical activity and exercise are inexpensive and easy to initiate, they may represent an effective nonpharmaceutical intervention for the maintenance of cognitive function. Several studies have reported that physical activity and exercise interventions are effective in preventing cognitive decline and dementia. This review outlines the effects of physical activity and exercise-associated interventions in older adults with and without cognitive impairment and subsequently summarizes their possible mechanisms. Furthermore, this review describes the differences between two types of physical exercise—open-skill exercise (OSE) and closed-skill exercise (CSE)—in terms of their effects on cognitive function. Aerobic physical activity and exercise interventions are particularly useful in preventing cognitive decline and dementia, with OSE exerting a stronger protective effect on cognitive functions than CSE. Therefore, the need to actively promote physical activity and exercise interventions worldwide is emphasized. Full article
Show Figures

Figure 1

15 pages, 4004 KiB  
Review
Current Advances in Papillary Craniopharyngioma: State-Of-The-Art Therapies and Overview of the Literature
by Gianpaolo Jannelli, Francesco Calvanese, Luca Paun, Gerald Raverot and Emmanuel Jouanneau
Brain Sci. 2023, 13(3), 515; https://doi.org/10.3390/brainsci13030515 - 20 Mar 2023
Cited by 5 | Viewed by 1653
Abstract
Craniopharyngiomas are commonly classified as low-grade tumors, although they may harbor a malignant behavior due to their high rate of recurrence and long-term morbidity. Craniopharyngiomas are classically distinguished into two histological types (adamantinomatous and papillary), which have been recently considered by the WHO [...] Read more.
Craniopharyngiomas are commonly classified as low-grade tumors, although they may harbor a malignant behavior due to their high rate of recurrence and long-term morbidity. Craniopharyngiomas are classically distinguished into two histological types (adamantinomatous and papillary), which have been recently considered by the WHO classification of CNS tumors as two independent entities, due to different epidemiological, radiological, histopathological, and genetic patterns. With regard to papillary craniopharyngioma, a BRAF V600 mutation is detected in 95% of cases. This genetic feature is opening new frontiers in the treatment of these tumors using an adjuvant or, in selected cases, a neo-adjuvant approach. In this article, we present an overview of the more recent literature, focusing on the specificities and the role of oncological treatment in the management of papillary craniopharyngiomas. Based on our research and experience, we strongly suggest a multimodal approach combining clinical, endocrinological, radiological, histological, and oncological findings in both preoperative workup and postoperative follow up to define a roadmap integrating every aspect of this challenging condition. Full article
Show Figures

Figure 1

13 pages, 2184 KiB  
Article
Application of C5.0 Algorithm for the Assessment of Perceived Stress in Healthcare Professionals Attending COVID-19
by Juan Luis Delgado-Gallegos, Gener Avilés-Rodriguez, Gerardo R. Padilla-Rivas, María De los Ángeles Cosío-León, Héctor Franco-Villareal, Juan Iván Nieto-Hipólito, Juan de Dios Sánchez López, Erika Zuñiga-Violante, Jose Francisco Islas and Gerardo Salvador Romo-Cardenas
Brain Sci. 2023, 13(3), 513; https://doi.org/10.3390/brainsci13030513 - 20 Mar 2023
Cited by 5 | Viewed by 1825
Abstract
Coronavirus disease (COVID-19) represents one of the greatest challenges to public health in modern history. As the disease continues to spread globally, medical and allied healthcare professionals have become one of the most affected sectors. Stress and anxiety are indirect effects of the [...] Read more.
Coronavirus disease (COVID-19) represents one of the greatest challenges to public health in modern history. As the disease continues to spread globally, medical and allied healthcare professionals have become one of the most affected sectors. Stress and anxiety are indirect effects of the COVID-19 pandemic. Therefore, it is paramount to understand and categorize their perceived levels of stress, as it can be a detonating factor leading to mental illness. Here, we propose a computer-based method to better understand stress in healthcare workers facing COVID-19 at the beginning of the pandemic. We based our study on a representative sample of healthcare professionals attending to COVID-19 patients in the northeast region of Mexico, at the beginning of the pandemic. We used a machine learning classification algorithm to obtain a visualization model to analyze perceived stress. The C5.0 decision tree algorithm was used to study datasets. We carried out an initial preprocessing statistical analysis for a group of 101 participants. We performed chi-square tests for all questions, individually, in order to validate stress level calculation (p < 0.05) and a calculated Cronbach’s alpha of 0.94 and McDonald’s omega of 0.95, demonstrating good internal consistency in the dataset. The obtained model failed to classify only 6 out of the 101, missing two cases for mild, three for moderate and one for severe (accuracy of 94.1%). We performed statistical correlation analysis to ensure integrity of the method. In addition, based on the decision tree model, we concluded that severe stress cases can be related mostly to high levels of xenophobia and compulsive stress. Thus, showing that applied machine learning algorithms represent valuable tools in the assessment of perceived stress, which can potentially be adapted to other areas of the medical field. Full article
Show Figures

Graphical abstract

14 pages, 2350 KiB  
Article
Altered Postcentral Connectivity after Sleep Deprivation Correlates to Impaired Risk Perception: A Resting-State Functional Magnetic Resonance Imaging Study
by Jie Chen, Xinxin Gong, Letong Wang, Mengmeng Xu, Xiao Zhong, Ziyi Peng, Tao Song, Lin Xu, Jie Lian, Yongcong Shao and Xiechuan Weng
Brain Sci. 2023, 13(3), 514; https://doi.org/10.3390/brainsci13030514 - 20 Mar 2023
Cited by 6 | Viewed by 1910
Abstract
Background: Previous studies revealed that sleep deprivation (SD) impairs risk perception and leads to poor decision-making efficiency. However, how risk perception is related to brain regions’ communication after SD has not been elucidated. In this study, we investigated the neuropsychological mechanisms of SD-impaired [...] Read more.
Background: Previous studies revealed that sleep deprivation (SD) impairs risk perception and leads to poor decision-making efficiency. However, how risk perception is related to brain regions’ communication after SD has not been elucidated. In this study, we investigated the neuropsychological mechanisms of SD-impaired risk perception. Methods: Nineteen healthy male adults were recruited and underwent resting-state functional magnetic resonance imaging during a state of rested wakefulness and after nearly 36 h of total SD. They then completed the balloon analog risk task, which was used to measure the risk perception ability of risky decision-making. Regional homogeneity (ReHo) and voxel-wise functional connectivity were used to investigate neurobiological changes caused by SD. Correlation analysis was used to investigate the relationship between changes in ReHo, function, and risk perception. Results: At the behavioral level, risk perception decreased after 36 h of SD. At the neural level, SD induced a significant increase in ReHo in the right postcentral gyrus and was positively correlated with risk perception changes. The functional connectivity between the right postcentral gyrus, left medial temporal gyrus, and right inferior temporal gyrus was enhanced. Critically, increased right postcentral gyrus and right inferior temporal gyrus connectivity positively correlated with changes in risk perception. Conclusions: SD impairs the risk perception associated with altered postcentral connectivity. The brain requires more energy to process and integrate sensory and perceptual information after SD, which may be one possible reason for decreased risk perception ability after SD. Full article
(This article belongs to the Special Issue Effects of Sleep Deprivation on Cognition, Emotion, and Behavior)
Show Figures

Graphical abstract

20 pages, 1433 KiB  
Article
Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer’s Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration
by Steven M. LeVine, Sheila Tsau and Sumedha Gunewardena
Brain Sci. 2023, 13(3), 511; https://doi.org/10.3390/brainsci13030511 - 18 Mar 2023
Cited by 7 | Viewed by 2520
Abstract
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and [...] Read more.
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and modified iron histochemical protocols, iron was found to be more tightly bound within cortical sections from patients with high levels of AD pathology compared to subjects with a diagnosis of something other than AD. To begin examining whether the bound iron could cause a functional iron deficiency, a protein-coding gene expression dataset of initial, middle, and advanced stages of AD from olfactory bulb tissue was analyzed for iron-related processes with an emphasis on anemia-related changes in initial AD to capture early pathogenic events. Indeed, anemia-related processes had statistically significant alterations, and the significance of these changes exceeded those for AD-related processes. Other changes in patients with initial AD included the expressions of transcripts with iron-responsive elements and for genes encoding proteins for iron transport and mitochondrial-related processes. In the latter category, there was a decreased expression for the gene encoding pitrilysin metallopeptidase 1 (PITRM1). Other studies have shown that PITRM1 has an altered activity in patients with AD and is associated with pathological changes in this disease. Analysis of a gene expression dataset from PITRM1-deficient or sufficient organoids also revealed statistically significant changes in anemia-like processes. These findings, together with supporting evidence from the literature, raise the possibility that a pathogenic mechanism of AD could be a functional deficiency of iron contributing to neurodegeneration. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis of Neurodegenerative Disease)
Show Figures

