
entropy

Article

Synchronization of Fractional-Order Complex
Chaotic Systems Based on Observers

Zhonghui Li 1, Tongshui Xia 1 and Cuimei Jiang 2,*
1 Business School, Shandong Normal University, Jinan 250014, China; lizhonghui@stu.sdnu.edu.cn (Z.L.);

117011@sdnu.edu.cn (T.X.)
2 School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences),

Jinan 250353, China
* Correspondence: jiangcuimei2004@163.com

Received: 11 April 2019; Accepted: 5 May 2019; Published: 10 May 2019
����������
�������

Abstract: By designing a state observer, a new type of synchronization named complex modified
projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic
systems. Combining stability results of the fractional-order systems and the pole placement method,
this paper proves the stability of fractional-order error systems and realizes complex modified
projective synchronization. This method is so effective that it can be applied in engineering.
Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems,
including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to
show the correctness of this new synchronization strategy.
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1. Introduction

The fractional-order complex chaotic systems (FOCCS), as a special kind of nonlinear systems,
combine advantages of fractional-order real systems and integer-order complex chaotic systems, and
thus have more complex and richer behavior. Furthermore, a broader application of FOCCS has
been developed in cryptography and signal processing. Therefore, many scholars have devoted
a lot of effort to study FOCCS and have obtained lots of useful results on the dynamic behavior,
stabilization, control, and synchronization of FOCCS in recent years. As shown in [1], Gao and Yu
employed numerical simulation to study chaotic characteristics of a fractional-order complex duffing
oscillator. The chaotic behavior of fractional-order logistic equations with complex variables was
discussed in detail in [2]. Subsequently, a large number of FOCCS, including the fractional-order
complex Lorenz system [3], complex Chen system [4], complex T system [5], complex Lü system [6],
and the fractional-order hyper-chaotic complex Lü system [7], have been found one after another.
In the meantime, lots of meritorious results on chaos synchronization of FOCCS have been reported,
and various regimes of synchronization have been presented, such as complete synchronization
(CS) [3,8,9], anti-synchronization (AS) [6,10], hybrid projective synchronization [11,12], combination
synchronization [13,14], combination–combination synchronization [15], etc. For other recent works
on this subject, please refer to the previous literature [16–25].

Complex modified projective synchronization (CMPS) is a new type of complex synchronization
based on complex chaotic systems that was proposed almost simultaneously in 2013 by
Mahmoud et al. [26] and Zhang et al. [27]. CMPS means that state variables of the master system
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converge to state variables of the slave system with a complex constant scaling matrix. Therefore,
CMPS can contain several types of synchronization, such as complex projective synchronization
(CPS) [28], complex complete synchronization (CCS) [29], complex anti-synchronization (CAS) [30],
modified projective synchronization (MPS) [31], projective synchronization (PS) [32], etc. In CMPS, the
complex scaling factors are arbitrary and unpredictable, and the plural arithmetic is complicated, so
that it is more difficult for an interceptor to extract signal information from transmitted information.
What is more, as complex scaling factors build a bridge between real chaos and complex chaos, CMPS
can increase the scope of synchronization, and then it can also greatly enhance the security and
diversity of communications. Consequently, CMPS can have wide application in many fields, and thus
it is very valuable and meaningful to study CMPS.

However, in the existing literature, most of works discuss the CMPS of integer-order complex
chaotic systems [26,27,33], and there are few results concerning the CMPS of FOCCS. For instance,
Jiang et al. studied the CMPS of FOCCS with incommensurate orders by employing active control [16];
Liu used the feedback control to investigate CMPS between a fractional-order complex chaotic system
and a real hyper-chaotic system [17]; Tian and Zhong realized CMPS of two uncertain FOCCS by
means of adaptive control strategy [18]. Furthermore, there is seldom information available about
observer-based CMPS of FOCCS.

Motivated by the above discussions, this paper develops an observer-based approach to realize
CMPS of FOCCS. The technique of nonlinear observer will be employed, which has been used in
the study of other types of synchronization phenomena [34–37]. Compared with the previous works,
the synchronization scheme and the master–slave systems studied in this paper are more general. In our
synchronization scheme, if the fractional-order master system is provided, then the fractional-order
slave system could be determined in the form of a state observer, and the drive signal should be chosen
so that the master system satisfies certain conditions to ensure CMPS. The proposed observer-based
control enables CMPS in a general class of fractional-order complex chaotic systems without the
limitation of partial-linearity and does not require the computation of the conditional Lyapunov
exponents. Therefore, the proposed scheme will find a wide variety of industrial applications.

