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Abstract: This article addresses the pervasive issue of fraud in financial transactions by introducing
the Graph Attention Network (GAN) into graph neural networks. The article integrates Node At-
tention Networks and Semantic Attention Networks to construct a Dual-Head Attention Network
module, enabling a comprehensive analysis of complex relationships in user transaction data. This
approach adeptly handles non-linear features and intricate data interaction relationships. The article
incorporates a Gradient-Boosting Decision Tree (GBDT) to enhance fraud identification to create the
GBDT-Dual-channel Graph Attention Network (GBDT-DGAN). In a bid to ensure user privacy, this
article introduces blockchain technology, culminating in the development of a financial anti-fraud
model that fuses blockchain with the GBDT-DGAN algorithm. Experimental verification demon-
strates the model’s accuracy, reaching 93.82%, a notable improvement of at least 5.76% compared
to baseline algorithms such as Convolutional Neural Networks. The recall and F1 values stand at
89.5% and 81.66%, respectively. Additionally, the model exhibits superior network data transmission
security, maintaining a packet loss rate below 7%. Consequently, the proposed model significantly
outperforms traditional approaches in financial fraud detection accuracy and ensures excellent net-
work data transmission security, offering an efficient and secure solution for fraud detection in the
financial domain.
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1. Introduction

In the rapidly evolving landscape of finance, thwarting fraudulent activities has
emerged as a paramount concern for both financial institutions and regulatory bodies.
Traditional fraud detection methods, relying heavily on personal information and historical
records, face significant limitations in the face of technological advancements and the esca-
lating complexity of financial transactions. These limitations are particularly pronounced
when dealing with collaborative fraudulent activities involving multiple decisions and
dynamically changing, high-dimensional data [1,2]. In today’s digital age, the rapid growth
of financial transactions and the continuous evolution of financial fraud have led to an
urgent need for more innovative and efficient anti-fraud solutions. With the development
of financial technology, malicious actors have become increasingly cunning, using more
complex means to engage in fraudulent activities, posing a serious threat to the stability of
the financial system and the security of users’ assets.

So, in the face of increasingly complex financial transactions and technological ad-
vancements, how do we improve the generalization ability of financial anti-fraud models,
ensure the effectiveness of the models, and protect customer privacy? The financial industry
is thus confronted with an urgent need for more robust and intelligent fraud detection
tools. In response to this challenge, deep learning, an artificial intelligence algorithm, has
emerged as a promising solution. Through unsupervised learning on data information,
deep learning can adeptly navigate complex financial network structures, comprehensively
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discerning data patterns and identifying potential abnormal behaviors or fraud patterns.
This capability opens up new avenues for effectively addressing the intricate issue of
financial fraud [3].

The prevalence of fraudulent activities in financial transactions has escalated into a
pervasive global challenge. Graph Neural Networks (GNNSs), serving as deep learning
models designed for graph-structured data, demonstrate proficiency in modeling intri-
cate financial networks encompassing customer relationships, transaction processes, and
fund flows. By leveraging their capacity to holistically capture patterns and regularities
within data, GNNs excel in identifying potential abnormal behaviors and fraud patterns
embedded in financial datasets. Their adeptness in handling unstructured data and dis-
cerning complex relationships between nodes provides them with a distinct advantage in
uncovering potential risks and abnormal transactions [4].

Traditional anti-fraud methods have difficulty in effectively capturing these new types
of fraudulent behaviors, so researchers are constantly striving to seek innovative solutions
based on advanced technologies. A comprehensive survey by Ma et al. (2021) delved
into deep learning methods in graph anomaly detection, underscoring the application
advantages of GNN models in detecting anomalies within graph data [5]. Ashtiani and
Raahemi (2021) compiled a comprehensive summary of applications and methodologies
related to deep learning algorithms, including GNN-based works, in fraud detection. Their
work offers an in-depth exploration and outlines research directions within the realm of
financial fraud detection [6]. Additionally, Li et al. (2021) proposed a medical image fusion
method based on deep learning, presenting more accurate and comprehensive image data
prediction results for medical diagnosis and treatment [7].

Despite the considerable promise offered by GNNs in the realm of financial anti-fraud,
practical implementations face several formidable challenges. Issues such as data quality
and scale, model interpretability, and privacy protection emerge as significant hurdles. To
address these challenges, blockchain technology, renowned for its decentralized, tamper-
resistant, and encryption security features, emerges as a powerful solution, particularly
in enhancing the safeguarding of financial data privacy. By adopting a decentralized and
distributed approach to storing transaction data, blockchain serves as a robust deterrent
against data tampering and unauthorized access. This innovative application of technol-
ogy empowers financial institutions to securely share and verify data, all while ensuring
comprehensive protection of customer privacy [8,9].