Figure 1

26 pages, 2983 KiB  
Review
Neurocognitive Psychiatric and Neuropsychological Alterations in Parkinson’s Disease: A Basic and Clinical Approach
by Héctor Alberto González-Usigli, Genaro Gabriel Ortiz, Claudia Charles-Niño, Mario Alberto Mireles-Ramírez, Fermín Paul Pacheco-Moisés, Blanca Miriam de Guadalupe Torres-Mendoza, José de Jesús Hernández-Cruz, Daniela Lucero del Carmen Delgado-Lara and Luis Javier Ramírez-Jirano
Brain Sci. 2023, 13(3), 508; https://doi.org/10.3390/brainsci13030508 - 18 Mar 2023
Cited by 7 | Viewed by 3932
Abstract
The main histopathological hallmarks of Parkinson’s disease (PD) are the degeneration of the dopaminergic neurons of the substantia nigra pars compacta and the loss of neuromelanin as a consequence of decreased dopamine synthesis. The destruction of the striatal dopaminergic pathway and blocking of [...] Read more.
The main histopathological hallmarks of Parkinson’s disease (PD) are the degeneration of the dopaminergic neurons of the substantia nigra pars compacta and the loss of neuromelanin as a consequence of decreased dopamine synthesis. The destruction of the striatal dopaminergic pathway and blocking of striatal dopamine receptors cause motor deficits in humans and experimental animal models induced by some environmental agents. In addition, neuropsychiatric symptoms such as mood and anxiety disorders, hallucinations, psychosis, cognitive impairment, and dementia are common in PD. These alterations may precede the appearance of motor symptoms and are correlated with neurochemical and structural changes in the brain. This paper reviews the most crucial pathophysiology of neuropsychiatric alterations in PD. It is worth noting that PD patients have global task learning deficits, and cognitive functions are compromised in a way is associated with hypoactivation within the striatum, anterior cingulate cortex, and inferior frontal sulcus regions. An appropriate and extensive neuropsychological screening battery in PD must accurately assess at least five cognitive domains with some tests for each cognitive domain. This neuropsychological screening should consider the pathophysiological and clinical heterogeneity of cognitive dysfunction in PD. Full article
(This article belongs to the Special Issue New Advances in Alzheimer’s Disease and Other Associated Diseases)
Show Figures

Graphical abstract

16 pages, 2875 KiB  
Systematic Review
Cerebrolysin in Patients with TBI: Systematic Review and Meta-Analysis
by Konrad Jarosz, Klaudyna Kojder, Agata Andrzejewska, Joanna Solek-Pastuszka and Anna Jurczak
Brain Sci. 2023, 13(3), 507; https://doi.org/10.3390/brainsci13030507 - 17 Mar 2023
Cited by 6 | Viewed by 2836
Abstract
TBI (traumatic brain injury) is one of the most common causes of deaths and failure to return to society according to the latest statistics. Cerebrolysin is a drug approved for use in patients diagnosed with TBI. It is a mixture of neuropeptides derived [...] Read more.
TBI (traumatic brain injury) is one of the most common causes of deaths and failure to return to society according to the latest statistics. Cerebrolysin is a drug approved for use in patients diagnosed with TBI. It is a mixture of neuropeptides derived from purified porcine brain proteins and multiple experimental studies have proven its neuroprotective and neurorestorative properties both in vitro and in vivo. In our meta-analysis, we analyze the latest clinical study reports on the use of Cerebrolysin in patients with TBI. The authors searched the databases: Pub Med, Cinahl, Web Of Science, and Embase from database inception until 11th July 2022. Ten clinical studies were eligible and included in the final analysis, including both retrospective and prospective studies of 8749 patients. Treatment with Cerebrolysin was associated with a statistically significant change in GCS and GOS. Mortality of any cause and the length of stay was not affected by the treatment. Our findings support and confirm the beneficial effects of Cerebrolysin treatment on the clinical outcome of patients after TBI. Further multi-center studies to optimize dosing and time of administration should be conducted. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

26 pages, 441 KiB  
Review
Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence
by Samuel T. Vielee and John P. Wise, Jr.
Brain Sci. 2023, 13(3), 500; https://doi.org/10.3390/brainsci13030500 - 16 Mar 2023
Cited by 4 | Viewed by 2242
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3–4 [...] Read more.
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3–4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the “Hallmarks of Aging”, nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence—a permanent growth arrest in cells—is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis. Full article
(This article belongs to the Special Issue Advance in Study of Neurotoxic Chemicals in the Environment)
18 pages, 351 KiB  
Article
Oxidative Stress Biomarkers among Schizophrenia Inpatients
by Magdalena Więdłocha, Natalia Zborowska, Piotr Marcinowicz, Weronika Dębowska, Marta Dębowska, Anna Zalewska, Mateusz Maciejczyk, Napoleon Waszkiewicz and Agata Szulc
Brain Sci. 2023, 13(3), 490; https://doi.org/10.3390/brainsci13030490 - 14 Mar 2023
Cited by 8 | Viewed by 1774
Abstract
Background. Finding the associations between schizophrenia symptoms and the biomarkers of inflammation, oxidative stress and the kynurenine pathway may lead to the individualization of treatment and increase its effectiveness. Methods. The study group included 82 schizophrenia inpatients. The Positive and Negative Symptoms Scale [...] Read more.
Background. Finding the associations between schizophrenia symptoms and the biomarkers of inflammation, oxidative stress and the kynurenine pathway may lead to the individualization of treatment and increase its effectiveness. Methods. The study group included 82 schizophrenia inpatients. The Positive and Negative Symptoms Scale (PANSS), the Brief Assessment of Cognition in Schizophrenia (BACS) and the Calgary Depression in Schizophrenia Scale were used for symptom evaluation. Biochemical analyses included oxidative stress parameters and brain-derived neurotrophic factor (BDNF). Results. Linear models revealed the following: (1) malondiadehyde (MDA), N-formylkynurenine (N-formKYN), advanced oxidation protein products (AOPP), advanced glycation end-products of proteins (AGE) and total oxidative status (TOS) levels are related to the PANSS-total score; (2) MDA, reduced glutathione (GSH) and BDNF levels are related to the PANSS-negative score; (3) TOS and kynurenine (KYN) levels are related to the PANSS-positive score; (4) levels of total antioxidant status (TAS) and AOPP along with the CDSS score are related to the BACS-total score; (5) TAS and N-formKYN levels are related to the BACS-working memory score. Conclusions. Oxidative stress biomarkers may be associated with the severity of schizophrenia symptoms in positive, negative and cognitive dimensions. The identification of biochemical markers associated with the specific symptom clusters may increase the understanding of biochemical profiles in schizophrenia patients. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
23 pages, 1476 KiB  
Review
An Analysis of Deep Learning Models in SSVEP-Based BCI: A Survey
by Dongcen Xu, Fengzhen Tang, Yiping Li, Qifeng Zhang and Xisheng Feng
Brain Sci. 2023, 13(3), 483; https://doi.org/10.3390/brainsci13030483 - 13 Mar 2023
Cited by 8 | Viewed by 3753
Abstract
The brain–computer interface (BCI), which provides a new way for humans to directly communicate with robots without the involvement of the peripheral nervous system, has recently attracted much attention. Among all the BCI paradigms, BCIs based on steady-state visual evoked potentials (SSVEPs) have [...] Read more.
The brain–computer interface (BCI), which provides a new way for humans to directly communicate with robots without the involvement of the peripheral nervous system, has recently attracted much attention. Among all the BCI paradigms, BCIs based on steady-state visual evoked potentials (SSVEPs) have the highest information transfer rate (ITR) and the shortest training time. Meanwhile, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, and many researchers have started to apply deep learning to classify SSVEP signals. However, the designs of deep learning models vary drastically. There are many hyper-parameters that influence the performance of the model in an unpredictable way. This study surveyed 31 deep learning models (2011–2023) that were used to classify SSVEP signals and analyzed their design aspects including model input, model structure, performance measure, etc. Most of the studies that were surveyed in this paper were published in 2021 and 2022. This survey is an up-to-date design guide for researchers who are interested in using deep learning models to classify SSVEP signals. Full article
Show Figures

Figure 1

12 pages, 721 KiB  
Systematic Review
The Association between COVID-19 Related Anxiety, Stress, Depression, Temporomandibular Disorders, and Headaches from Childhood to Adulthood: A Systematic Review
by Giuseppe Minervini, Rocco Franco, Maria Maddalena Marrapodi, Vini Mehta, Luca Fiorillo, Almir Badnjević, Gabriele Cervino and Marco Cicciù
Brain Sci. 2023, 13(3), 481; https://doi.org/10.3390/brainsci13030481 - 12 Mar 2023
Cited by 50 | Viewed by 5244
Abstract
Objective: The coronavirus belongs to the family of Coronaviridae, which are not branched single-stranded RNA viruses. COVID-19 creates respiratory problems and infections ranging from mild to severe. The virus features mechanisms that serve to delay the cellular immune response. The host’s response is [...] Read more.
Objective: The coronavirus belongs to the family of Coronaviridae, which are not branched single-stranded RNA viruses. COVID-19 creates respiratory problems and infections ranging from mild to severe. The virus features mechanisms that serve to delay the cellular immune response. The host’s response is responsible for the pathological process that leads to tissue destruction. Temporomandibular disorders are manifested by painful jaw musculature and jaw joint areas, clicks, or creaks when opening or closing the mouth. All these symptoms can be disabling and occur during chewing and when the patient yawns or even speaks. The pandemic situation has exacerbated anxieties and amplified the vulnerability of individuals. Therefore, from this mechanism, how the COVID-19 pandemic may have increased the incidence of temporomandibular disorders is perceived. The purpose of this review is to evaluate whether COVID-19-related anxiety has caused an increase in temporomandibular dysfunction symptoms in adults to children. Methods: PubMed, Web of Science, Lilacs, and Scopus were systematically searched, until 30 July 2022, to identify studies presenting: the connection between COVID-19 with temporomandibular disorders. Results: From 198 papers, 4 studies were included. Literature studies have shown that the state of uncertainty and anxiety has led to an increase in the incidence of this type of disorder, although not all studies agree. Seventy-three studies were identified after viewing all four search engines; at the end of the screening phase, only four were considered that met the PECO, the planned inclusion, and the exclusion criteria. All studies showed a statistically significant correlation between temporomandibular disorders and COVID-19 with a p < 0.05. Conclusions: All studies agreed that there is an association between COVID-19 and increased incidence of temporomandibular disorders. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

