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Abstract: In recent years, protecting important objects by simulating animal camouflage has been
widely employed in many fields. Therefore, camouflaged object detection (COD) technology has
emerged. COD is more difficult to achieve than traditional object detection techniques due to the
high degree of fusion of objects camouflaged with the background. In this paper, we strive to more
accurately and efficiently identify camouflaged objects. Inspired by the use of magnifiers to search
for hidden objects in pictures, we propose a COD network that simulates the observation effect of a
magnifier called the MAGnifier Network (MAGNet). Specifically, our MAGNet contains two paral-
lel modules: the ergodic magnification module (EMM) and the attention focus module (AFM). The
EMM is designed to mimic the process of a magnifier enlarging an image, and AFM is used to simu-
late the observation process in which human attention is highly focused on a particular region. The
two sets of output camouflaged object maps were merged to simulate the observation of an object by
a magnifier. In addition, a weighted key point area perception loss function, which is more applica-
ble to COD, was designed based on two modules to give greater attention to the camouflaged object.
Extensive experiments demonstrate that compared with 19 cutting-edge detection models, MAGNet
can achieve the best comprehensive effect on eight evaluation metrics in the public COD dataset.
Additionally, compared to other COD methods, MAGNet has lower computational complexity and
faster segmentation. We also validated the model’s generalization ability on a military camouflaged
object dataset constructed in-house. Finally, we experimentally explored some extended applica-
tions of COD.

Keywords: camouflaged object detection; image segmentation; deep learning; human visual system;
computer vision

1. Introduction

In nature, animals evolve according to the principle of survival of the fittest. They
may be able to camouflage their shape or retain shape characteristics similar to those of
their habitat to avoid being hunted by predators or to ambush prey better [1]. Currently,
following the recent progress in various fields of science and technology, camouflage tech-
nology that simulates animal camouflage, such as camouflage clothing and nets [2], has
been widely used in modern warfare.

In addition to its military application, camouflaged object detection (COD) can be ap-
plied in industrial detection (e.g., equipment defect detection [3]), medical diagnoses (e.g.,
testing whether lungs are infected with pneumonia [4,5]), monitoring and protection (e.g.,
suspicious person or unmanned aerial vehicle intrusion detection [6,7]), and unmanned
driving (e.g., road obstacle detection [8]).

The task of COD is to detect objects that have similar patterns (e.g., color and texture)
to their surroundings. However, studies on COD are lacking. For example, in military
fields, military camouflaged objects are often identified by means of infrared-, polarization-
, and hyperspectral-based imaging and other technologies [9-11]. However, the challenge
of accurately segmenting camouflaged objects in the visible light band has been largely

Entropy 2022, 24, 1804. https://doi.org/10.3390/e24121804

https://www.mdpi.com/journal/entropy


https://doi.org/10.3390/e24121804
https://doi.org/10.3390/e24121804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1475-0887
https://doi.org/10.3390/e24121804
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121804?type=check_update&version=2

Entropy 2022, 24, 1804

2 of 26

neglected in scientific research. Despite this, television guidance is still widely used by
most countries because of its low cost and better visualization. The common method of
countering television guidance is to camouflage the object, so the study of COD for visible
images is greatly significant in military applications.

Before the rapid development of deep learning, researchers commonly used tradi-
tional digital image processing methods, such as spectral transforms [12], sparse matri-
ces [13], and human vision systems [14]. However, the traditional methods achieve image
segmentation by some artificially set rules. Primarily, scholars theoretically argue for the
rationality of the rule and then experimentally verify its effectiveness. Nevertheless, ac-
tual segmentation scenes are often more complex than validation scenes, and predefined
rules cannot be flexibly adjusted according to image features, which leads to less-than-
ideal results from traditional methods (Some of the experimental results are published at
https://github.com/jiangxinhao2020/Magnet_eval (accessed on 1 December 2022)). Now,
with the development of deep learning technology, some scholars have applied segmen-
tation to the detection of camouflaged objects, providing new ideas for the detection of
camouflaged objects in visible wavelengths [15]. However, existing COD models based
on deep learning are often complex in terms of design principles and network structure in
the pursuit of higher accuracy rates, which will make the computational complexity and
number of parameters of the model large.

The originality of this study is that, instead of rigidly solving the problem from the
perspective of deep learning, we took our inspiration from life observations and designed a
segmentation network suitable for camouflaged objects by simulating the magnifying glass
observation effect on a target. This is called the MAGnifier Network (MAGNet). MAGNet
differs from other COD methods in that it has a clearer structure and can achieve a better
segmentation performance with lower computational complexity. Figure 1 is a schematic
diagram demonstrating a search for camouflaged military objects based on observation
with a magnifier. With the influence of the camouflage coating, external camouflage mate-
rials, smoke barriers, and ground object shielding, the soldier and tank in Figure 1a achieve
near-perfect integration with the background. However, Figure 1b shows that the cam-
ouflaged objects in the picture can be simply and effectively observed with a magnifier.
Firstly, the magnifier visually enlarges the observation area, and we can then observe edge
information and key parts of camouflaged objects in the enlarged area. Therefore, we can
focus on the key points to accurately identify camouflaged objects in the region.