In conclusion, the goal of this article is to improve the generalization ability of financial
anti-fraud models while ensuring data privacy, in response to the challenges posed by
increasingly complex fraudulent activities in the financial sector. This article first collects
financial transaction data and performs preprocessing and feature engineering to provide
input for the GNN model. Second, this article designs and trains a GNN model to identify
patterns and anomalies in the data through unsupervised learning, thus identifying poten-
tial fraudulent patterns and abnormal behaviors. Next, this article integrates blockchain
technology into the data storage and sharing process to ensure the privacy and security
of transaction data. Finally, rigorous model performance evaluation and comparative ex-
periments are conducted to propose improvements and solutions to real-world challenges.
The contribution lies in providing financial institutions with more powerful fraud detec-
tion tools, promoting the development of financial technology, and promoting sustainable
growth and secure operation of the financial industry. The synergistic application of GNN
and blockchain heralds a new era in financial security, promising heightened efficiency and
resilience against evolving threats in the dynamic landscape of financial transactions.

2. Literature Review
2.1. Review of Intelligent Recognition Research in Financial Anti-Fraud
In the dynamic landscape of financial fraud, traditional rules and statistical models

encounter challenges in adapting to evolving methodologies, necessitating the exploration
of more flexible and adaptive approaches. Many scholarly investigations have contributed
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significantly to the field of financial anti-fraud. Liu and Jiang (2023) [10] introduced an
advanced persistent threat prediction analysis method, employing causal graph model-
ing to forecast advanced persistent threats—a pivotal stride in predictive analysis. Fang
et al. (2021) [11] innovatively addressed internet loan fraud by integrating deep learn-
ing techniques, enhancing accuracy and efficiency in detecting fraudulent activities on
online lending platforms. Alarfaj et al. (2022) [12] dedicated their efforts to employing
advanced machine learning and deep learning algorithms in credit card fraud detection.
Their model harnessed cutting-edge technologies, heightening the accuracy of credit card
transaction fraud detection systems and fortifying the security of financial transactions.
Cheng et al. (2020) [13] proposed a credit card fraud detection neural network integrating
a spatiotemporal attention mechanism. This attention mechanism effectively captured
spatiotemporal patterns in credit card transactions, augmenting the precision and reli-
ability of fraud detection in financial transactions. Lei et al. (2022) [14] ventured into
the development of an intelligent information system for financial analysis, leveraging
supervised machine learning algorithms. This system facilitated comprehensive financial
analysis, aiding decision-making by integrating supervised machine learning technology.
In a consumer-centric approach, Xu et al. (2022) [15] constructed a consumer fraud vic-
tim model by incorporating individual-specific factors. This enhancement significantly
improved the accuracy of the fraud victim prediction model, contributing to the construc-
tion of a more refined consumer fraud detection system. In pursuing enhanced privacy
protection, Verykios et al. (2022) [16] delved into techniques for concealing sensitive data
in the financial anti-fraud process. Their focus on safeguarding sensitive data during
anti-fraud procedures maintained privacy while preserving an effective fraud detection
mechanism. Exploring graph-based machine learning, Usman et al. (2023) [17] proposed an
intelligent anti-money laundering fraud control model. Leveraging graph-based machine
learning technology, their model elevated anti-money laundering measures, consequently
enhancing fraud control and compliance in financial transactions. Collectively, these studies
underscore the multifaceted and evolving nature of intelligent recognition in the realm of
financial anti-fraud research.

2.2. Comprehensive Review of GNN Applications in the Financial Landscape

GNNs have emerged as powerful tools for handling unstructured financial data, offer-
ing a holistic approach to capturing intricate financial network structures. The versatility
of GNN s in financial research is evident through various studies conducted by scholars
in the field. Cheng et al. (2022) [18] proposed a multimodal Graph Attention Network
(GAN) for financial time series prediction. Integrating diverse data modalities into a graph
structure, the model significantly enhances the accuracy of financial time series analysis. By
harnessing the power of GNNs, the model adeptly captures intricate relationships within
financial data, thereby improving predictive performance. In a distinct domain, Zhang
et al. (2023) [19] introduced a dynamic attribute-driven GAN for stock prediction in behav-
ioral finance. By leveraging dynamic attributes to construct a GAN, this model effectively
captures the evolving relationships among stock behaviors, considering dynamic features
within the financial market to enhance the accuracy of stock prediction. Xu et al. (2022) [20]
proposed a Hierarchical GAN tailored for classifying stocks with price limit changes. Em-
bracing a hierarchical structure, the model adeptly captures multi-level relationships within
financial data, thereby refining the accuracy of classifying stocks subject to price limit
changes. Lazcano et al. (2023) [21] presented a combined model integrating recurrent
neural networks and graph convolutional networks for financial time series prediction.
This amalgamation effectively captures both time dependencies and graph-based features
in financial data, resulting in improved accuracy for financial time series prediction. In con-
clusion, these studies underscore the versatility and efficacy of GNNs in various financial
domains, showcasing their potential to enhance accuracy, capture intricate relationships,
and refine predictive capabilities. Sun et al. (2024) [22] utilized GraphSAGE and deep
reinforcement learning for optimizing financial investment portfolios. The results showed
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that this method performed well in handling complex financial relationships, but more
empirical research was needed to verify its effectiveness in actual markets.