22 pages, 647 KiB  
Review
Dyslexia: Causes and Concomitant Impairments
by Reinhard Werth
Brain Sci. 2023, 13(3), 472; https://doi.org/10.3390/brainsci13030472 - 10 Mar 2023
Cited by 4 | Viewed by 3519
Abstract
In recent decades, theories have been presented to explain the nature of dyslexia, but the causes of dyslexia remained unclear. Although the investigation of the causes of dyslexia presupposes a clear understanding of the concept of cause, such an understanding is missing. The [...] Read more.
In recent decades, theories have been presented to explain the nature of dyslexia, but the causes of dyslexia remained unclear. Although the investigation of the causes of dyslexia presupposes a clear understanding of the concept of cause, such an understanding is missing. The present paper proposes the absence of at least one necessary condition or the absence of all sufficient conditions as causes for impaired reading. The causes of impaired reading include: an incorrect fixation location, too short a fixation time, the attempt to recognize too many letters simultaneously, too large saccade amplitudes, and too short verbal reaction times. It is assumed that a longer required fixation time in dyslexic readers results from a functional impairment of areas V1, V2, and V3 that require more time to complete temporal summation. These areas and areas that receive input from them, such as the fusiform gyrus, are assumed to be impaired in their ability to simultaneously process a string of letters. When these impairments are compensated by a new reading strategy, reading ability improves immediately. Full article
(This article belongs to the Special Issue Developmental Dyslexia: Theories and Experimental Approaches)
Show Figures

Figure 1

15 pages, 301 KiB  
Review
Measuring Social Camouflaging in Individuals with High Functioning Autism: A Literature Review
by Ivan Mirko Cremone, Barbara Carpita, Benedetta Nardi, Danila Casagrande, Rossella Stagnari, Giulia Amatori and Liliana Dell’Osso
Brain Sci. 2023, 13(3), 469; https://doi.org/10.3390/brainsci13030469 - 10 Mar 2023
Cited by 10 | Viewed by 4605
Abstract
In the recent years, growing attention has been paid to the use of camouflaging strategies by adult populations suffering from autism spectrum disorder (ASD) with milder manifestations and without intellectual impairment, which may lead to a delay in diagnosis or even a misdiagnosis. [...] Read more.
In the recent years, growing attention has been paid to the use of camouflaging strategies by adult populations suffering from autism spectrum disorder (ASD) with milder manifestations and without intellectual impairment, which may lead to a delay in diagnosis or even a misdiagnosis. In fact, high-functioning ASD individuals were reported to be more aware of their communication difficulties and were more likely make considerable efforts to adjust their behavior to conventional rules of non-autistic individuals, learning to imitate other non-ASD individuals. Moreover, females reported a higher frequency of camouflaging strategies, suggesting a role of camouflaging in the gender gap of the ASD diagnosis. Although camouflaging strategies can sometimes grant a better level of adjustment, even resulting in a hyper-adaptive behavior, they are also often correlated with negative mental health consequences due to the long-term stress associated with continuous attempts to adapt in day-to-day life. In this framework, the aim of the present work was to review the available studies that assessed the presence and correlates of camouflaging strategies in individuals with ASD. Although the literature available on the topic is still scarce, some interesting correlations between camouflaging and anxious and depressive symptoms, as well as suicidality, were highlighted. In particular, the controversial and sometime opposite thoughts and results about camouflaging may be clarified and integrated in light of a dimensional approach to psychopathology. Full article
(This article belongs to the Section Psychiatric Diseases)
10 pages, 594 KiB  
Article
Association between Systemic Immune Inflammation Index and Cognitive Impairment after Acute Ischemic Stroke
by Yuanfei Bao, Lingling Wang, Chaopin Du, Yan Ji, Yiwei Dai and Wei Jiang
Brain Sci. 2023, 13(3), 464; https://doi.org/10.3390/brainsci13030464 - 9 Mar 2023
Cited by 4 | Viewed by 1676
Abstract
Background and Aims: Post-stroke cognitive impairment (PSCI) is one of the major complications after ischemic stroke. PSCI has been shown to be associated with low-grade systemic inflammation. As a novel inflammatory marker, the systemic immune-inflammation (SII) index could reflect clinical outcomes in severe [...] Read more.
Background and Aims: Post-stroke cognitive impairment (PSCI) is one of the major complications after ischemic stroke. PSCI has been shown to be associated with low-grade systemic inflammation. As a novel inflammatory marker, the systemic immune-inflammation (SII) index could reflect clinical outcomes in severe cardiovascular diseases. We therefore performed a prospective study to investigate the correlation between the SII index and the risk of PSCI in patients with ischemic stroke. Methods: We prospectively enrolled 254 patients with ischemic stroke with symptoms onset <72 h. The SII index was detected within 24 h after admission. The Montreal Cognitive Scale (MoCA) was utilized to evaluate cognitive function, and PSCI was defined as a MoCA score of <25 points. Results: During the 3-month follow-up, 70 participants (27.6%) had mild cognitive impairment and 60 (23.6%) had severe cognitive impairment. In binary logistic regression analysis, each one-standard deviation increase in the SII index was significantly associated with the prevalence of PSCI after adjusting for age, sex, and other confounders (odds ratio 2.341; 95% confidence interval, 1.439–3.809, p = 0.001). Similar significant findings were observed when SII was defined as a categorical variable. In addition, the multiple-adjusted spline regression model showed a linear association between the SII index and cognitive impairment (p = 0.003 for linearity). Conclusions: Our study indicated that an increased SII index was closely related to PSCI at 3 months in patients with ischemic stroke. Further research is required to evaluate the efficacy of inflammation management in these patients. Full article
Show Figures

Figure 1

39 pages, 1508 KiB  
Systematic Review
Brain Correlates of Eating Disorders in Response to Food Visual Stimuli: A Systematic Narrative Review of FMRI Studies
by Alessia Celeghin, Sara Palermo, Rebecca Giampaolo, Giulia Di Fini, Gabriella Gandino and Cristina Civilotti
Brain Sci. 2023, 13(3), 465; https://doi.org/10.3390/brainsci13030465 - 9 Mar 2023
Cited by 4 | Viewed by 2747
Abstract
This article summarizes the results of studies in which functional magnetic resonance imaging (fMRI) was performed to investigate the neurofunctional activations involved in processing visual stimuli from food in individuals with anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder (BED). A [...] Read more.
This article summarizes the results of studies in which functional magnetic resonance imaging (fMRI) was performed to investigate the neurofunctional activations involved in processing visual stimuli from food in individuals with anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder (BED). A systematic review approach based on the PRISMA guidelines was used. Three databases—Scopus, PubMed and Web of Science (WoS)—were searched for brain correlates of each eating disorder. From an original pool of 688 articles, 30 articles were included and discussed. The selected studies did not always overlap in terms of research design and observed outcomes, but it was possible to identify some regularities that characterized each eating disorder. As if there were two complementary regulatory strategies, AN seems to be associated with general hyperactivity in brain regions involved in top-down control and emotional areas, such as the amygdala, insula and hypothalamus. The insula and striatum are hyperactive in BN patients and likely involved in abnormalities of impulsivity and emotion regulation. Finally, the temporal cortex and striatum appear to be involved in the neural correlates of BED, linking this condition to use of dissociative strategies and addictive aspects. Although further studies are needed, this review shows that there are specific activation pathways. Therefore, it is necessary to pay special attention to triggers, targets and maintenance processes in order to plan effective therapeutic interventions. Clinical implications are discussed. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

19 pages, 976 KiB  
Review
Exploring a Possible Interplay between Schizophrenia, Oxytocin, and Estrogens: A Narrative Review
by Danae Papadea, Christina Dalla and Despina A. Tata
Brain Sci. 2023, 13(3), 461; https://doi.org/10.3390/brainsci13030461 - 8 Mar 2023
Cited by 5 | Viewed by 3230
Abstract
Schizophrenia is characterized by symptoms of psychosis and sociocognitive deficits. Considering oxytocin’s antipsychotic and prosocial properties, numerous clinical, and preclinical studies have explored the neuropeptide’s therapeutic efficacy. Sex differences in the clinical course of schizophrenia, as well as in oxytocin-mediated behaviors, indicate the [...] Read more.
Schizophrenia is characterized by symptoms of psychosis and sociocognitive deficits. Considering oxytocin’s antipsychotic and prosocial properties, numerous clinical, and preclinical studies have explored the neuropeptide’s therapeutic efficacy. Sex differences in the clinical course of schizophrenia, as well as in oxytocin-mediated behaviors, indicate the involvement of gonadal steroid hormones. The current narrative review aimed to explore empirical evidence on the interplay between schizophrenia psychopathology and oxytocin’s therapeutic potential in consideration of female gonadal steroid interactions, with a focus on estrogens. The review was conducted using the PubMed and PsychINFO databases and conforms to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines. The results suggest a potential synergistic effect of the combined antipsychotic effect of oxytocin and neuroprotective effect of estrogen on schizophrenia. Consideration of typical menstrual cycle-related hormonal changes is warranted and further research is needed to confirm this assumption. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
Show Figures