In summary, the major contributions of this paper are threefold:

1. We apply the concept of observation with a magnifier to the COD problem and pro-
pose a novel camouflaged object segmentation network called MAGNet with a clear
structure. MAGNet can achieve higher segmentation accuracy with lower computa-
tional complexity.

2. We design a parallel structure with the ergodic magnification module (EMM) and
attention focus module (AFM) to simulate the magnifier functions. We propose a
weighted key point area perception loss function to improve the focus of the camou-
flaged object, thus improving segmentation performance.

3. We perform extensive experiments using public COD benchmark datasets and a cam-
ouflaged military object dataset constructed in-house. MAGNet has the best compre-
hensive effect in eight evaluation metrics in comparison with 19 cutting-edge detec-
tion models, and it can enable real-time segmentation. Finally, we experimentally
explore several potential applications of camouflaged object segmentation.

This paper is organized as follows. Similar previous research is introduced in
Section 2. Section 3 provides detailed descriptions of our MAGNet and the associated
modules. Section 4 presents comparative experiments and quantitative and qualitative
analyses of the experimental results. Finally, Section 5 concludes the paper.
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Figure 1. Schematic diagram of the observation of a camouflaged soldier and tank with a magnifier.
(a) Camouflaged objects; (b) Observe camouflage objects with a magnifier.

2. Related Research
2.1. Semantic Segmentation Based on Deep Learning

In recent years, scene understanding technologies for use in autonomous driving [16],
virtual reality [17], and augmented reality [18] have rapidly developed. As the basic scene
understanding task, semantic segmentation technology based on pixel-by-pixel classifica-
tion has been widely studied [19-21]. Many semantic segmentation methods based on
deep learning have been proposed [22-25]. Currently, there are four main types of net-
works: fully convolutional networks (FCNs) [26], convolutional neural networks
(CNNs) [27], recurrent neural networks (RNNs) [28], and generative adversarial networks
(GANSs) [29].

2.2. Salient Object Detection Based on Deep Learning

In contrast to camouflaged objects, salient objects are the most noticeable objects in
an image. The research of salient object detection (SOD) can promote image understand-
ing [30], stereo matching [31,32], and medical disease detection [33-35]. In recent years,
salient object detection based on deep learning has been improved by multi-scale feature
fusion [36], attention mechanisms [37], and edge information [38]. Research on SOD can
provide insights into COD in terms of design principles.

2.3. Camouflaged Object Detection Based on Deep Learning

Figure 2 shows the difference between a camouflaged object and a salient object. As
can be seen, COD is more difficult than SOD. It should be noted that scholars commonly
use the terms “camouflage target segmentation” and “camouflage object detection” inter-
changeably; therefore, this paper continues to use the term COD. The year 2020 can be
regarded as the first year of research on COD based on deep learning. Fan et al. [39] con-
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structed a complete camouflaged object dataset named COD10K and presented a corre-
sponding camouflaged object segmentation network that promotes rapid COD develop-
ment. In 2021, Mei et al. [40] simulated the predation process of animals and proposed
PFNet, a camouflaged object segmentation network based on distraction mining.
Lv et al. [41] proposed a joint learning network that can simultaneously localize, segment,
and rank camouflaged objects and proposed a new COD dataset called NC4K. However,
the design principles and network structures of the existing COD models are relatively
complex. This paper presents a bionic model based on observation with a magnifier. This
principle is easy to understand, and its structure is simple and efficient.

ﬂ -
(b) (c)

Figure 2. The difference between camouflage objects and salient objects. (a) Image; (b) Salient object;

(c) Camouflaged object.

2.4. COD Dataset

Because of the similarity between a camouflaged object and the background, the bound-
ary between the foreground and the background is very difficult to distinguish; therefore,
the production of a camouflaged object dataset is very time-consuming [42]. Currently,
three major published datasets are the most commonly used. The number of images in
the CHAMELEON dataset is small, with only 76 published images collected from the in-
ternet [43]. The CAMO dataset contains 1250 images in eight categories [44]. In 2020, Fan
etal. proposed the COD10K universal camouflaged object dataset, which has 78 subclasses
of 10K images, and this dataset is very precise and challenging [39].

3. MAGNet Detection Model

A magnifier can help an observer quickly find a camouflaged object in an image. This
is because the magnifying effect of the magnifier makes it easier for the observer to spot
the center, key points, and minuscule details of the camouflaged object. Inspired by the
magnifier, we applied the magnifier observation effect to the COD problem and designed
the EMM and the AFM. The EMM is designed to mimic the process of a magnifier enlarg-
ing an image, mainly using the designed central excitation module to excite the center and
magnify the receptive field. Additionally, AFM is used to simulate the human visual sys-
tem, and its channel-spatial attention module can simulate the effect of a human focusing
on observing objects in the magnifier’s field of view. Finally, we design a more applica-
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ble weighted key point area perception loss function for camouflaged object segmentation,
which directs more attention to the camouflaged object in the region by weighting. The
network structure of MAGNet is shown in Figure 3, which has a clear structure with two
sets of branches forming a parallel structure and finally fuses two sets of feature maps to
achieve the final camouflage object recognition.
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Figure 3. MAGNet structure.