In summary, a meticulous examination of the reviewed literature underscores the
substantial potential of emerging technologies, particularly machine learning and deep
learning, in the realm of fraud detection. Pioneering studies by Fang et al. (2021), Xu et al.
(2022), Verykios et al. (2022), and Usman et al. (2023) illustrate methodologies adept at
discerning intricate patterns within vast, high-dimensional datasets. These innovative
approaches identify anomalous behavior effectively and exhibit adaptability to evolving
forms of fraud through continuous optimization. While the exploration of graph neural
network applications in finance highlights their remarkable efficacy in fraud recognition
and stock prediction, the existing body of research has overlooked concerns related to the
leakage of user data information within the financial domain.

Although the aforementioned research extensively explores the applications of ma-
chine learning and deep learning technologies in the financial field, there is little mention of
the potential of GNNs in financial anti-fraud. And the application of graph neural networks
in the field of financial fraud has not been fully explored. This article aims to use GNNs
to solve the problem of anti-fraud in the financial field and improve the accuracy and
reliability of fraud detection. In particular, this article focuses on the complex correlations
and unstructured data of financial transactions and explores these characteristics through
GNN technology to fill the gap in existing research in this field and provide new research
perspectives and solutions for the field of financial anti-fraud.

3. GNN Applications in Financial Anti-Fraud Research
3.1. Optimization Analysis of GNN Models Applied in Financial Anti-Fraud

In the realm of finance, intricate relationships among nodes in financial network data
necessitate a nuanced approach for effective fraud detection. Recognizing the multifaceted
nature of financial fraud requires a thorough understanding and capture of node infor-
mation within financial network data. GNNs emerge as a powerful tool for this purpose,
excelling in the capacity to capture associations between nodes and model complex re-
lationships inherent in financial transactions [23,24]. It is noteworthy that GNN models
encompass Graph Convolutional Neural Networks (GCNs) and GANS.

GCNs, rooted in convolutional operations, are tailored to handle graph data, specif-
ically representing connections between nodes [25]. The fundamental concept of GCNs
involves information propagation based on the underlying graph structure, facilitating each
node in acquiring and integrating information from its neighboring nodes, as illustrated in
Figure 1.
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Figure 1. GCN framework.

In GCNs, each node aggregates information about its neighboring nodes and adjusts
weights to retain important information about node relationships. After aggregating
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neighbor information, nodes will propagate their feature information to neighboring nodes,
forming a layer-by-layer information transmission process. At each layer, through graph
convolution operations, nodes update their feature representations while considering the
contributions of neighboring nodes. This graph-based information propagation enables
GCNs to capture nonlinear relationships and interactions between nodes in complex
networks, providing powerful modeling capabilities for the financial anti-fraud model.

Let the graph representing image information in the financial domain be denoted as
G = (V,E), where the graph comprises N vertices v; € V, with edge sets ¢;; € (v;,v;) € E
and edge weight w;;. First, vertex features X = {xi}fil v are extracted, where x; denotes
the feature vector of the i-th vertex v; in the image. These features are then utilized as
input for the GCN. In the context of the anti-fraud graph in the financial domain, x; can be
defined as in Equation (1) below:

x; = concat(Map(v;), Mg (v;)) 1)

Equation (2) describes the GCN.
g+ — & <D%@5H(l)w(l)) 2)

In Equation (2), H () denotes the I-th hidden layer; A = Iy + A refers to the adjacency
matrix of the subject interaction graph; Iy signifies the identity matrix; D;; = Y Zi]. refers to
the degree matrix containing the entry and exit coefficients of each vertex of the interaction
graph; W) represents the parameter matrix of network learning; and ¢ indicates the
activation function, utilizing the Rectified Linear Unit (ReLU) activation.

The GAN accomplishes feature propagation and aggregation by adaptively learning
attention weights between each node and its neighboring nodes [26,27].