Figure 1

20 pages, 362 KiB  
Review
Attachment, Mentalizing and Trauma: Then (1992) and Now (2022)
by Peter Fonagy, Chloe Campbell and Patrick Luyten
Brain Sci. 2023, 13(3), 459; https://doi.org/10.3390/brainsci13030459 - 8 Mar 2023
Cited by 14 | Viewed by 6990
Abstract
This article reviews the current status of research on the relationship between attachment and trauma in developmental psychopathology. Beginning with a review of the major issues and the state-of-the-art in relation to current thinking in the field of attachment about the impact of [...] Read more.
This article reviews the current status of research on the relationship between attachment and trauma in developmental psychopathology. Beginning with a review of the major issues and the state-of-the-art in relation to current thinking in the field of attachment about the impact of trauma and the inter-generational transmission of trauma, the review then considers recent neurobiological work on mentalizing and trauma and suggests areas of new development and implications for clinical practice. Full article
(This article belongs to the Special Issue State of the Art in Human Attachment)
28 pages, 11780 KiB  
Article
Get a New Perspective on EEG: Convolutional Neural Network Encoders for Parametric t-SNE
by Mats Svantesson, Håkan Olausson, Anders Eklund and Magnus Thordstein
Brain Sci. 2023, 13(3), 453; https://doi.org/10.3390/brainsci13030453 - 7 Mar 2023
Cited by 4 | Viewed by 2303
Abstract
t-distributed stochastic neighbor embedding (t-SNE) is a method for reducing high-dimensional data to a low-dimensional representation, and is mostly used for visualizing data. In parametric t-SNE, a neural network learns to reproduce this mapping. When used for EEG analysis, the data are usually [...] Read more.
t-distributed stochastic neighbor embedding (t-SNE) is a method for reducing high-dimensional data to a low-dimensional representation, and is mostly used for visualizing data. In parametric t-SNE, a neural network learns to reproduce this mapping. When used for EEG analysis, the data are usually first transformed into a set of features, but it is not known which features are optimal. The principle of t-SNE was used to train convolutional neural network (CNN) encoders to learn to produce both a high- and a low-dimensional representation, eliminating the need for feature engineering. To evaluate the method, the Temple University EEG Corpus was used to create three datasets with distinct EEG characters: (1) wakefulness and sleep; (2) interictal epileptiform discharges; and (3) seizure activity. The CNN encoders produced low-dimensional representations of the datasets with a structure that conformed well to the EEG characters and generalized to new data. Compared to parametric t-SNE for either a short-time Fourier transform or wavelet representation of the datasets, the developed CNN encoders performed equally well in separating categories, as assessed by support vector machines. The CNN encoders generally produced a higher degree of clustering, both visually and in the number of clusters detected by k-means clustering. The developed principle is promising and could be further developed to create general tools for exploring relations in EEG data. Full article
(This article belongs to the Section Computational Neuroscience and Neuroinformatics)
Show Figures

Figure 1

22 pages, 448 KiB  
Review
Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients
by Kun-Peng Li, Jia-Jia Wu, Zong-Lei Zhou, Dong-Sheng Xu, Mou-Xiong Zheng, Xu-Yun Hua and Jian-Guang Xu
Brain Sci. 2023, 13(3), 451; https://doi.org/10.3390/brainsci13030451 - 6 Mar 2023
Cited by 7 | Viewed by 5074
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional [...] Read more.
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation. Full article
(This article belongs to the Section Neurorehabilitation)
12 pages, 2716 KiB  
Article
“Pandemic Fatigue” in South America: A Multi-Center Report from Argentina, Bolivia, Paraguay, Peru, and Uruguay
by Julio Torales, Israel González-Urbieta, Iván Barrios, Marcela Waisman-Campos, Alexandra Terrazas-Landivar, Laura Viola, Tomás Caycho-Rodríguez, Osvaldo Melgarejo, Rodrigo Navarro, Oscar García, José Almirón-Santacruz, João Mauricio Castaldelli-Maia and Antonio Ventriglio
Brain Sci. 2023, 13(3), 444; https://doi.org/10.3390/brainsci13030444 - 4 Mar 2023
Cited by 5 | Viewed by 2078
Abstract
The COVID-19 pandemic has had a heavy impact on daily life, leading to physical and psychosocial consequences. Nowadays, clinicians and health researchers are particularly interested in describing and facing the long-term effects of COVID-19, also known as “long-COVID syndrome”. Pandemic fatigue has been [...] Read more.
The COVID-19 pandemic has had a heavy impact on daily life, leading to physical and psychosocial consequences. Nowadays, clinicians and health researchers are particularly interested in describing and facing the long-term effects of COVID-19, also known as “long-COVID syndrome”. Pandemic fatigue has been defined as a cluster of demotivation, tiredness, and psychological effects that emerge gradually over time after the infection or through the adoption of the recommended measures to combat it. In this study, we report the findings of a large survey conducted in South America involving 1448 participants (mean age: 33.9 ± 11.2 years old) from Argentina, Bolivia, Uruguay, Peru, and Paraguay. An online survey was launched through the common social media based on a specific assessment aimed to detect the prevalence of pandemic fatigue and associated factors. Socio-demographic characteristics, medical, and personal information were collected; the Pandemic Fatigue Scale (PFS) and the Coronavirus Anxiety Scale (CAS) were also administered. We found mid-levels of pandemic fatigue among respondents (21.7 ± 7.95 score at PFS) as well as significant anxiety related to the COVID-19 pandemic (1.56 ± 2.76 score at CAS). In addition, pandemic fatigue was significantly associated with the experience of the loss of a relative/friend due to COVID-19, anxiety related to the infection, and reliance on social media as a primary source of information on the pandemic. Vaccination significantly reduced the levels of fatigue among respondents. Our findings may add to the international debate regarding the long-term health consequences of the COVID-19 pandemic and strategies to manage them in the general population of South America. Full article
Show Figures

Figure 1

15 pages, 3054 KiB  
Article
Sex Differences in Cognitive-Motor Dual-Task Training Effects and in Brain Processing of Semi-Elite Basketball Players
by Stefania Lucia, Merve Aydin and Francesco Di Russo
Brain Sci. 2023, 13(3), 443; https://doi.org/10.3390/brainsci13030443 - 4 Mar 2023
Cited by 4 | Viewed by 2087
Abstract
In the current study, we aimed at evaluating the possible sex differences in cognitive-motor dual-task training (CMDT) effects on the sport and cognitive performance of semi-elite basketball athletes. Moreover, we investigated the CMDT effects on proactive brain processing using event-related potential (ERP) analysis. [...] Read more.
In the current study, we aimed at evaluating the possible sex differences in cognitive-motor dual-task training (CMDT) effects on the sport and cognitive performance of semi-elite basketball athletes. Moreover, we investigated the CMDT effects on proactive brain processing using event-related potential (ERP) analysis. Fifty-two young basketball athletes (age 16.3 years) were randomly assigned into an experimental (Exp) group performing the CMDT, and a control (Con) group executing standard motor training. Before and after a 5-week training intervention, participants’ motor performance was evaluated using dribbling tests. Cognitive performance was assessed by measuring response time and accuracy in a discrimination response task (DRT). Brain activity related to motor and cognitive preparation was measured through the Bereitschaftspotential (BP) and the prefrontal negativity (pN) ERP components. The CMDT involved the simultaneous execution of dribbling exercises and cognitive tasks which were realized using interactive technologies on the court. Results showed that both groups had some enhancements from pre- to post-tests, but only the Exp group enhanced in the dribbling exercise. In the DRT after the CMDT, females performed faster than males in the Exp group. All groups, except for the Con group of males, performed the DRT more accurately after the training. According to the ERP results, in the Exp group of males and in Exp and Con group of females, we found an increase in pN amplitude (associated with better accuracy); in the Exp group of females and in Exp and Con group of males, we found an increase in BP (associated with better response time). In conclusion, the present study endorsed the efficacy of the proposed CMDT protocol on both the sport and cognitive performance of semi-elite basketball players and showed that the neural basis of these benefits may be interpreted as sex-related compensatory effects. Full article
Show Figures

Graphical abstract

11 pages, 552 KiB  
Review
The Impact of Motor-Cognitive Dual-Task Training on Physical and Cognitive Functions in Parkinson’s Disease
by Yi Xiao, Tianmi Yang and Huifang Shang
Brain Sci. 2023, 13(3), 437; https://doi.org/10.3390/brainsci13030437 - 3 Mar 2023
Cited by 7 | Viewed by 3120
Abstract
Rehabilitation is a high-potential approach to improving physical and cognitive functions in Parkinson’s disease (PD). Dual-task training innovatively combines motor and cognitive rehabilitation in a comprehensive module. Patients perform motor and cognitive tasks at the same time in dual-task training. The previous studies [...] Read more.
Rehabilitation is a high-potential approach to improving physical and cognitive functions in Parkinson’s disease (PD). Dual-task training innovatively combines motor and cognitive rehabilitation in a comprehensive module. Patients perform motor and cognitive tasks at the same time in dual-task training. The previous studies of dual-task training in PD had high heterogeneity and achieved controversial results. In the current review, we aim to summarize the current evidence of the effect of dual-task training on motor and cognitive functions in PD patients to support the clinical practice of dual-task training. In addition, we also discuss the current opinions regarding the mechanism underlying the interaction between motor and cognitive training. In conclusion, dual-task training is suitable for PD patients with varied disease duration to improve their motor function. Dual-task training can improve motor symptoms, single-task gait speed, single-task steep length, balance, and objective experience of freezing of gait in PD. The improvement in cognitive function after dual-task training is mild. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor-Cognitive Interactions)
Show Figures