3.1. Network Overview

We input a camouflaged object image into this network. MAGNet first extracts multi-
scale feature maps through a Res2Net-50 backbone [45], and Res2Net consists of one layer
of CBRM (Conv+BatchNorm+ReLU Module) and four standard Res2-Layers. Additionally,
the latter three feature maps were then fed to the EMM and the AFM in parallel. Finally, the
output feature maps of the two modules are fused to simulate observation with a magnifier.

3.2. Ergodic Magnification Module (EMM)

As shown in Figure 3, the EMM consists of two parts, i.e., the central excitation module
(CEM) and the multi-scale feature fusion module (MFFM).

The CEM is used to traverse the feature maps of the different scales of output from
the last three layers of the backbone to expand the receptive field and intensify the central
point and key points.

The MFFM is designed to fully integrate the multi-scale feature maps after the CEM
to realize the efficient utilization of high-level and low-level features.

3.2.1. Central Excitation Module (CEM)

We find that when observers use a magnifier to observe an object, they observe the
central area of the magnifying glass more carefully than the edge areas. With the human
visual receptive field mechanism, an observer is more attracted to the center of an object.
Then, we use the magnifier to traverse the whole picture until the center of the magnifier
coincides with the center of the object. Several studies [46] discuss the differences between
the receptive field mechanism in deep learning and the biological receptive field mecha-
nism through a large number of experiments and points out that the value of the pixel in
the center of the receptive field responds more to the output feature map than the pixel at
the edges. This inspired us to design a receptive field mechanism not only to expand the
receptive field but also to motivate key points.

To simulate the visual magnification and central excitation of the magnifier, we
design a simple and efficient CEM, as shown in Figure 4. The realization of the above func-
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tions mainly depends on dilated convolution (DConv) with different sizes of convolution
kernels [47].

1x1Conv 5x5DConv 3x3(fohv

1x1Conv 7x7DConv

L7

1x]1Conv

Figure 4. The structure of the CEM.

Specifically, the CEM consists of four branches, and the input feature maps are simul-
taneously fed into all four branches. The four branches first use a 1 x 1 convolution to
change the number of output channels. Then, to achieve efficient multi-scale visual ampli-
fication, three of the branches use 3 x 3,5 x 5, and 7 x 7 DConvs with an expansion factor
of 2. After the three sets of output feature maps were connected, a 3 x 3 convolutional
layer was used for fusion between channels. The fourth branch is the residual connection
module, which aims to retain part of the original features to reduce the feature loss due
to convolution. The two sets of features are connected to obtain a centrally excited feature
map. The multi-scale centrally excited feature maps obtained from the last three layers
of backbone input to the CEM have the same number of channels to ensure a balanced
utilization of information at each scale.

The connection of three sets of DConvs can increase the importance of the central
features while increasing the receptive field, thus achieving a central excitation of the input.
The visualization of the feature map output from the CEM is shown on the right in Figure 5.
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Figure 5. Schematic diagram of the central excitation effect of CEM.

3.2.2. Multi-Scale Feature Fusion Module (MFFM)

The function of the MFFM is to fully integrate the feature maps after central excitation
of different scales, thereby outputting a camouflaged object map that contains abundant
high- and low-level features. The MFFM structure diagram is shown in Figure 6. The small-
scale excitation feature map transmits the feature information to the large-scale feature
map through continuous upsampling and fusion and then generates an output feature
map with a size of 44 x 44 x 1.

CEM2 — Had; > Had: »| Concat » CBR
mard | / mard | / /
44x44x32 cem2 1/ cemz2 /CEM23 Fo.
44x44x1]
UCBR UCBR UCBR
bl p. p.l

v

e (i f
22%22%32

UCBR|

cem4| [F----- > e oo !

11x11x32 CEM4 1

Figure 6. Structure of the MFFM module. (UP: upsample, CBR: Conv+BatchNorm+ReLU).
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The front-end fusion method of the module adopts the Hadamard product (®). The
Hadamard product calculation method is a pixel-by-pixel multiplication, which can better
achieve feature crossover, eliminating the difference between the two groups of features
and improving the feature fusion capabilities.

The back end of the module is fused by adding the channels, which can fuse the fea-
tures of each layer to increase the feature dimension but does not increase the internal
feature information, making full use of the semantic information of the high-level and low-
level features.

The module output map is denoted as Foyt. Algorithm 1 is the pseudocode of the
MFFM:

Algorithm 1: MFFM Algorithm

Input: CEM2, CEM3, CEM4.
CEM4_1=CEM4
CEM3_1 = CBR (UP (CEM4))©CEM3
CEMB3_2 = Concat (CEM3_1, CBR (UP (CEM4_1)))
CEM2_1 = CBR (UP (CEM3))®CEM2
CEM2_2 = CBR (UP (CEM3_1))®oCEM2_1
CEM2_3 = Concat (CEM2_2, CBR (UP (CEM3_2)))
Fout = CBR (CEM2_3)

Output: Foyt.

3.3. Attention Focus Module (AFM)

AFM has two steps. First, through upsampling and convolution operations, the three
sets of feature maps output by the backbone are processed into feature maps of the same
size with the same number of channels. Then, the maps are input into the channel-spatial
attention module (CSAM) to simulate the effect of human attention focused on observing
objects in the magnifier field of view.