In a standard GAN, the input and output of the graph attention layer are defined as in
Equations (3) and (4), respectively:

- - —

hm—{hl,hz,---,hn},heRmD 3)
- = —

hom:{hl,hz,~~,hn},heRnxowD @)

Here, n stands for the number of vertices contained in the graph data, InD refers to the
feature dimension of the input vertex, and OutD represents the feature dimension of the
output vertex.

For the target node g, a forward propagation neural network is utilized to calculate
the weight ey, of its neighboring nodes N(g), as defined in Equation (5):

equ = a([Why||Why]), u € N(q) (5)

In Equation (5), || refers to the vector-splicing operation, W denotes the learnable
parameter matrix, and a(-) is the mapping function. 1, and h; refer to the feature vectors.
After obtaining the weights of neighboring nodes using GAN, the neighborhood weight
agy is normalized using the softmax activation function, as defined in Equation (6):

- ~ exp(LeakReLU (equ))
gy = softmax(eq) = YkeN(g) exp(LeakReLU (eqy)) ©
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Once GAN computes the weight distribution ag, for all neighboring nodes of the
node g, it performs a weighted sum of the features of each neighboring node along with its
weight. The feature vector h; of node g is updated, as shown in Equation (7):

hg =0 2 aquWhu (7)
ueN(q)

Furthermore, GAN employs K independent attention heads to model relationships be-
tween nodes in different subspaces. The updated feature vector /z; of node g is represented
as Equation (8):

1
o Z zxgu W¥h, 8)
ueN(q)

k=
K

hg = |

The output of multi-head attention is formed by concatenating the features from
all heads, providing a more comprehensive representation of node features in the graph.
Additionally, the output of the last layer (prediction layer) in GAN is the average result
across multiple attention heads, as denoted in Equation (9):

1 K
Zg =0 X Z Z lxl,;uwkhu )
k=1ueN(q)

Based on the aforementioned computation process of GAN, the node feature-updating
process is illustrated in Figure 2.

Figure 2. Node-updating process of GAN.

In Figure 2, within the GAN, the node feature updating involves the following steps.
Step 1: Employ a learnable function to compute the “similarity” weights between the
features of neighboring nodes and the target node’s feature, followed by normalization
using an activation function to form the weight distribution of neighboring nodes. Step
2: Weigh and sum the feature vectors of neighboring nodes to obtain a comprehensive
feature vector of neighboring nodes. Step 3: Merge this integrated feature vector with the
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feature vector of the target node itself. Step 4: Update the target node’s feature through a
non-linear transformation.

In this article, to mitigate redundancy and noise in fraud data within the financial
domain network, a graph attention mechanism filters out noise and more accurately
captures the semantic relationships between features and nodes. Simultaneously, the node
channel attention and semantic channel attention in the GAN are combined to construct a
Dual-channel Graph Attention Network (DGAN) module. This algorithm can filter out
noise information, making the model more focused on extracting key features, thereby
improving the sensitivity and accuracy of the model to data features. The design of the
Dual-channel Attention Network module is illustrated in Figure 3.

NNV

Input layer

/Node Attention: /Node Attention //Node Attention
Network / __ Network /___Network

ol | |
Semantic Attention Semantic Attention
l Network Network l
A

Figure 3. DGAN module.

Output layer

Moreover, to adeptly manage non-linear features and intricate interactive relationships
within the data, Gradient-Boosting Decision Tree (GBDT) [28] is incorporated. GBDT, as a
powerful nonlinear model, has significant advantages in handling nonlinear features and
complex data interactions. The DGAT network, which combines the graph attention mech-
anism, captures the relationship features between nodes more finely. GBDT is seamlessly
integrated with the DGAN network, giving rise to the GBDT-DGAN network. The advan-
tage of this combination lies in the fact that the GBDT-DGAT network can fully utilize the
powerful nonlinear feature extraction ability of GBDT, while improving sensitivity to node
relationships through the graph attention mechanism, thus considering the importance of
features and relationships more comprehensively in the recognition of data information
in the financial field. Subsequently, this amalgamated network is applied to identify data
information within the financial domain.

3.2. Analysis of Privacy Protection with Blockchain

In the realm of financial transactions, ensuring data privacy holds paramount sig-
nificance. Blockchain technology, distinguished by its decentralized, highly secure, and
tamper-resistant distributed ledger system, presents an innovative solution for safeguard-
ing the privacy of financial transaction data [29]. Its structure comprises six layers: the
application layer, smart contract layer, incentive layer, consensus layer, network layer, and
data layer, as depicted in Figure 4.