The structure of this article is as below. Section 2 presents the relevant definition and lemma.
In Section 3, a nonlinear state observer is constructed to realize CMPS of FOCCS. Following this
method, we obtain the fractional-order error complex system, where a gain matrix can be determined
by the pole placement technique to asymptotically stabilize the error system. Section 4 applies this new
synchronization scheme to achieve CMPS in two examples. Finally, relevant conclusions are provided.

2. Problem Statement

Fractional calculus is the extension of integration and differentiation to arbitrary non-integer
orders. Some typical definitions of fractional derivatives can be referred to in [38]. Due to wide
engineering applications of the Caputo definition, we adopt this definition in this article. Next,
we introduce the Caputo derivative.

Definition 1. [38] Given the function g(t), the Caputo fractional derivative of fractional-order q is defined
as follows:

Dq
∗g(t) =

1
Γ(n− q)

∫ t

t0

g(n)(τ)
(t− τ)q−n+1 dτ, t > t0,

where q ∈ (m− 1, m), m = [q] + 1, [q] is the integer part of q, Γ represents the Gamma function, and Dq
∗

indicates the q-order Caputo differential operator.
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In this paper, we always suppose that q is a positive number less than 1 since the fractional-order
q often lies in (0, 1) in engineering. For the sake of our synchronization result, we introduced the
following stability results for linear fractional differential equations. Given the autonomous system

Dq
∗y = By, (1)

where the state variable y ∈ Rn and the initial condition y(0) = y0, system (1) has the following results.

Lemma 1. [39] System (1) is
(i) asymptotically stable iff

|arg(λl(B))| > qπ/2, f or l = 1, 2, 3 . . . ,

where arg(λl(B)) stands for the argument of the eigenvalue λl of B. For this case, the component of the state
decay converges to 0 as t−q.

(ii) stable iff

|arg(λl(B))| ≥ qπ/2, f or l = 1, 2, 3 . . . ,

and those critical eigenvalues with |arg(λl(B))| = qπ/2 have geometric multiplicity one.

3. Problem Description and Synchronization Scheme

FOCCS are generally described by a set of nonlinear differential equations. Generally speaking,
a FOCCS can be divided into two major parts: one is linear and the other is nonlinear. Therefore,
we study the following FOCCS:

Dq
∗z = Θz + Ψ f (z) + Ω, (2)

where the state vector z = (z1, z2, . . . , zn)T = zr + jzi ∈ Cn, zr is the real part of z and zi is the
imaginary part of z. Θ ∈ Rn×n and Ψ ∈ Rn×m are real matrices, Ω ∈ Rn×1(or Ω ∈ Cn×1),
and f = ( f1, f2, . . . , fm)T ( fi stands for complex nonlinear function) are column vectors.

Remark 1. System (2) can describe lots of FOCCS, including fractional-order complex Lorenz system [3],
complex Chen system [4], complex T system [5], complex Lü system [6], hyper-chaotic complex Lü system [7], etc.

In order to realize CMPS, we take system (2) as the master system. Thus, suppose that system (2)
has the following output

y = f (z) + Kz, (3)

where K ∈ Rn×m is a gain matrix. Given an invertible constant matrix Φ = Φr + jΦi ∈ Cn×n, its inverse
matrix can be expressed as Φ−1. Thus, design the observer of FOCCS (2) as the slave system

Dq
∗ ẑ = Φ−1ΘΦẑ + Φ−1Ψ f (ẑ) + Φ−1Ω + Φ−1Ψ(y− ŷ), (4)

and define the output in the following form:

ŷ = f (ẑ) + KΦẑ. (5)

In the sequel, define the synchronization error function as

e(t) = z(t)−Φẑ(t), (6)
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where Φ is called a complex scaling matrix.
Thus, based on systems (2) and (4), the definition of CMPS can be stated as the following.