Channel-Spatial Attention Module (CSAM)

Attention mechanisms in deep learning can simulate the human visual attention mech-
anism, where the goal is to obtain more important information [46]. Attention mechanisms
are divided into two types: spatial attention mechanisms and channel attention mecha-
nisms. A spatial attention mechanism module can extract the most important regional
features in the spatial domain and retain locally important information by spatial transfor-
mation. A channel attention mechanism module can assign different weights according
to the importance of each channel so that the model focuses more on channels with more
critical information [48]. The two methods have advantages and disadvantages, and the
CSAM that we propose is a parallel fusion mechanism of spatial attention and channel
attention, as shown in Figure 7.
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Figure 7. The structure of the CSAM. (H refers to the Hadamard product, L2, L3, and L4 refer to
Res2-Layer2, Res2-Layer3, and Res2-Layer4, respectively).

As illustrated in Figure 7, the CSAM is implemented in four steps. Algorithm 2 is the
pseudocode of the CSAM:

Algorithm 2: CSAM Algorithm

Input: L2, L3, L4.
# 1. Feature Maps Concat
X_original = Concat(L2, L3, L4)
Fori=2, 3, 4:
# 2. Spatial Attention
xsa_i = SAmodule (Li)
# 3. Channel Attention
xca_i = CAmodule(Li)
Xsa = Concat (xsa_3, xsa_4, xsa_5)
Xsa = Softmax (Xsa)
Xca = Concat (xca_3, xca_4, xca_5)
# 4. Fusion Attention Maps
Xout = X_original ® Xca ® Xsa
Output: Xout.

Feature Maps Concat: Superimposing the feature maps of the same size with the same
number of channels in the latter three layers of the backbone after processing can achieve
the average utilization of feature maps of each scale and fully fuse the semanticinformation
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of high- and low-level features. Therefore, the feature maps of the three different layers
were input into the channel attention and spatial attention mechanism branches to generate
a channel attention map and a spatial attention map, respectively.

Channel Attention: The squeeze-and-excitation (SE) module is the most commonly
used method of channel attention [49]. It can extract important features by assigning
weights to each channel but does not learn the importance of location information. There-
fore, we embedded the coordinate attention (CA) module [50], which can fully perceive
position information, into CSAM. The CA module first aggregates features near key points
in the image into a pair of key point direction-aware feature maps Ky (C, H,1) Ky (C,1, W)
with different orientations using two 2D-average-pooling operations in the horizontal and
vertical dimensions.

Ky(c,Lw)=% ¥ Fppulciw), 0<c<CO0<w<W )
0<i<H

KH(Clhll):% Z Finput(clhrj)r OSC<CrOSh<H (2)
0<j<W

where Fj,,,,+ denotes the input feature maps, and the two direction-aware feature maps are
fused by cascade and convolution operations, yielding the following:

F(C1,1,W + H) = &(Convey ([K(C, H,1),K(C,1, W)])) 3)

where [+, -] denotes the concatenation operation along the spatial dimension, Convcy (-) de-
notes the 1 x 1 convolution with C1 convolution kernels, and ¢(-) denotes BatchNorm and
HardSwish operations on feature maps. The fused feature maps were sliced and encoded
into two attention maps storing location information.

{Fy(C,H,1), Fy(C,1,W)} = 6(Convc(Slice[F(C1,1, W + H)])) 4)

where Slice[-] denotes the slice operation along the spatial dimension and Convc (-) denotes
the 1 x 1 convolution with C convolution kernels. J(-) denotes the sigmoid activation
function.

Finally, the new and old feature maps were multiplied pixel by pixel by a Hadamard
convolution to generate a channel attention map with embedded location and direction
information.

Foutput (¢,1,j) = Finput(¢,1,j) © Fu(c,i,1) © Fw(c,1,j), 0<c<CO0<i<HO0<j<W %)

Spatial Attention: The spatial attention mechanism is particularly important for find-
ing special targets and can retain important local information. For the input feature map
Fryn, we first used GroupNorm (GN) for group normalization. The second step was to use
a set of trainable parameters, weight (w) and bias (B), to assign spatial weights to enhance
the representation abilities of the feature map. The third step is to use a sigmoid function
for activation and then multiply the Fy, pixel by pixel to obtain the spatial attention map
Fsam:

Fsam = Fip % 6(w x GN(Fp,) + B) (6)

Finally, we connect three sets of spatial attention maps and use softmax to normalize
again.

Fusion Channel and Spatial Attention Maps: We use the Hadamard product for the
fusion of attention maps, that is, the pixel-by-pixel multiplication method, which can better
enhance feature information to obtain a more accurate feature map.
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3.4. Output Prediction and Loss Function

Finally, the feature maps output by the EMM and AFM are transformed into a single-
channel camouflaged object map through an upsampling operation. The two feature maps
are fused by pixel-by-pixel addition.

The binary cross entropy (BCE) loss function and the intersection over union (IOU)
loss function are the most common [51] functions for a large number of target segmentation
algorithms. However, the BCE loss and IOU loss averages of all the pixel points cannot be
applied to COD. In these images, camouflaged objects require more attention than other
objects (especially salient objects) due to their indistinguishable characteristics.