In the blockchain architecture diagram depicted in Figure 4, the application layer
involves programmable currency and programmable finance applications provided by the
Ethereum platform through smart contracts. The contract layer utilizes a scripting language
unique to the Ethereum blockchain, facilitating interaction with the upper-level application
and lower-level data layers. The incentive layer comprises mechanisms involving cryp-
tographic currencies, incentivizing participants to operate and maintain the blockchain
network. The consensus layer ensures a more efficient consensus on data within blocks in a
fully distributed environment, employing various algorithms as indicated in Table 1. The
network layer is primarily responsible for node connectivity, transaction broadcasting, and
block broadcasting. The data layer predominantly employs distributed data structures to
store and manage information within the blockchain [30,31].
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Figure 4. Sketch map of the geographical location of the study area.

Table 1. Summary of consensus algorithms in blockchain.

Algorithm Type Features
- Ensures data immutability
Proof of Work - Requires significant computational power, high energy
(POW) POW consumption
- Adopted by blockchains like Bitcoin
- Determines stake and block generation based on the
Proof of Stake quantity of tokens held
(POS) POS - Higher energy efficiency, more environmentally
friendly
- Involves the election of a group of representatives for
Delegated Proof of Stake block validation and generation
(DPOS) DPOS - Faster transaction confirmation times
- Used by blockchains like EOS
] ) - Provides a solution to the Byzantine fault tolerance
Practical Byzantine Fault PBFT problem in distributed systems

Tolerance (PBFT)

- Suitable for smaller-scale node networks

As presented in Table 1, the Proof of Work (PoW) consensus algorithm is a prevalent
method in the consensus layer of blockchain. It identifies the block owner through the
calculation of the difficulty value, ensuring the security of user data in the financial domain
and preventing malicious activities and data tampering [32]. In the event of informa-
tion conflicts, POW places trust in the chain branch with the highest number of blocks.
Consequently, a malicious attacker must ensure that the length of the attack chain they

send surpasses that
blockchain [33]. The

of the main chain to acquire the authority to tamper with the entire
probability P, can be expressed as Equation (10):

1,9r > pr

P, = " 1
{(QF/PT) I < PrT (10)
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In Equation (10), pr represents the probability that the next block belongs to an honest
node, gr represents the probability that the next block belongs to a malicious node, and
P, represents the probability of a malicious attacker tampering with n blocks. Expanding
on this, assuming that an honest node can generate a block every average expected time,
the potential progress of malicious nodes should follow a Poisson distribution, with an
expected value A. As shown in Equation (11):

A =nqr/pr (11)

Thus, when the number of blocks published by malicious nodes exceeds the number
of blocks published by honest nodes, the malicious nodes have successfully conducted an
attack. The probability P of this situation occurring should be determined by multiplying
the probability density of the Poisson distribution of the number k of blocks already
published by malicious nodes with the probability that malicious nodes can still complete
the attack at that point. The specific calculation results are given by Equation (12):

P _ [ee] /\kefft (I]F/pT)nik k S n (12)
P 1k>n

=0
Further simplify the occurrence probability P, and the result is as shown in Equation (13):

n k,—A
P=1-Y o [1- e/pr) ] (13)

k=0

Through computational analysis, when the computational power of malicious nodes
is below 50%, the probability of a successful attack decreases with an increase in n. In the
context of specific applications for securing enterprise intelligent financial data, # is often
set to 6. This implies that information from a new block is considered safe and valid only
after undergoing six block generations following its creation.

Therefore, when applying blockchain technology to the privacy protection of user
data in the financial domain, this article selects the PoW consensus algorithm to offer a
more comprehensive and reliable safeguard for the privacy and security of financial data.

3.3. Construction and Analysis of a Financial Anti-Fraud Model Integrating Blockchain
with GNN

In the domain of fraud detection within the financial sector, this article introduces
the GAN from GNN:s to effectively identify fraudulent information in user transactions.
The Node Attention Network (NAN) is combined with the Semantic Attention Network,
designing a Dual-Head Attention Network module. Additionally, to better handle non-
linear features and the complex interactive relationships within data, this study integrates
the GBDT. This integration results in the GBDT-DGAN network, which is utilized to detect
fraudulent activities in user transactions.

Furthermore, blockchain technology is introduced to ensure the effective protection
of private information during user transactions. In the end, a financial anti-fraud model
based on the integration of blockchain with the GBDT-DGAN algorithm is constructed, as
depicted in Figure 5.
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Figure 5. Framework of the financial anti-fraud model based on the blockchain-integrated GBDT-
DGAN algorithm.