Figure 1

21 pages, 383 KiB  
Review
Epigenetic Targets in Schizophrenia Development and Therapy
by Agnieszka Wawrzczak-Bargieła, Wiktor Bilecki and Marzena Maćkowiak
Brain Sci. 2023, 13(3), 426; https://doi.org/10.3390/brainsci13030426 - 1 Mar 2023
Cited by 9 | Viewed by 3283
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this [...] Read more.
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
11 pages, 1871 KiB  
Article
TMS-Induced Modulation of EEG Functional Connectivity Is Affected by the E-Field Orientation
by Giulia Pieramico, Roberto Guidotti, Aino E. Nieminen, Antea D’Andrea, Alessio Basti, Victor H. Souza, Jaakko O. Nieminen, Pantelis Lioumis, Risto J. Ilmoniemi, Gian Luca Romani, Vittorio Pizzella and Laura Marzetti
Brain Sci. 2023, 13(3), 418; https://doi.org/10.3390/brainsci13030418 - 28 Feb 2023
Cited by 5 | Viewed by 2961
Abstract
Coregistration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows non-invasive probing of brain circuits: TMS induces brain activation due to the generation of a properly oriented focused electric field (E-field) using a coil placed on a selected position over the scalp, while [...] Read more.
Coregistration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows non-invasive probing of brain circuits: TMS induces brain activation due to the generation of a properly oriented focused electric field (E-field) using a coil placed on a selected position over the scalp, while EEG captures the effects of the stimulation on brain electrical activity. Moreover, the combination of these techniques allows the investigation of several brain properties, including brain functional connectivity. The choice of E-field parameters, such as intensity, orientation, and position, is crucial for eliciting cortex-specific effects. Here, we evaluated whether and how the spatial pattern, i.e., topography and strength of functional connectivity, is modulated by the stimulus orientation. We systematically altered the E-field orientation when stimulating the left pre-supplementary motor area and showed an increase of functional connectivity in areas associated with the primary motor cortex and an E-field orientation-specific modulation of functional connectivity intensity. Full article
Show Figures

Figure 1

16 pages, 2538 KiB  
Article
Moderate-Intensity Intermittent Training Alters the DNA Methylation Pattern of PDE4D Gene in Hippocampus to Improve the Ability of Spatial Learning and Memory in Aging Rats Reduced by D-Galactose
by Jinmei Zhang, Qiaojing Gao, Jun Gao, Liting Lv, Renfan Liu, Yi Wu, Xue Li, Yu Jin and Lu Wang
Brain Sci. 2023, 13(3), 422; https://doi.org/10.3390/brainsci13030422 - 28 Feb 2023
Cited by 7 | Viewed by 1724
Abstract
(1) Background: Aging is the main risk factor for most neurodegenerative diseases, and the inhibition of Phosphodiesterase 4(PDE4) is considered a potential target for the treatment of neurological diseases. The purpose of this study was to investigate the inhibitory effect of moderate-intensity intermittent [...] Read more.
(1) Background: Aging is the main risk factor for most neurodegenerative diseases, and the inhibition of Phosphodiesterase 4(PDE4) is considered a potential target for the treatment of neurological diseases. The purpose of this study was to investigate the inhibitory effect of moderate-intensity intermittent training (MIIT) on PDE4 in the hippocampus of rats with D-galactose (D-gal)-induced cognitive impairment, and the possible mechanism of improving spatial learning and memory. (2) Methods: the aging rats were treated with D-Gal (150 mg/kg/day, for 6 weeks). The aging rats were treated with MIIT for exercise intervention (45 min/day, 5 days/week, for 8 weeks). The Morris water maze test was performed before and after MIIT to evaluate the spatial learning and memory ability, then to observe the synaptic ultrastructure of the hippocampus CA1 region, to detect the expression of synaptic-related protein synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), and to detect the expression of PDE4 subtypes, cAMP, and its signal pathway protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF), and the PDE4 methylation level. (3) Results: we found that MIIT for 8 weeks alleviated the decline in spatial learning and memory ability, and improved the synaptic structure of the hippocampus and the expression of synaptic protein SYP and PSD95 in D-Gal aging rats. To elucidate the mechanism of MIIT, we analyzed the expression of PDE4 isoforms PDE4A/PDE4B/PDE4D, cAMP, and the signaling pathway PKA/CREB/BDNF, which play an important role in memory consolidation and maintenance. The results showed that 8 weeks of MIIT significantly up-regulated cAMP, PKA, p-CREB, and BDNF protein expression, and down-regulated PDE4D mRNA and protein expression. Methylation analysis of the PDE4D gene showed that several CG sites in the promoter and exon1 regions were significantly up-regulated. (4) Conclusions: MIIT can improve the synaptic structure of the hippocampus CA1 area and improve the spatial learning and memory ability of aging rats, which may be related to the specific regulation of the PDE4D gene methylation level and inhibition of PDE4D expression. Full article
(This article belongs to the Special Issue Physical Exercise-Driven Brain Plasticity)
Show Figures

Figure 1

20 pages, 2911 KiB  
Article
Verification of the Four-Stage Model of Humor Processing: Evidence from an fMRI Study by Three-Element Verbal Jokes
by Chia-Yueh Chang, Yu-Chen Chan and Hsueh-Chih Chen
Brain Sci. 2023, 13(3), 417; https://doi.org/10.3390/brainsci13030417 - 27 Feb 2023
Cited by 6 | Viewed by 1718
Abstract
The four-stage model comprises the expectation, incongruity, resolution, and elaboration stages of humor processing. In previous studies, most researchers used two-element jokes (setup and punch line) as stimuli, based on experimental methods, to explore the humor process. By contrast, the present study used [...] Read more.
The four-stage model comprises the expectation, incongruity, resolution, and elaboration stages of humor processing. In previous studies, most researchers used two-element jokes (setup and punch line) as stimuli, based on experimental methods, to explore the humor process. By contrast, the present study used a humor corpus with the novelty of three-element verbal jokes to perform direct separation from the material and clarify the humor processes. In this study, we used three-element verbal jokes and nonjokes, and we conducted a repeated-measures analysis of variance with a 3 × 2 two-way within-subject design. In humor processing, the posterior insula and middle frontal gyrus were mainly activated in the expectation; the middle temporal gyrus and the medial frontal gyrus in the incongruity; the inferior frontal gyri, superior frontal gyrus, and inferior parietal lobule in the resolution; and the ventromedial prefrontal cortex, amygdala, anterior insula, nucleus accumbens, and midbrain in the elaboration. The contributions of this study lie in its use of a humor corpus with the novelty of self-compiled three-element jokes, which not only successfully verified the models established in previous studies but added the expectation to the model; thus, this study separated the expectation and incongruity processes, making humor processing more complete. Full article
(This article belongs to the Section Social Cognitive and Affective Neuroscience)
Show Figures

Graphical abstract

22 pages, 3566 KiB  
Article
A Comparative Study of the Impact of NO-Related Agents on MK-801- or Scopolamine-Induced Cognitive Impairments in the Morris Water Maze
by Paulina Cieślik, Magdalena Borska and Joanna Monika Wierońska
Brain Sci. 2023, 13(3), 410; https://doi.org/10.3390/brainsci13030410 - 27 Feb 2023
Cited by 5 | Viewed by 1672
Abstract
Learning and memory deficits accompany numerous brain dysfunctions, including schizophrenia and Alzheimer’s disease (AD), and many studies point to the role of nitric oxide (NO) in these processes. The present investigations constitute the follow-up of our previous research, in which we investigated the [...] Read more.
Learning and memory deficits accompany numerous brain dysfunctions, including schizophrenia and Alzheimer’s disease (AD), and many studies point to the role of nitric oxide (NO) in these processes. The present investigations constitute the follow-up of our previous research, in which we investigated the activity of NO releasers and a selective inhibitor of neuronal NO synthase (nNOS) to prevent short-term memory deficits in novel object recognition and T-maze. Here, the ability of the compounds to prevent the induction of long-term memory deficits by MK-801 or scopolamine administration was investigated. The Morris Water Maze test, a reliable and valid test of spatial learning and memory, was used, in which escape latency in the acquisition phase and nine different parameters in the retention phase were measured. A fast NO releaser (spermine NONOate), a slow NO releaser (DETA NONOate), and a nNOS inhibitor, N(ω)-propyl-L-arginine (NPLA), were used. The compounds were administered i.p. at a dose range of 0.05–0.5 mg/kg. All compounds prevented learning deficits in the acquisition phase and reversed reference memory deficits in the retention phase of the scopolamine-treated mice. Spermine NONOate was the least effective. In contrast, the drugs poorly antagonised MK-801-induced deficits, and only the administration of DETA NONOate induced some improvements in the retention trial. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
Show Figures