Combining the designed pair of focusing and amplifying modules, we propose a
weighted key point area perception loss based on the BCE loss and IOU loss (L}, p), adding
the key point area perception weight to jointly obtain the loss function:

;cl;p = Lypee(P, GT) 4 Lyiou(P, GT) @)
H W
i=1j=
wace(P/ GT) = — T (8)
L X wj
i=1j=1
LA enter
i§1j§1 Ly wi
Luiou(P, GT) =1 — 57— , 9)
zgl j§1 Ly " = wij

where P is the prediction map, GT is the ground truth map, H and W are the picture length
and width, respectively, and Ly, (P, GT) is the original BCE loss function. The expression
for the key point area perception weight w; ; is as follows:

hZ GTh,w hZ GTh,w 1
W W
hw GTiJ 7 Thw <3
w;i = (10)
bl }Z GTh/zu }Z GTh/w 1
h,w - 1w 1
L= —CLyj| " m— >3

where h and w are the sizes of the regions around the pixel points in the GT map, and
Y. GTj,,, denotes the sum of the values of all the pixel points within the region h x w
h,w

centered on the pixel point (i, ) in the GT map. h and w are as small as possible because
taking a value that is too large will affect model efficiency. However, it should not be
smaller than the maximum perceptual field of 32 x 32 for a single pixel (i.e., the maximum
number of downsampling multiples). Therefore, a region range of size 33 x 33 was se-
lected in this experiment, and 33 as an odd number also avoids the case where the weight
is equal to 1/2 and GT; is the value of the pixel point (x, y) in the GT map. From Equation
(10), it can be seen that the key point area perception weight directs more attention to the
camouflaged object regardless of the percentage of the camouflaged object in the region,
thus making the model training favorable to segmenting camouflaged objects.

4. Experimental Results and Analysis
4.1. Preparation Work

In this experiment, the experimental platform system used was Windows 10, the GPU
of the platform was an NVIDIA Quadro GV100, and the video memory was 32 GB. The
CPU was an Intel Xeon Silver 4210. The experiment used the PyTorch deep learning devel-
opment framework, and the computing platform was CUDA11.0. We used the Adam opti-
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mizer for network optimization during training, the image input size was set to 352 x 352,
and the learning rate was set to 0.0001.

4.1.1. Dataset Preprocessing

We evaluate the CAMO [44] and COD10K [39] datasets with relatively large data
volumes. CAMO includes 1250 images, and COD10K includes 5066 camouflage images.
The combined total of 6316 images is divided into a training set, validation set, and testing
set according to a ratio of 6:2:2. In addition, we performed validation experiments on a mil-
itary camouflaged object dataset that we constructed. The dataset contains 2700 images of
camouflaged soldiers and tanks. The details of the dataset are shown in Table 1, and the
division ratio is also 6:2:2.

Table 1. Military camouflaged object dataset overview.

Categories Descriptions Quantities
The woods in spring 800
Diseuised Dersons The woods in summer 900
& P The woods in autumn 400
The woods in winter 500
Disguised tanks Complex environments 100
Total 2700

4.1.2. Evaluation Metrics

At present, there are many evaluation metrics suitable for COD, and each metric
focuses on different points. Based on previous scholars’ research, we selected eight evalu-
ation metrics. A brief introduction of the metrics is as follows: The structure measure (S,)
is a structural similarity evaluation metric focusing on evaluating the structural informa-
tion of the prediction map [52]. The weighted F-measure (Fg) is a comprehensive evalu-
ation of the accuracy and recall rate of the prediction map [53]. The mean absolute error
(MAE) is the sum of the absolute values of differences between the pixels of the prediction
map and the GT map [54]. The adaptive enhanced alignment measure (Ef;)d) can evalu-
ate the pixel-level similarity effect and obtain image-level statistics [55]. The mean Dice
coefficient (meanDic) represents the percentage of correctly segmented area to true area
in the GT image [56]. The mean intersection over union (meanlOU) is the ratio of the area
of overlap and concatenation between the predicted and ground truth maps. The mean
sensitivity (meanSen) measures the percentage of predicted correct results according to the
GT image. The mean specificity (meanSpe) measures the percentage of predicted
incorrect results according to the GT image. The FPS uses NVIDIA 3060 for evaluating
segmentation speed.

4.1.3. Comparison Methods

To prove the effectiveness of the MAGNet proposed in this paper, we compared it
with 19 classical and state-of-the-art algorithms. These include generic object detection
methods, MaskRCNN [57], HTC [58], Swin-S [59], and DetectoRS [60]; medical image seg-
mentation methods, UNet++ [61], HarDNet [62], PraNet [5], SANet [25], CaraNet [63], and
UACANet-L [64]; SOD methods BASNet [65], SCRN [66], F3Net [51], and GCPANet [67];
and COD methods SINet-V1 [39], Rank-Net [41], PFNet [40], SINet-V2 [68], and Zoom-
Net [69]. For a fair comparison of segmentation performance, all algorithms are trained,
validated, and tested using the partitioned dataset discussed in Section 4.1.1, and the in-
put sizes are set to 352 x 352. In addition, the evaluation metrics are calculated using the
same set of codes. The evaluation code uses the toolboxes disclosed by PFNet [40] and
SINet-V2 [68].
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4.2. Comparison with State-of-the-Art Algorithms on Public Datasets
4.2.1. Quantitative Comparison