As illustrated in Figure 5, upon inputting user transaction data, the initial step involves
preprocessing financial transaction data. This encompasses data cleaning, feature extraction,
and transformation, converting transaction data into a graph representation with nodes and
edges. Subsequently, the Dual-Head Attention Network module, combining the NAN and
the Semantic Attention Network, is employed to handle transaction relationships within the
data. The data processed through DGAN is then fused with the GBDT, specifically utilizing
the GBDT-DGAN network to identify data information features of user transactions in
the network. Finally, the model output data is integrated with blockchain technology,
recording it on the blockchain to protect privacy information and ensure data integrity. In
the blockchain network, zero-knowledge proof technology is utilized to construct trusted
zero-knowledge proofs [34]. This enables the network to publish keywords required
by users, regulatory agencies, and financial institutions for querying. Smart contracts
verify whether the user transaction data provided in the blockchain meets anti-fraud
requirements. Ultimately, the transaction data receives a label indicating fraud or security
after model prediction.

In this framework model, the constructed GBDT-DGAT algorithm combines DGAT
and GBDT and trains a GNN gy on graph G with node feature X through minimization
of Lpcar(ge(G, X),y, ¢,K) and gradient descent. It also optimizes the node feature X’
and minimizes the loss function Lgppr(f(X'),y) through a dual-attention mechanism,
establishes a GBDT model f!(X’) for f decision trees, and updates the node feature X to
X" using the GBDT model f(X’).

In the second iteration of the model algorithm, the initial input node feature X and the
updated feature X’ are used as inputs to the DGAT algorithm. The updated node feature is
represented as Xj,.;,, and the difference between the node feature (as shown in Equation
(14)) and the new node feature X;;0 optimized using the dual-channel attention mechanism
is used as the label for constructing the next decision tree, as shown in Equation (15):

X' = fi(X) (14)
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p L X K
X = X' — 1 DGAT(gG(G// )Y, ¢, K) (15)
0X
GBDT is used as the gradient descent update of node feature X by DGAT. The aggre-
gation result of predicted values is shown in Equation (16):

fX) = f1X) + f(X) (16)
f? is the predictive performance of DGAT on this basis of f1.

4. Experiments
4.1. Experimental Environments and Evaluation

To validate the performance of the financial anti-fraud model based on the blockchain-
integrated GBDT-DGAN algorithm constructed in this article, the data source utilized
was the YelpChi dataset “https://www.datafountain.cn/datasets (accessed on 25 March
2021)”. The data in this dataset were desensitized and preprocessed through normalization,
data cleaning, and transformation, resulting in 13,481 data points, which were split into
a training set and a testing set in a 7:3 ratio. In this experiment, assuming that certain
users frequently post a large number of false comments within a specific time window;, this
behavior may be identified as abnormal behavior that does not conform to normal patterns.
The model can capture these abnormal features, such as the frequency of comments and the
similarity of content. For example, among merchants in the dataset, certain behaviors that
frequently engage in high-value transactions during specific time periods are considered
abnormal trading patterns by the model, deviating from normal trading behavior. This
may indicate the existence of potential fraud risks.

For example, user A in the dataset posted 100 comments within 24 h, while the average
number of comments for most users is 10. This has been identified as abnormal behavior
and may involve false comments. User B posted 50 comments within an hour, which
were clearly different from normal user behavior and marked as abnormal. There are also
examples of abnormal transaction patterns, such as merchant X conducting 10 high-value
transactions in a short period of time at night, while other merchants have more stable
transaction patterns. This abnormal behavior may imply potential fraudulent activities.
Merchant Y frequently engages in micro-transactions during non-peak hours, which is
inconsistent with the normal trading mode of the merchant and may be an indicator of
abnormal behavior. By identifying these abnormal behaviors through models, financial
institutions can further review and take appropriate measures to reduce potential fraud
risks. Below are some cases of normal and abnormal modes, as shown in Tables 2—4. These
tables provide detailed information about comment frequency, content similarity, and
trading behavior, including various indicators of users/user pairs and whether they are
identified as abnormal.

Table 2. Comment frequency distribution.

Number of Average Last Activity Abnormal
Users Comments Comment Time Identification
(within Hours) Length
User A 100 50 15 January 2022 Yes
User B 50 40 14 January 2022 No
User C 10 60 15 January 2022 No
User D 80 45 15 January 2022 Yes
User E 120 55 14 January 2022 Yes
User F 30 48 15 January 2022 No
User G 60 52 14 January 2022 No
User H 90 42 15 January 2022 Yes
User I 25 58 14 January 2022 No

User ] 110 49 15 January 2022 Yes
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Table 3. Content similarity distribution.

User Pairs Content Similarity Abnormal Identification
(User 1, User 2) 0.8 Yes
(User 1, User 3) 0.5 No
(User 2, User 3) 0.9 Yes
(User 4, User 5) 0.7 No
(User 5, User 6) 0.85 Yes
(User 7, User 8) 0.6 No
(User 8, User 9) 0.75 Yes
(User 10, User 11) 0.88 Yes

Table 4. Analysis of trading behavior.