Definition 2. CMPS between systems (2) and (4) can be realized if there is a complex matrix Φ = Φr + jΦi =

diag{ϕ1, ϕ2, . . . , ϕn} ∈ Cn×n satisfying

lim
t→∞
||e(t)||2 = lim

t→∞
||z(t)−Φẑ(t)||2 = 0,

where ϕl ∈ C (l = 1, 2, . . . , n) is a constant, and || · || represents the 2-norm.

Remark 2. The proposed CMPS contains several kinds of synchronization found in previous papers.
For example, CPS will appear when ϕ1 = ϕ2 = · · · = ϕn = ϕ ∈ C; CCS will be realized when
ϕ1 = ϕ2 = · · · = ϕn = j; CAS will be realized when ϕ1 = ϕ2 = · · · = ϕn = −j; MPS will appear
when ϕ1, ϕ2, · · · , ϕn ∈ R; and PS will appear when ϕ1 = ϕ2 = · · · = ϕn = ϕ ∈ R. Consequently, CMPS is
as the extension of CPS, CCS, CAS, MPS, PS, CS, AS, etc.

Next, we investigate the process of CMPS based on a nonlinear state observer. From the error
equation (6), we obtain that

Dq
∗e = Dq

∗z−ΦDq
∗ ẑ.

Thus, taking into account the system (2) and the observer (4), we have

Dq
∗e = Θe + Ψ( f (z)− f (ẑ))−Ψ(y(t)− ŷ(t)).

Substituting (5) into the above equation, one can conclude that

Dq
∗e = (Θ−ΨK)e.

Separating real and imaginary parts, we have two real systems as follows:

Dq
∗er = (Θ−ΨK)er, (7)

and

Dq
∗ei = (Θ−ΨK)ei, (8)

where Θ − ΨK is the linear time invariant matrix. For the sake of making systems (7) and (8)
controllable, we choose the appropriate gain matrix K to satisfy |arg(λl(Θ − ΨK))| > qπ/2,
(l = 1, 2, . . . , n). Thus, on the basis of Lemma 1, we can obtain er → 0 and ei → 0 as t → ∞,
that is, e = er + jei → 0 as t→ ∞. Hence, system (2) and the observer (4) can realize CMPS.

Remark 3. The eigenvalues of matrix Θ−ΨK are independent of the complex scaling matrix Φ, so the complex
scaling matrix Φ does not affect the controllability of the error systems (7) and (8). Therefore, the proposed
method can arbitrarily adjust the complex scaling matrix in the synchronization process without worrying about
the robustness of other synchronization methods.

Remark 4. In this synchronization scheme, we apply the pole placement method to determine the feedback gain
matrix K satisfying | arg(λl(Θ−ΨK))| > qπ/2 (l = 1, 2, . . . , n).

Remark 5. In this paper, we only study the CMPS of FOCCS theoretically but do not study hardware
implementation. Recently, there are many papers considering the implementation of the fractional-order operator
and fractional-order synchronization scheme [40–43], which provide good research ideas for the implementation
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of the CMPS proposed in this paper. Therefore, we will further investigate the hardware implementation of the
CMPS of FOCCS in future work.

4. Numerical Simulations

Next, we respectively study CMPS of the following two pairs of examples to show our
proposed theory.

4.1. CMPS of the Fractional-Order Complex Lü Systems

The following fractional-order complex Lü system is considered as the master system, which is
denoted as 

Dq
∗z1 = β(z2 − z1),

Dq
∗z2 = γz2 − z1z3,

Dq
∗z3 = 1

2 (z̄1z2 + z1z̄2)− δz3,
(9)

where β, γ, δ are real constants, z1 = m1 + jm2, z2 = m3 + jm4, and z3 = m5 are state variables.
In [6], authors found that system (9) behaves chaotically when q = 0.96, β = 42, γ = 22, and δ = 5
(see Figure 1).
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Figure 1. The projection of chaotic attractor for system (9) with q = 0.96, β = 42, γ = 22, and δ = 5.