Table 2 comprehensively reports the quantitative results of MAGNet and the latest
algorithms on the combined dataset. Figure 8 is a radar plot of eight indicators. As seen
from the table, MAGNet exhibits the best comprehensive performance according to the
eight standard accuracy evaluation metrics, achieving the best performance in the S, FE",
meanDic and meanIlOU metrics. The meanSpe MAGNet is essentially equal to that of
SINet-V2. MAGNet does not optimize this metric because it can extract the features of
camouflaged objects, which readily results in a certain number of false positives. From
the perspective of detection speed, the fastest methods are the lightweight algorithms,
SANet and F3Net. The main innovation of these two algorithms is to increase the detection
speed and reduce the computational complexity and parameters, which inevitably affects
segmentation accuracy. As seen from the table, these two algorithms are the networks
with the lowest segmentation accuracy in the corresponding years. It is noteworthy that
the MAGNet has the highest FPS among the existing COD algorithms (>30FPS means
real-time), and the GFLOPs of MAGNet rank third among all algorithms, surpassing the
lightweight algorithm F3Net. Taken together, MAGNet can segment camouflage targets
accurately in real-time.

Table 2. The comparison results of MAGNet and 19 algorithms on public datasets. (t: generic ob-
ject detection methods, % medical image segmentation method, ¢: saliency object detection method,
% COD method, bold: our method. The top three performances are highlighted in red, blue, and

green).

Methods Pub. ‘Year Su Fé’ MAE E‘;,d meanDic meanloU meanSen meanSpe FPS GFLOPs  Params (M)
UNet+ & DLMIA ‘17 0.678 0.491 0.067 0.763 0.529 0.416 0.553 0.859 60.29 106.74 24.89
MaskRCNN + ICCV “17 0.756 0.643 0.042 0.790 0.625 0.534 0.653 0.803 26.90 75.82 43.75
BASNet ¢ CVPR ‘19 0.663 0.439 0.097 0.732 0.490 0.381 0.611 0.865 9.36 481.14 87.06
SCRN ¢ ICCV “19 0.791 0.583 0.052 0.799 0.640 0.529 0.676 0.926 35.27 30.32 2522
HarDNet ¥ ICCV 19 0.785 0.651 0.043 0.874 0.676 0.575 0.690 0.930 61.51 22.80 17.42
HTC t CVPR ‘19 0.738 0.611 0.041 0.741 0.576 0.501 0.596 0.710 9.20 188.84 79.73
F3Net ¢ AAAI20 0.781 0.636 0.049 0.851 0.675 0.565 0.709 0.940 62.12 32.86 25.54
PraNet ¥ MICCAI ‘20 0.799 0.665 0.045 0.866 0.700 0.595 0.737 0.939 45.83 26.15 32.58
GCPANet ¢ AAAI20 0.800 0.646 0.042 0.851 0.674 0.573 0.691 0.934 9.36 131.40 67.06
SINet-V1 ¥ CVPR 20 0.806 0.684 0.039 0.883 0.714 0.608 0.737 0.948 37.64 38.76 48.95
Swin-S t ICCV 20 0.780 0.681 0.040 0.840 0.676 0.580 0.712 0.873 14.30 89.82 68.69
SANet 0 MICCAI 21 0.791 0.659 0.046 0.862 0.702 0.593 0.766 0.938 69.09 22.56 23.90
RankNet ¥ CVPR 21 0.799 0.661 0.043 0.860 0.696 0.588 0.723 0.947 29.51 66.63 50.94
PFNet ¥ CVPR 21 0.805 0.683 0.040 0.882 0.714 0.607 0.737 0.951 33.74 53.24 46.50
DetectoRS t CVPR 21 0.804 0.725 0.039 0.851 0.712 0.624 0.739 0.861 5.50 188.36 134.00

UACANetL¥  ACMMM 21 0.816 0.724 0.034 0.901 0.745 0.646 0.763 0.945 23.19 119.05 69.6

SINet-V2 ¥ TPAMI ‘21 0.822 0.700 0.038 0.883 0.735 0.627 0.767 0.955 52.20 24.48 26.98
CaraNet MIIP ‘22 0.815 0.679 0.044 0.862 0.722 0.618 0.789 0.937 31.88 43.30 46.63
ZoomNet ¥ CVPR 22 0.818 0.703 0.037 0.875 0.721 0.625 0.716 0.941 12.06 203.50 32.38
MAGNet ¥ Ours 0.829 0.727 0.034 0.901 0.757 0.656 0.789 0.954 56.91 24.36 27.12
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Figure 8. Comparison of the algorithm’s radar plot on each indicator. (For the convenience of display,

set MAE =1 — MAE; best viewed in color. t: generic object detection methods, % medical image

segmentation method, ¢: saliency object detection method, % COD method.).

Loss

Figure 9 shows the training loss value curves of MAGNet and the optimal COD detec-
tion algorithm SINet-V2 [68]. From the figure, we can see that the loss value of MAGNet
decreases faster, leveling off at 20 epochs and the final loss value is lower.

10 4

9

Loss-MAGNet
Loss-SINetV2

T T T T T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
epoch

Figure 9. Loss value curves.
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It can be seen from the table that the FPS and computational complexity of non-COD
methods are generally better than that of COD methods. This is because the existing COD
models based on deep learning in the pursuit of higher accuracy rates are often complex in
terms of design principles and network structures. Therefore, we compared the computa-
tional complexity of all COD methods. As shown in Table 3, MAGNet’s FPS and FLOPs are
ahead of other networks, and the number of parameters is essentially the same as SINet-V2.
This is attributed to the clear and efficient network structure of MAGNet, which makes the
model more lightweight and faster in segmentation.