Time Transaction Volume Transaction Volume Abnormal
of Merchant X of Merchant Y Identification
00:00-01:00 1000 500 Yes
01:00-02:00 500 2000 No
02:00-03:00 800 300 Yes
03:00-04:00 1200 400 Yes
04:00-05:00 600 600 No

In the experiments, the Hyperledger Fabric consortium blockchain platform was em-
ployed. The CPU model running on the computer was CORE-i7-4720HQ-2.6GHz. Matrix
operations were performed using the open-source tools Numpy and Pandas. Numpy
is an open-source matrix-processing library, and Pandas provides excellent support for
data cleaning and preprocessing in data analysis. The chaincode (smart contract) was
implemented in the Go language. The Pandas library in Python was instrumental in data
cleaning and preprocessing. Simultaneously, the TensorFlow platform was introduced
to construct the GBDT-DGAN network, utilizing various modules provided by Python.
Specific hyperparameter settings were as follows: The L2 regularization parameter was
set to 0.0005, and the dropout for each layer was set at 0.6, with a total of 100 iterations.
The optimizer used was Adam, which applied the stochastic gradient descent algorithm to
optimize the loss function with an initial learning rate of 0.001.

To assess the performance of the model proposed in this article, the model algorithm
was compared with GCN, BiLSTM [35], CNN [36], and the model algorithm proposed by
Usman et al. [17]. (2023) from related literature. An evaluation was conducted based on
convergence, precision, recall, F1 score, and data transfer security metrics.

4.2. Analysis of Recognition Accuracy Results for Different Algorithms

The recognition performance of the model proposed in this article is compared with
GCN, BiLSTM, CNN, and the model algorithm proposed by Usman et al. (2023) [17]
from related literature. The convergence situations are illustrated in Figure 6. Further
comparisons are made for precision, recall, and F1 score, and the results are presented in
Figures 7-9.

As depicted in Figure 6, the analysis of loss values for each algorithm reveals that the
proposed model algorithm in this article attains the minimum loss value, stabilizing around
0.013 by the 25th iteration. In contrast, the final loss functions of other algorithms all exceed
0.054. Hence, the financial anti-fraud model based on the blockchain-integrated GBDT-
DGAN algorithm proposed in this article demonstrates superior convergence, characterized
by lower loss values.
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Figure 7. Accuracy results of financial fraud detection under different algorithms with varying
iteration cycles [17].
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Figure 9. F1 score results of financial fraud detection under different algorithms with varying iteration
cycles [17].

As illustrated in Figures 7-9, it is evident that the accuracy, recall, and F1 scores
of each algorithm exhibit an initial increase followed by stabilization with the variation
in iteration cycles. In the comparative analysis involving model algorithms proposed
by GCN, BiLSTM, CNN, and the algorithm presented by Usman et al. (2023) [17], the
accuracy of the model algorithm developed in this article reaches 93.82%. The classification
recognition performance of each algorithm, ranked from highest to lowest, is as follows:
model algorithm in this article > Usman et al. (2023) [17] algorithm > GCN > BiLSTM
> CNN. Notably, in comparison to other algorithms, the model algorithm in this article
achieves a minimum of a 5.76% increase in accuracy. Furthermore, consistent trends in recall
and F1 values are observed across the algorithms, with the recall and F1 values of the model
algorithm in this article reaching 89.5% and 81.66%, respectively. Consequently, the financial
anti-fraud model based on the blockchain-integrated GBDT-DGAN algorithm, developed
in this article, demonstrates superior predictive accuracy for identifying fraudulent data in
user transactions.

Overall, the financial anti-fraud model proposed here based on the blockchain-
integrated GBDT-DGAN algorithm has achieved significant advantages in multiple indica-
tors such as loss value, accuracy, recall rate, and F1 score. This model not only performs
excellently in convergence but also surpasses other comparative algorithms in accuracy
and overall performance. This proves that the proposed algorithm has excellent predictive
performance in accurately identifying fraudulent data in user transactions.

4.3. Security Performance Analysis of the Model under Different Algorithms

In this section, a comprehensive analysis of the security performance of the proposed
model algorithm is conducted, comparing it with GCN, BiLSTM, CNN, and the algorithm
presented by Usman et al. (2023) [17]. The evaluation focuses on data transmission security,
as illustrated in Figure 10.