Comparing system (9) with system (2), we easily have

Θ =

 −β β 0
0 γ 0
0 0 −δ

 , Ψ =

 0 0
1 0
0 1

 , Ω =

 0
0
0

 , f (z) =

(
−z1z3

1
2 (z̄1z2 + z1z̄2)

)
.
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Suppose that an invertible complex scaling matrix Φ = diag(ϕ1, ϕ2, ϕ3). Then the inverse matrix
is computed as Φ−1 = diag(ϕ−1

1 , ϕ−1
2 , ϕ−1

3 ). Furthermore, the output of system (9) is assumed to
be y = f (z) + Kz, where K ∈ R2×3 is a gain matrix. Thus, design the following state observer of
system (9):

 Dq
∗ ẑ1

Dq
∗ ẑ2

Dq
∗ ẑ3

 =

 −β βϕ−1
1 ϕ2 0

0 γ 0
0 0 −δ


 ẑ1

ẑ2

ẑ3

+

 ϕ−1
1 0 0
0 ϕ−1

2 0
0 0 ϕ−1

3


 0 0

1 0
0 1

( −ẑ1ẑ3
1
2 (

¯̂z1ẑ2 + ẑ1 ¯̂z2)

)

+

 ϕ−1
1 0 0
0 ϕ−1

2 0
0 0 ϕ−1

3


 0 0

1 0
0 1

 (y(t)− ŷ(t)),

(10)

where ẑ1 = s1 + js2, ẑ2 = s3 + js4, and ẑ3 = s5 are state variables.
The CMPS error is expressed as e(t) = z(t)−Φẑ(t). By means of system (9) and the observer (10),

we have the following error dynamical system:

Dq
∗e = (Θ−ΨK)e =


 −β β 0

0 γ 0
0 0 −δ

−
 0 0

1 0
0 1

K

 e,

namely,

Dq
∗er =


 −β β 0

0 γ 0
0 0 −δ

−
 0 0

1 0
0 1

K

 er and Dq
∗ei =


 −β β 0

0 γ 0
0 0 −δ

−
 0 0

1 0
0 1

K

 ei.

Assume that the eigenvalues of matrix Θ−ΨK are assigned as (−42,−2,−10), satisfying | arg(λl(Θ−
ΨK))| > qπ/2, (l = 1, 2, 3). Based on the pole placement method, the feedback matrix K can be
computed as

K =

(
0 24 0
0 0 5

)
.

Thus, the Adams–Bashforth–Moulton predictor–corrector scheme [44] is used to obtain simulation
results illustrated with the initial condition z(0) = (10 + 6j, 7 + 8j,−1)T , ẑ(0) = (−2 + 10j, 6− j, 10)T .
Choosing Φ = diag(1 + j, 1− j, 1), the inverse matrix is computed as Φ−1 = diag((1− j)/2, (1 +

j)/2, 1). Figure 2 describes the state evolution of system (9) and the observer (10). The state trajectories
of the error system are demonstrated in Figure 3, where it can be seen that the error system tends
asymptotically to zero very quickly. Hence, the CMPS of fractional-order complex Lü systems based
on a nonlinear state observer can be realized.
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Figure 2. The state evolution of the system (9) and the observer (10).
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Figure 3. The state trajectories of the error system.

4.2. CMPS of the Fractional-Order Hyper-Chaotic Complex Lü System

Yang and Jiang [7] firstly constructed the fractional-order hyper-chaotic complex Lü system,
which reads: 

Dq
∗z1 = β(z2 − z1) + z4,

Dq
∗z2 = γz2 − z1z3 + z4,

Dq
∗z3 = 1

2 (z̄1z2 + z1z̄2)− δz3,
Dq
∗z4 = 1

2 (z̄1z2 + z1z̄2)− σz4,

(11)
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where β, γ, δ, σ are real constants, and z1 = m1 + jm2, z2 = m3 + jm4, z3 = m5, and z4 = m6 are state
variables. When q = 0.95, β = 42, γ = 25, δ = 6, and σ = 5, system (11) generates chaotic behavior
(see Figure 4).
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Figure 4. The projection of chaotic attractor for system (11) with q = 0.95, β = 42, γ = 25, δ = 6,
and σ = 5.

Comparing system (11) with system (2), we easily obtain

Θ =


−β β 0 1
0 γ 0 1
0 0 −δ 0
0 0 0 −σ

 , Ψ =


0 0 0
1 0 0
0 1 0
0 0 1

 , Ω =


0
0
0
0

 , f (x) =

 −z1z3
1
2 (z̄1z2 + z1z̄2)
1
2 (z̄1z2 + z1z̄2)

 .