Table 3. Computational complexity comparison results of MAGNet and other COD methods (based
on https://github.com/lartpang/MethodsCmp (accessed on 1 November 2022) [69]. ¥ COD method,
bold: our method. The top three performances are highlighted in red, blue, and green.).

Methods Pub. “Year FPS FLOPs (G) Params (M)
SINet-V1 ¢ CVPR 20 37.64 38.76 48.95
RankNet ¥ CVPR 21 29.51 66.63 50.94

PFNet ¥ CVPR 21 33.74 53.24 46.50
SINet-V2 ¢ TPAMI ‘21 52.20 24.48 26.98
ZoomNet ¥ CVPR 22 12.06 203.50 32.38
MAGNet ¥ Ours 56.91 24.36 27.12

4.2.2. Qualitative Comparisons

As shown in Table 2, the algorithms from 2021 onwards perform better in COD.
Figure 10 shows the visualization results of all algorithms since 2021. It can be observed
that MAGNet can more accurately segment camouflaged targets. The EMM can better
identify small targets hidden in complex backgrounds by magnifying the receptive field
and fusing multi-scale features, as the hidden GhostPipefish in the second column, the
MAGNet achieves the lowest missed segmentation. In contrast, most non-COD algorithms
(e.g., UACANet-L, DetectoRS) tend to be more effective in salient regions of the image,
and thus, do not apply to COD. AFM can acquire more important information in channels
and space by simulating the human visual attention mechanism to accurately segment the
details of camouflaged objects. As observed in the fifth column, MAGNet can better seg-
ment the frog’s obscured head. Using the weighted key point area, perception-loss func-
tion causes the model to focus more on the regions near the key points of a camouflaged
object. As shown in the first column and the third column, MAGNet can achieve the lowest
segmentation false positive rate.

4.3. Ablation Experiment

We conducted ablation experiments to verify the effectiveness of two specific modules
designed for COD: the EMM and AFM.

4.3.1. Quantitative Comparison

The results of the MAGNet ablation experiments are comprehensively reported in
Table 4. Adding the two modules alone improves model performance significantly. Adding
AFM optimizes meanSen due to the effect of the attention mechanism of the model, which
reduces the probability of missed detection. The addition of the EMM optimizes meanSpe
since the model’s receptive field magnifying mechanism works to reduce the model’s false
positive probability. We also compare the results with the two key modules connected
in series and parallel, ultimately finding that the parallel structure better maximizes the
effects of both modules.
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Figure 10. Visualization results for all algorithms on public datasets.(t: generic object detection
methods, % medical image segmentation method, # COD method, bold: our method.)
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Table 4. MAGNet ablation experiment results.(v indicates that the module is used. The top three
performances are highlighted in red, blue, and green).

With

With

In In

Baseline AFM EMM Series  Parallel Su Fy MAE E‘;,d meanDic meanloU meanSen meanSpe
v 0.663 0.315 0.151 0.711 0.522 0.399 0.761 0.826
v v 0.675 0.308 0.163 0.843 0.616 0.509 0.824 0.812
v v 0.825 0.715 0.035 0.900 0.742 0.638 0.755 0.956
v v v v 0.827 0.723 0.034 0.902 0.753 0.652 0.785 0.949
v v v v 0.829 0.727 0.034 0.901 0.757 0.656 0.789 0.954

4.3.2. Qualitative Comparisons

We visualize the feature maps output by the EMM and AFM and compare them with
the final fused camouflaged object map. The results are shown in Figure 11. The feature
map output by the EMM proves that this module focuses more on the center of a camou-
flaged object, while the AFM can retain more important information about the target. The
fused output camouflage feature map combines the advantages of both modules. The cen-
ter of the camouflaged object is used as a key point to precisely find important information
in the vicinity of the point, and thus, improving the accuracy of segmentation.

Image

Fevm Farm Fruse Output

Figure 11. Visualization of MAGNet feature maps. (Fpypvi: output by the EMM, Fapp: output by
the AFM, Fyq: final fused camouflaged object map).

4.4. Comparison Experiment of Loss Function Parameter Settings

In Section 3.4, we detail the weighted, key-point-area perception loss. In Equation (10),
h and w are the sizes of the regions around the pixel points in the GT map. We discuss the
rules for the selection of & and w from a theoretical perspective, i.e., the following points
need to be satisfied: (1) & and w should not be smaller than the maximum perceptual field
of 32 x 32 for a single pixel; (2) should be as small as possible; and (3) should be set to an
odd number. In this section, we selected 23 x 23, 33 x 33, and 43 x 43 for comparison
experiments. Figure 12 shows the decreasing curve of the Loss value. From the figure, we
can see that the decrease in the training loss value is not significant when set to 23 x 23
because the area involved in the calculation is smaller than the maximum perceptual field.
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W

When set to 43 x 43, the final loss value is similar to that when set to 33 x 33, but the area
involved in the calculation is too large, resulting in a slight decrease in the loss value and
a significant final fluctuation. Table 5 shows the quantitative evaluation of each group of
experiments, and the evaluation results are not that different when set to 43 x 43. Still, it
takes a longer time to train an epoch.