The examination of network data security transmission performance under varying
data volumes reveals compelling insights. As depicted in Figure 10, the packet loss rate of
the model proposed in this article demonstrates consistent performance, maintaining below
7% even as the volume of transmitted data increases. In contrast to alternative algorithms,
the proposed model exhibits a lower packet loss rate, while other algorithms experience
rates exceeding 17.3%. In summary, considering different data volumes, the financial anti-
fraud model based on the blockchain-integrated GBDT-DGAN algorithm, as constructed in
this article, showcases a significantly reduced packet loss rate, establishing its excellence in
network data security transmission performance. This performance advantage is crucial for
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the secure transmission of financial transaction data. While maintaining a low packet loss
rate, this model can effectively ensure the integrity and confidentiality of user transaction
information. This is essential for financial institutions, especially when dealing with large
amounts of transaction data; ensuring the reliability of network transmission is crucial
for preventing fraudulent behavior and protecting user privacy. Therefore, the proposed
financial anti-fraud model not only has a breakthrough in fraud detection performance but
also performs excellently in network data security transmission performance. This makes
the model more widely feasible and practical in practical financial applications, providing
a comprehensive, efficient, and secure anti-fraud solution for the financial field.
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Figure 10. Security results of each algorithm under different data amounts [17].

5. Discussion

The target audience is mainly stakeholders in the financial sector, including financial
institutions and regulatory agencies, as well as individuals and enterprises related to
financial transactions. For financial institutions, it is a significant advancement that helps
improve the security and reliability of financial transactions and reduces potential fraud
risks. But data quality and quantity may be a potential challenge, as models rely heavily on
high-quality and sufficient data. In addition, real-time and latency issues in the financial
environment may affect the application of models, especially for trading environments
that require rapid responses. The interpretability of the model may also become a key
issue, and financial institutions may need to have a clear understanding of the basis for
model judgments to meet regulatory requirements or customer needs. For individuals and
businesses involved in financial transactions, this model will also provide them with a safer
trading environment to enhance their confidence in financial transactions and reduce losses
caused by fraudulent behavior.

Therefore, although the financial anti-fraud model has achieved encouraging results
in experiments, some limitations still need to be addressed. Firstly, the model may have
potential biases and errors, which can arise from biases in the data collection process,
incomplete feature selection, or excessive reliance on certain types of fraudulent behavior.
To address these issues, this article proposes a more diverse dataset collection and feature
engineering optimization as a response. Secondly, data quality issues may affect the
performance and robustness of the model. To address this issue, this article suggests
conducting more thorough data cleaning and preprocessing, while improving the accuracy
and consistency of data annotation. Finally, the model may perform well in specific financial
environments, but its generalization ability is limited in other environments. Hence, it is
recommended to adjust and optimize the model parameters to improve the adaptability of
the model in different environments and conduct cross-environment validation to evaluate
its universality.
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6. Conclusions

This article introduces an advanced financial anti-fraud model, namely the GBDT-
Dual-channel Graph Attention Network (GBDT-DGAN), which utilizes blockchain tech-
nology to enhance privacy protection. The structure of the GAN constructs a Dual-Head
Attention Network module by integrating a Node Attention Network and a Semantic
Attention Network. This module enables the comprehensive analysis of the complex rela-
tionships in user transaction data and skillfully deals with nonlinear characteristics and
complex data interaction relationships. After verification, the model achieves a significant
accuracy of 93.82%, which is at least 5.76% higher than baseline algorithms such as CNN.
The recall rate and F1 score further demonstrate the effectiveness of the model, reaching
89.5% and 81.66%, respectively. In addition, the model performs excellently in ensuring
network data transmission security, maintaining a packet loss rate of less than 7%. The
experimental evaluation consolidates the superiority of the proposed model in terms of
accuracy, emphasizing its potential as a powerful solution for financial transaction fraud
detection. The introduction of the GBDT-DGAN algorithm, combined with blockchain
technology, not only improves accuracy but also significantly enhances user privacy.

Although this article has achieved significant results, there are still some limitations.
For example, this article uses the YelpChi dataset for experimentation. However, this
dataset still has its limitations and may not fully cover all complex transaction patterns
in the financial field. Future research can consider more extensive financial transaction
data to improve the generalization of the model. Although feature engineering and data
preprocessing are conducted in the article, there are still limitations that may not cover all
potential patterns. Future research can further explore more refined feature engineering
methods to improve the model’s ability to identify different fraudulent behaviors.
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Abbreviations

The following abbreviations are used in this manuscript:

GAN Generative Adversarial Network

GBDT Gradient-Boosting Decision Trees

GBDT-DGAN  Gradient-Boosting Decision Trees—Dual-channel Graph Attention Network
NAN Node Attention Network

BiLSTM Bidirectional Long Short-Term Memory

GNN Graph Neural Network

GCN Graph Convolutional Network

CNN Convolutional Neural Network

GAT Graph Attention Network
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PoW  Proof of Work

POS  Proof of Stake

DPOS Delegated Proof of Stake

PBFT  Practical Byzantine Fault Tolerance
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