Figure 1

14 pages, 312 KiB  
Review
Application of Antipsychotic Drugs in Mood Disorders
by Janusz K. Rybakowski
Brain Sci. 2023, 13(3), 414; https://doi.org/10.3390/brainsci13030414 - 27 Feb 2023
Cited by 11 | Viewed by 3485
Abstract
Since their first application in psychiatry seventy years ago, antipsychotic drugs, besides schizophrenia, have been widely used in the treatment of mood disorders. Such an application of antipsychotics is the subject of this narrative review. Antipsychotic drugs can be arbitrarily classified into three [...] Read more.
Since their first application in psychiatry seventy years ago, antipsychotic drugs, besides schizophrenia, have been widely used in the treatment of mood disorders. Such an application of antipsychotics is the subject of this narrative review. Antipsychotic drugs can be arbitrarily classified into three generations. First-generation antipsychotics (FGAs), such as phenothiazines and haloperidol, were mainly applied for the treatment of acute mania, as well as psychotic depression when combined with antidepressants. The second-generation, so-called atypical antipsychotics (SGAs), such as clozapine, risperidone, olanzapine, and quetiapine, have antimanic activity and are also effective for the maintenance treatment of bipolar disorder. Additionally, quetiapine exerts therapeutic action in bipolar depression. Third-generation antipsychotics (TGAs) started with aripiprazole, a partial dopamine D2 receptor agonist, followed by brexpiprazole, lurasidone, cariprazine, and lumateperone. Out of these drugs, aripiprazole and cariprazine have antimanic activity, lurasidone, cariprazine, and lumateperone exert a significant antidepressant effect on bipolar depression, while there is evidence for the efficacy of aripiprazole and lurasidone in the prevention of recurrence in bipolar disorder. Therefore, successive generations of antipsychotic drugs present a diverse spectrum for application in mood disorders. Such a pharmacological overlap in the treatment of schizophrenia and bipolar illness stands in contrast to the dichotomous Kraepelinian division of schizophrenia and mood disorders. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
8 pages, 5089 KiB  
Communication
Technical Pearls to Effectively Use 5-ALA in Fluorescence-Guided Tumor Resection—5 Lessons from the Operating Room
by Giuseppe Maria Della Pepa, Grazia Menna and Alessandro Olivi
Brain Sci. 2023, 13(3), 411; https://doi.org/10.3390/brainsci13030411 - 27 Feb 2023
Cited by 4 | Viewed by 1605
Abstract
Background: Since its introduction in 2007 in Europe and in 2017 in the United States, 5-ALA has demonstrated an undisputed advantage in providing real-time tumor visualization. The aim of the present paper is to summarize our institutional experience over a decade of routine [...] Read more.
Background: Since its introduction in 2007 in Europe and in 2017 in the United States, 5-ALA has demonstrated an undisputed advantage in providing real-time tumor visualization. The aim of the present paper is to summarize our institutional experience over a decade of routine 5-ALA-guided procedures in order to provide five surgical tricks to ease surgical workflow. Methods: Data were collected from 822 patients diagnosed with histopathologically confirmed high-grade gliomas (HGG)—according to the WHO 2021 criteria—who underwent surgery at the Fondazione Policlinico Universitario Agostino Gemelli between January 2012 and January 2022. Results: From our large institutional experience, the learned technical pearls were grouped in five distinct domains: 1. Analysis of visualization, overall workflow, and technical recommendations to improve intraoperative set-up; 2. Techniques to reduce the risk of inadvertent residuals and failure to evocate fluorescence; 3. Analysis of specific surgical conditions favoring remnants; 4. Assessment of different degrees of fluorescence and their surgical meaning; 5. Analysis of false positive cases. Conclusions: With all the limitations of a qualitative and retrospective analysis, this paper was specifically conceived as a vademecum for educational purposes to promote and maximize 5-ALA employment. Full article
Show Figures

Figure 1

13 pages, 969 KiB  
Review
Neural Correlates of Delay Discounting in the Light of Brain Imaging and Non-Invasive Brain Stimulation: What We Know and What Is Missed
by Andrea Stefano Moro, Daniele Saccenti, Mattia Ferro, Simona Scaini, Antonio Malgaroli and Jacopo Lamanna
Brain Sci. 2023, 13(3), 403; https://doi.org/10.3390/brainsci13030403 - 26 Feb 2023
Cited by 5 | Viewed by 1895
Abstract
In decision making, the subjective value of a reward declines with the delay to its receipt, describing a hyperbolic function. Although this phenomenon, referred to as delay discounting (DD), has been extensively characterized and reported in many animal species, still, little is known [...] Read more.
In decision making, the subjective value of a reward declines with the delay to its receipt, describing a hyperbolic function. Although this phenomenon, referred to as delay discounting (DD), has been extensively characterized and reported in many animal species, still, little is known about the neuronal processes that support it. Here, after drawing a comprehensive portrait, we consider the latest neuroimaging and lesion studies, the outcomes of which often appear contradictory among comparable experimental settings. In the second part of the manuscript, we focus on a more recent and effective route of investigation: non-invasive brain stimulation (NIBS). We provide a comprehensive review of the available studies that applied transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to affect subjects’ performance in DD tasks. The aim of our survey is not only to highlight the superiority of NIBS in investigating DD, but also to suggest targets for future experimental studies, since the regions considered in these studies represent only a fraction of the possible ones. In particular, we argue that, based on the available neurophysiological evidence from lesion and brain imaging studies, a very promising and underrepresented region for future neuromodulation studies investigating DD is the orbitofrontal cortex. Full article
(This article belongs to the Special Issue Neural Basis of Executive Control)
Show Figures

Figure 1

13 pages, 2107 KiB  
Article
Accessible Dyslexia Detection with Real-Time Reading Feedback through Robust Interpretable Eye-Tracking Features
by Ivan Vajs, Tamara Papić, Vanja Ković, Andrej M. Savić and Milica M. Janković
Brain Sci. 2023, 13(3), 405; https://doi.org/10.3390/brainsci13030405 - 26 Feb 2023
Cited by 5 | Viewed by 2270
Abstract
Developing reliable, quantifiable, and accessible metrics for dyslexia diagnosis and tracking represents an important goal, considering the widespread nature of dyslexia and its negative impact on education and quality of life. In this study, we observe eye-tracking data from 15 dyslexic and 15 [...] Read more.
Developing reliable, quantifiable, and accessible metrics for dyslexia diagnosis and tracking represents an important goal, considering the widespread nature of dyslexia and its negative impact on education and quality of life. In this study, we observe eye-tracking data from 15 dyslexic and 15 neurotypical Serbian school-age children who read text segments presented on different color configurations. Two new eye-tracking features were introduced that quantify the amount of spatial complexity of the subject’s gaze through time and inherently provide information regarding the locations in the text in which the subject struggled the most. The features were extracted from the raw eye-tracking data (x, y coordinates), from the original data gathered at 60 Hz, and from the downsampled data at 30 Hz, examining the compatibility of features with low-cost or custom-made eye-trackers. The features were used as inputs to machine learning algorithms, and the best-obtained accuracy was 88.9% for 60 Hz and 87.8% for 30 Hz. The features were also used to analyze the influence of background/overlay color on the quality of reading, and it was shown that the introduced features separate the dyslexic and control groups regardless of the background/overlay color. The colors can, however, influence each subject differently, which implies that an individualistic approach would be necessary to obtain the best therapeutic results. The performed study shows promise in dyslexia detection and evaluation, as the proposed features can be implemented in real time as feedback during reading and show effectiveness at detecting dyslexia with data obtained using a lower sampling rate. Full article
(This article belongs to the Special Issue Developmental Dyslexia: Theories and Experimental Approaches)
Show Figures

Figure 1

14 pages, 584 KiB  
Review
Brexpiprazole—Pharmacologic Properties and Use in Schizophrenia and Mood Disorders
by Marcin Siwek, Krzysztof Wojtasik-Bakalarz, Anna Julia Krupa and Adrian Andrzej Chrobak
Brain Sci. 2023, 13(3), 397; https://doi.org/10.3390/brainsci13030397 - 25 Feb 2023
Cited by 9 | Viewed by 3536
Abstract
In 2002, the first III generation antipsychotic drug was registered—aripiprazole. Its partial dopaminergic agonism underlies its unique mechanism of action and the potentially beneficial influence on the positive, negative, or cognitive symptoms. Due to its relatively high intrinsic activity, the drug could often [...] Read more.
In 2002, the first III generation antipsychotic drug was registered—aripiprazole. Its partial dopaminergic agonism underlies its unique mechanism of action and the potentially beneficial influence on the positive, negative, or cognitive symptoms. Due to its relatively high intrinsic activity, the drug could often cause agitation, anxiety, or akathisia. For this reason, efforts were made to develop a drug which would retain the positive favorable actions of aripiprazole but present a more advantageous clinical profile. This turned out to be brexpiprazole, which was registered in 2015. Its pharmacodynamic and pharmacokinetic profile (similarly to the other most recent antipsychotics, i.e., lurasidone or cariprazine) shows promise of increasing the effectiveness of schizophrenia treatment in the dimensions in which the previous antipsychotics were not sufficiently effective, including negative, depressive, or cognitive symptoms. Like other new antipsychotics, it can also be useful in the treatment of mood disorders, for instance drug-resistant depression. Previous reviews focused on the use of brexpiprazole in specific diagnostic groups. The aim of this article is to provide the readers with an overview of data on the mechanism of action, clinical effectiveness in all studied diagnostic groups, as well as potential drug–food interactions, and the safety of brexpiprazole. Full article
(This article belongs to the Special Issue Psychopharmacology and Biological Studies of Psychosis)
Show Figures