Suppose that an invertible complex scaling matrix Φ = diag(ϕ1, ϕ2, ϕ3, ϕ4). Then the inverse matrix is
computed as Φ−1 = diag(ϕ−1

1 , ϕ−1
2 , ϕ−1

3 , ϕ−1
4 ). Furthermore, the output of system (11) is assumed to

be y = f (z) + Kz, where K ∈ R3×4 is a gain matrix. Thus, design the state observer of system (11) in
the following form


Dq
∗ ẑ1

Dq
∗ ẑ2

Dq
∗ ẑ3

Dq
∗ ẑ4

 =


−β βϕ−1

1 ϕ2 0 ϕ−1
1 ϕ4

0 γ 0 ϕ−1
2 ϕ4

0 0 −δ 0
0 0 0 −σ




ẑ1

ẑ2

ẑ3

ẑ4

+


ϕ−1

1 0 0 0
0 ϕ−1

2 0 0
0 0 ϕ−1

3 0
0 0 0 ϕ−1

4




0 0 0
1 0 0
0 1 0
0 0 1


 −x̂1ẑ3

1
2 (

¯̂z1ẑ2 + ẑ1 ¯̂z2)
1
2 (

¯̂z1ẑ2 + ẑ1 ¯̂z2)



+


ϕ−1

1 0 0 0
0 ϕ−1

2 0 0
0 0 ϕ−1

3 0
0 0 0 ϕ−1

4




0 0 0
1 0 0
0 1 0
0 0 1

 (y(t)− ŷ(t)),

(12)

where ẑ1 = s1 + js2 and ẑ2 = s3 + js4 are complex variables, and ẑ3 = s5 and ẑ4 = s6 are real variables.
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The error is expressed as e(t) = z(t)− Φẑ(t). By means of system (11) and the observer (12),
we have the following error system

Dq
∗e = (Θ−ΨK)e =



−β β 0 1
0 γ 0 1
0 0 −δ 0
0 0 0 −σ

−


0 0 0
1 0 0
0 1 0
0 0 1

K

 e,

namely,

Dq
∗er =



−β β 0 1
0 γ 0 1
0 0 −δ 0
0 0 0 −σ

−


0 0 0
1 0 0
0 1 0
0 0 1

K

 er and Dq
∗ei =



−β β 0 1
0 γ 0 1
0 0 −δ 0
0 0 0 −σ

−


0 0 0
1 0 0
0 1 0
0 0 1

K

 ei. (13)

Assume that the eigenvalues of matrix Θ − ΨK are assigned as (−42,−3,−8,−6), satisfying
| arg(λl(Θ−ΨK))| > qπ/2, (l = 1, 2, 3). Thus, based on the pole placement method, we can calculate
the gain matrix K as follows:

K =

 0 28 0 0
0 0 2 0
0 0 5 1

 .

Simulation results are obtained by selecting the fractional derivative as q = 0.95, the initial
condition as z(0) = (1 − 2j,−1 + 4j, 5,−6)T , and ẑ(0) = (−2 + 10j, 6 − j, 10, 2)T . Choosing
Φ = diag(−1 + j,−1 + j,−1,−1), the inverse matrix is computed as Φ−1 = diag((−1− j)/2, (−1−
j)/2,−1,−1). Figure 5 shows the state evolution of system (11) and the observer (12). From Figure 6,
it is easy to see that the error system tends asymptotically to zero very quickly. Therefore, CMPS of
fractional-order hyper-chaos complex Lü systems based on a nonlinear state observer can be realized.
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Figure 6. The state trajectories of the error system.

5. Conclusions

This article studies the observer-based CMPS of FOCCS in detail. On the basis of the assumed
output, the authors construct nonlinear state observers to realize CMPS of a large class of FOCCS. In this
new synchronization scheme, it is not necessary to calculate the conditional Lyapunov exponents, and it
is so effective that it can be applied in engineering. Additionally, the proposed CMPS scheme is suitable
for all FOCCS, including fractional-order complex hyperchaotic systems. We respectively achieve
CMPS of fractional-order complex chaotic systems: complex Lü systems, and hyper-chaos complex
Lü systems. The corresponding simulation results show the correctness of this new synchronization
strategy. Since CMPS has a wide application in many fields, we will consider the following two aspects
in our future work: one is to extend the obtained results of this paper to other systems including
impulsive systems and hybrid systems, and the other is to investigate the hardware implementation
of CMPS.
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