Figure 1

13 pages, 2408 KiB  
Article
Social Touch Reduces Pain Perception—An fMRI Study of Cortical Mechanisms
by Mattias Savallampi, Anne M. S. Maallo, Sumaiya Shaikh, Francis McGlone, Frédérique J. Bariguian-Revel, Håkan Olausson and Rebecca Boehme
Brain Sci. 2023, 13(3), 393; https://doi.org/10.3390/brainsci13030393 - 24 Feb 2023
Cited by 4 | Viewed by 3047
Abstract
Unmyelinated low-threshold mechanoreceptors (C-tactile, CT) in the human skin are important for signaling information about hedonic aspects of touch. We have previously reported that CT-targeted brush stroking by means of a robot reduces experimental mechanical pain. To improve the ecological validity of the [...] Read more.
Unmyelinated low-threshold mechanoreceptors (C-tactile, CT) in the human skin are important for signaling information about hedonic aspects of touch. We have previously reported that CT-targeted brush stroking by means of a robot reduces experimental mechanical pain. To improve the ecological validity of the stimulation, we developed standardized human–human touch gestures for signaling attention and calming. The attention gesture is characterized by tapping of the skin and is perceived as neither pleasant nor unpleasant, i.e., neutral. The calming gesture is characterized by slow stroking of the skin and is perceived as moderately to very pleasant. Furthermore, the attention (tapping) gesture is ineffective, whereas the calming (stroking) gesture is effective in activating CT-afferents. We conducted an fMRI study (n = 32) and capitalized on the previous development of touch gestures. We also developed an MR compatible stimulator for high-precision mechanical pain stimulation of the thenar region of the hand. Skin-to-skin touching (stroking or tapping) was applied and was followed by low and high pain. When the stroking gesture preceded pain, the pain was rated as less intense. When the tapping gesture preceded the pain, the pain was rated as more intense. Individual pain perception related to insula activation, but the activation was not higher for stroking than for tapping in any brain area during the stimulation period. However, during the evaluation period, stronger activation in the periaqueductal gray matter was observed after calming touch compared to after tapping touch. This finding invites speculation that human–human gentle skin stroking, effective in activating CT-afferents, reduced pain through neural processes involving CT-afferents and the descending pain pathway. Full article
(This article belongs to the Section Neuroscience of Pain)
Show Figures

Figure 1

12 pages, 474 KiB  
Article
Mental Fatigue Is Associated with Subjective Cognitive Decline among Older Adults
by Qianqian Zhang, McKenna Angela Sun, Qiuzi Sun, Hua Mei, Hengyi Rao and Jianghong Liu
Brain Sci. 2023, 13(3), 376; https://doi.org/10.3390/brainsci13030376 - 21 Feb 2023
Cited by 8 | Viewed by 2355
Abstract
Both Subjective Cognitive Decline (SCD) and mental fatigue are becoming increasingly prevalent as global demographics shifts indicate our aging populations. SCD is a reversible precursor for Alzheimer’s disease, and early identification is important for effective intervention strategies. We aim to investigate the association [...] Read more.
Both Subjective Cognitive Decline (SCD) and mental fatigue are becoming increasingly prevalent as global demographics shifts indicate our aging populations. SCD is a reversible precursor for Alzheimer’s disease, and early identification is important for effective intervention strategies. We aim to investigate the association between mental fatigue—as well as other factors—and SCD. A total of 707 old adults (aged from 60 to 99) from Shanghai, China, participated in this study and completed self-reported instruments covering their cognitive and mental status as well as demographic information. Mental fatigue status was assessed by using four items derived from the functional impairment syndrome of the Old Adult Self Report (OASR). SCD was assessed by using the Memory/Cognition syndrome of OASR. A total of 681 old adults were included in the current study. The means of SCD significantly differed between each group of factors (age, gender, and mental fatigue). The general linear regression models showed that SCD increased with age, females scored higher than males, and SCD was positively associated with mental fatigue factors including difficulty getting things done, poor task performance, sleeping more, and a lack of energy among old adults. The study also found that SCD is negatively associated with the high-income group among young-old (aged from 60 to 75) males and associated with good marital/living status with the companion of spouses/partners among young-old females. These results suggest that gender, income level, marital/living status, and mental fatigue are crucial factors in preventing SCD among old adults and are pivotal in developing early intervention strategies to preserve the mental health of an increasingly aging population. Full article
(This article belongs to the Special Issue Effects of Sleep Deprivation on Cognition, Emotion, and Behavior)
Show Figures

Figure 1

11 pages, 1818 KiB  
Article
Hyperscanning EEG Paradigm Applied to Remote vs. Face-To-Face Learning in Managerial Contexts: Which Is Better?
by Michela Balconi, Laura Angioletti and Federico Cassioli
Brain Sci. 2023, 13(2), 356; https://doi.org/10.3390/brainsci13020356 - 18 Feb 2023
Cited by 5 | Viewed by 1920
Abstract
We propose a hyperscanning research design, where electroencephalographic (EEG) data were collected on an instructor and teams of learners. We compared neurophysiological measures within the frequency domain (delta, theta, alpha, and beta EEG bands) in the two conditions: face-to-face and remote settings. Data [...] Read more.
We propose a hyperscanning research design, where electroencephalographic (EEG) data were collected on an instructor and teams of learners. We compared neurophysiological measures within the frequency domain (delta, theta, alpha, and beta EEG bands) in the two conditions: face-to-face and remote settings. Data collection was carried out using wearable EEG systems. Conversational analysis was previously applied to detect comparable EEG time blocks and semantic topics. The digitalization of training can be considered a challenge but also a chance for organizations. However, if not carefully addressed, it might constitute a criticality. Limited research explored how remote, as opposed to face-to-face, training affects cognitive, (such as memory and attention), affective, and social processes in workgroups. Data showed an alpha desynchronization and, conversely, a theta and beta synchronization for the face-to-face condition. Moreover, trainees showed different patterns for beta power depending on the setting condition, with significantly increased power spectral density (PSD) in the face-to-face condition. These results highlight the relevance of neurophysiological measures in testing the e-learning process, in relation to the emotional engagement, memory encoding, and attentional processing. Full article
(This article belongs to the Section Social Cognitive and Affective Neuroscience)
Show Figures

Figure 1

25 pages, 6255 KiB  
Article
Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT
by Theodoros N. Papadomanolakis, Eleftheria S. Sergaki, Andreas A. Polydorou, Antonios G. Krasoudakis, Georgios N. Makris-Tsalikis, Alexios A. Polydorou, Nikolaos M. Afentakis, Sofia A. Athanasiou, Ioannis O. Vardiambasis and Michail E. Zervakis
Brain Sci. 2023, 13(2), 348; https://doi.org/10.3390/brainsci13020348 - 17 Feb 2023
Cited by 7 | Viewed by 2403
Abstract
Purpose: Brain tumors are diagnosed and classified manually and noninvasively by radiologists using Magnetic Resonance Imaging (MRI) data. The risk of misdiagnosis may exist due to human factors such as lack of time, fatigue, and relatively low experience. Deep learning methods have become [...] Read more.
Purpose: Brain tumors are diagnosed and classified manually and noninvasively by radiologists using Magnetic Resonance Imaging (MRI) data. The risk of misdiagnosis may exist due to human factors such as lack of time, fatigue, and relatively low experience. Deep learning methods have become increasingly important in MRI classification. To improve diagnostic accuracy, researchers emphasize the need to develop Computer-Aided Diagnosis (CAD) computational diagnostics based on artificial intelligence (AI) systems by using deep learning methods such as convolutional neural networks (CNN) and improving the performance of CNN by combining it with other data analysis tools such as wavelet transform. In this study, a novel diagnostic framework based on CNN and DWT data analysis is developed for the diagnosis of glioma tumors in the brain, among other tumors and other diseases, with T2-SWI MRI scans. It is a binary CNN classifier that treats the disease “glioma tumor” as positive and the other pathologies as negative, resulting in a very unbalanced binary problem. The study includes a comparative analysis of a CNN trained with wavelet transform data of MRIs instead of their pixel intensity values in order to demonstrate the increased performance of the CNN and DWT analysis in diagnosing brain gliomas. The results of the proposed CNN architecture are also compared with a deep CNN pre-trained on VGG16 transfer learning network and with the SVM machine learning method using DWT knowledge. Methods: To improve the accuracy of the CNN classifier, the proposed CNN model uses as knowledge the spatial and temporal features extracted by converting the original MRI images to the frequency domain by performing Discrete Wavelet Transformation (DWT), instead of the traditionally used original scans in the form of pixel intensities. Moreover, no pre-processing was applied to the original images. The images used are MRIs of type T2-SWI sequences parallel to the axial plane. Firstly, a compression step is applied for each MRI scan applying DWT up to three levels of decomposition. These data are used to train a 2D CNN in order to classify the scans as showing glioma or not. The proposed CNN model is trained on MRI slices originated from 382 various male and female adult patients, showing healthy and pathological images from a selection of diseases (showing glioma, meningioma, pituitary, necrosis, edema, non-enchasing tumor, hemorrhagic foci, edema, ischemic changes, cystic areas, etc.). The images are provided by the database of the Medical Image Computing and Computer-Assisted Intervention (MICCAI) and the Ischemic Stroke Lesion Segmentation (ISLES) challenges on Brain Tumor Segmentation (BraTS) challenges 2016 and 2017, as well as by the numerous records kept in the public general hospital of Chania, Crete, “Saint George”. Results: The proposed frameworks are experimentally evaluated by examining MRI slices originating from 190 different patients (not included in the training set), of which 56% are showing gliomas by the longest two axes less than 2 cm and 44% are showing other pathological effects or healthy cases. Results show convincing performance when using as information the spatial and temporal features extracted by the original scans. With the proposed CNN model and with data in DWT format, we achieved the following statistic percentages: accuracy 0.97, sensitivity (recall) 1, specificity 0.93, precision 0.95, FNR 0, and FPR 0.07. These numbers are higher for this data format (respectively: accuracy by 6% higher, recall by 11%, specificity by 7%, precision by 5%, FNR by 0.1%, and FPR is the same) than it would be, had we used as input data the intensity values of the MRIs (instead of the DWT analysis of the MRIs). Additionally, our study showed that when our CNN takes into account the TL of the existing network VGG, the performance values are lower, as follows: accuracy 0.87, sensitivity (recall) 0.91, specificity 0.84, precision 0.86, FNR of 0.08, and FPR 0.14. Conclusions: The experimental results show the outperformance of the CNN, which is not based on transfer learning, but is using as information the MRI brain scans decomposed into DWT information instead of the pixel intensity of the original scans. The results are promising for the proposed CNN based on DWT knowledge to serve for binary diagnosis of glioma tumors among other tumors and diseases. Moreover, the SVM learning model using DWT data analysis performs with higher accuracy and sensitivity than using pixel values. Full article
Show Figures

Figure 1

12 pages, 7615 KiB  
Article
EEG Features in Autism Spectrum Disorder: A Retrospective Analysis in a Cohort of Preschool Children
by Marta Elena Santarone, Stefania Zambrano, Nicoletta Zanotta, Elisa Mani, Sara Minghetti, Marco Pozzi, Laura Villa, Massimo Molteni and Claudio Zucca
Brain Sci. 2023, 13(2), 345; https://doi.org/10.3390/brainsci13020345 - 17 Feb 2023
Cited by 6 | Viewed by 3593
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that can be associated with intellectual disability (ID) and epilepsy (E). The etiology and the pathogenesis of this disorder is in most cases still to be clarified. Several studies have underlined that the EEG [...] Read more.
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that can be associated with intellectual disability (ID) and epilepsy (E). The etiology and the pathogenesis of this disorder is in most cases still to be clarified. Several studies have underlined that the EEG recordings in children with these clinical pictures are abnormal, however the precise frequency of these abnormalities and their relationship with the pathogenic mechanisms and in particular with epileptic seizures are still unknown. We retrospectively reviewed 292 routine polysomnographic EEG tracings of preschool children (age < 6 years) who had received a first multidisciplinary diagnosis of ASD according to DSM-5 clinical criteria. Children (mean age: 34.6 months) were diagnosed at IRCCS E. Medea (Bosisio Parini, Italy). We evaluated: the background activity during wakefulness and sleep, the presence and the characteristics (focal or diffuse) of the slow-waves abnormalities and the interictal epileptiform discharges. In 78.0% of cases the EEG recordings were found to be abnormal, particularly during sleep. Paroxysmal slowing and epileptiform abnormalities were found in the 28.4% of the subjects, confirming the high percentage of abnormal polysomnographic EEG recordings in children with ASD. These alterations seem to be more correlated with the characteristics of the underlying pathology than with intellectual disability and epilepsy. In particular, we underline the possible significance of the prevalence of EEG abnormalities during sleep. Moreover, we analyzed the possibility that EEG data reduces the ASD clinical heterogeneity and suggests the exams to be carried out to clarify the etiology of the disorder. Full article
(This article belongs to the Topic Autism: Molecular Bases, Diagnosis and Therapies)
Show Figures

Figure 1

12 pages, 279 KiB  
Review
Impact of Physical Exercise Alone or in Combination with Cognitive Remediation on Cognitive Functions in People with Schizophrenia: A Qualitative Critical Review
by Giacomo Deste, Daniele Corbo, Gabriele Nibbio, Mauro Italia, Dario Dell'Ovo, Irene Calzavara-Pinton, Jacopo Lisoni, Stefano Barlati, Roberto Gasparotti and Antonio Vita
Brain Sci. 2023, 13(2), 320; https://doi.org/10.3390/brainsci13020320 - 14 Feb 2023
Cited by 13 | Viewed by 2293
Abstract
Physical exercise and cognitive remediation represent the psychosocial interventions with the largest basis of evidence attesting their effectiveness in improving cognitive performance in people living with schizophrenia according to recent international guidance. The aims of this review are to provide an overview of [...] Read more.
Physical exercise and cognitive remediation represent the psychosocial interventions with the largest basis of evidence attesting their effectiveness in improving cognitive performance in people living with schizophrenia according to recent international guidance. The aims of this review are to provide an overview of the literature on physical exercise as a treatment for cognitive impairment in schizophrenia and of the studies that have combined physical exercise and cognitive remediation as an integrated rehabilitation intervention. Nine meta-analyses and systematic reviews on physical exercise alone and seven studies on interventions combining physical exercise and cognitive remediation are discussed. The efficacy of physical exercise in improving cognitive performance in people living with schizophrenia is well documented, but more research focused on identifying moderators of participants response and optimal modalities of delivery is required. Studies investigating the effectiveness of integrated interventions report that combining physical exercise and cognitive remediation provides superior benefits and quicker improvements compared to cognitive remediation alone, but most studies included small samples and did not explore long-term effects. While physical exercise and its combination with cognitive remediation appear to represent effective treatments for cognitive impairment in people living with schizophrenia, more evidence is currently needed to better understand how to implement these treatments in psychiatric rehabilitation practice. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor-Cognitive Interactions)
13 pages, 951 KiB  
Review
Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review
by Payam Tabaee Damavandi, Francesco Pasini, Gaia Fanella, Giulia Sofia Cereda, Gabriele Mainini, Jacopo C. DiFrancesco, Eugen Trinka and Simona Lattanzi
Brain Sci. 2023, 13(2), 326; https://doi.org/10.3390/brainsci13020326 - 14 Feb 2023
Cited by 6 | Viewed by 2815
Abstract
Brain tumor-related epilepsy (BTRE) is a common comorbidity in patients with brain neoplasms and it may be either the first symptom or develop after the tumor diagnosis. Increasing evidence suggests that brain tumors and BTRE share common pathophysiological mechanisms. Glutamatergic mechanisms can play [...] Read more.
Brain tumor-related epilepsy (BTRE) is a common comorbidity in patients with brain neoplasms and it may be either the first symptom or develop after the tumor diagnosis. Increasing evidence suggests that brain tumors and BTRE share common pathophysiological mechanisms. Glutamatergic mechanisms can play a central role in promoting both primary brain tumor growth and epileptogenesis. Perampanel (PER), which acts as a selective antagonist of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, may play a role both in the reduction in tumor growth and the control of epileptiform activity. This systematic review aimed to summarize the pre-clinical and clinical evidence about the antitumor properties, antiseizure effects and tolerability of PER in BTRE. Eight pre-clinical and eight clinical studies were identified. The currently available evidence suggests that PER can be an effective and generally well-tolerated therapeutic option in patients with BTRE. In vitro studies demonstrated promising antitumor activity of PER, while no role in slowing tumor progression has been demonstrated in rat models; clinical data on the potential antitumor activity of PER are scarce. Additional studies are needed to explore further the effects of PER on tumor progression and fully characterize its potentialities in patients with BTRE. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

24 pages, 1282 KiB  
Review
Endocannabinoid System and Exogenous Cannabinoids in Depression and Anxiety: A Review
by Ahmed Hasbi, Bertha K. Madras and Susan R. George
Brain Sci. 2023, 13(2), 325; https://doi.org/10.3390/brainsci13020325 - 14 Feb 2023
Cited by 14 | Viewed by 6432
Abstract
Background: There is a growing liberalization of cannabis-based preparations for medical and recreational use. In multiple instances, anxiety and depression are cited as either a primary or a secondary reason for the use of cannabinoids. Aim: The purpose of this review is to [...] Read more.
Background: There is a growing liberalization of cannabis-based preparations for medical and recreational use. In multiple instances, anxiety and depression are cited as either a primary or a secondary reason for the use of cannabinoids. Aim: The purpose of this review is to explore the association between depression or anxiety and the dysregulation of the endogenous endocannabinoid system (ECS), as well as the use of phytocannabinoids and synthetic cannabinoids in the remediation of depression/anxiety symptoms. After a brief description of the constituents of cannabis, cannabinoid receptors and the endocannabinoid system, the most important evidence is presented for the involvement of cannabinoids in depression and anxiety both in human and from animal models of depression and anxiety. Finally, evidence is presented for the clinical use of cannabinoids to treat depression and anxiety. Conclusions: Although the common belief that cannabinoids, including cannabis, its main studied components—tetrahydrocannabinol (THC) and cannabidiol (CBD)—or other synthetic derivatives have been suggested to have a therapeutic role for certain mental health conditions, all recent systematic reviews that we report have concluded that the evidence that cannabinoids improve depressive and anxiety disorders is weak, of very-low-quality, and offers no guidance on the use of cannabinoids for mental health conditions within a regulatory framework. There is an urgent need for high-quality studies examining the effects of cannabinoids on mental disorders in general and depression/anxiety in particular, as well as the consequences of long-term use of these preparations due to possible risks such as addiction and even reversal of improvement. Full article
(This article belongs to the Special Issue Cannabis and the Brain: Novel Perspectives and Understandings)
Show Figures

Figure 1

Back to TopTop