g
-
2
1
0
15 30 45 60 75 90 105 120 135 150
Epoch
Figure 12. Decline curve of Loss value (solid line is the smoothed decline curve).
Table 5. Comparison results with different parameter settings. (The last column is the time required
to train an epoch. The top performance are highlighted in red).
Settings Sa F‘ﬁ” MAE E’;"’ meanDic  meanloU meanSen meanSpe Time/s
23 x 23 0.809 0.644 0.046 0.847 0.719 0.610 0.787 0.946 137.2
43 x 43 0.824 0.723 0.034 0.903 0.746 0.648 0.760 0.952 146.9
33 x 33 0.829 0.727 0.034 0.901 0.757 0.656 0.789 0.954 142

Therefore, experiments prove that when I and w are set to 33 x 33, they are more
conducive to efficient training and can achieve the best performance.

4.5. Comparison of the In-House Military Camouflaged Object Dataset

Table 6 shows the experimental comparison results of the MAGNet method proposed
in this paper and other methods on the military camouflaged object dataset built in-house.
As seen in Table 6, MAGNet reaches the optimum in seven metrics and has the best compre-
hensive segmentation ability; in particular, the meanSen is improved by 6.4% compared
with the next-best method UACANet-L, which means that the MAGNet model has the low-
est missing detection rate. Since each image contains camouflaged objects, the meanSpe of
each model is relatively high, while that of MAGNet is still 1% higher, which means that
MAGNet simultaneously has the lowest false positive rate. The balance of the missed de-
tection rate and the false positive rate is a testament to the stability of the network model
and is particularly important in practical military applications. Figure 13 shows the re-
sults of the comparison experiments in this subsection on the in-house-built military cam-
ouflaged object dataset. We selected the two algorithms with the best overall performance
besides MAGNet for comparison. We found that our MAGNet is better at extracting details
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(e.g., it can better segment the gun in the soldier’s hand, as shown in the first column) and
has fewer missed regions and false alarm regions (e.g., the second and third columns).

Table 6. Comparison results on the in-house military camouflaged object dataset. (t: generic object
detection methods, % medical image segmentation method, ¢: saliency object detection method,
% COD method, bold: our method. The top three performances are highlighted in red, blue, and

green.)

Methods Pub. “Year Su F%’ MAE E‘g,”’ meanDic meanloU meanSen meanSpe
UNet++ % DLMIA “17 0.717 0.594 0.009 0.736 0.513 0.421 0.471 0.747
MaskRCNN + ICCV “17 0.825 0.762 0.008 0.856 0.695 0.543 0.746 0.874
BASNet ¢ CVPR ‘19 0.865 0.757 0.008 0.928 0.763 0.666 0.758 0.950
SCRN ¢ ICCV ‘19 0.847 0.603 0.010 0.677 0.687 0.575 0.726 0.955
HarDNet ¥ ICCV ‘19 0.876 0.784 0.005 0.953 0.795 0.695 0.806 0.967
HTC + CVPR ‘19 0.848 0.766 0.006 0.824 0.753 0.504 0.764 0.858
F3Net ¢ AAAI20 0.889 0.798 0.005 0.944 0.816 0.716 0.846 0.972
PraNet ¥ MICCAI‘20 0.887 0.781 0.006 0.915 0.802 0.696 0.834 0.977
GCPANet ¢ AAAI20 0.874 0.721 0.006 0.821 0.733 0.623 0.714 0.971
SINet-V1 ¥ CVPR 20 0.876 0.800 0.005 0.965 0.810 0.706 0.842 0.977
Swin-S t ICCV ‘20 0.858 0.710 0.008 0.834 0.741 0.635 0.837 0.951
SANet % MICCAI ‘21 0.804 0.647 0.010 0.853 0.673 0.563 0.720 0.917
RankNet ¥ CVPR 21 0.847 0.693 0.008 0.825 0.737 0.622 0.840 0.960
PFNet ¢ CVPR 21 0.873 0.771 0.006 0.941 0.785 0.682 0.804 0.965
DetectoRS t CVPR 21 0.863 0.784 0.007 0.917 0.803 0.698 0.826 0.965
UACANet-L o ACM MM “21 0.880 0.823 0.004 0.963 0.817 0.715 0.853 0.979
SINet-V2 ¥ TPAMI ‘21 0.884 0.788 0.004 0.926 0.806 0.699 0.843 0.982
CaraNet & MIIP “22 0.865 0.729 0.006 0.873 0.763 0.654 0.832 0.964
ZoomNet ¥ CVPR 22 0.881 0.798 0.005 0.888 0.783 0.685 0.784 0.965
MAGNet ¥ Ours 0.924 0.864 0.003 0.946 0.868 0.779 0.917 0.992

4.6. Discussion

From the comparison with the latest methods in Section 4.2, we find that the results of
several saliency object detection algorithms are unsatisfactory, which proves that it is not
reasonable to apply saliency object detection algorithms to the detection of camouflaged ob-
jects. COD methods and medical image segmentation methods accounted for 96% (23/24)
of the top three values of the eight metrics. The results show that medical image segmenta-
tion methods can achieve better results in camouflaged object segmentation tasks because
some medical image datasets (e.g., polyp datasets) have properties similar to those of cam-
ouflaged objects, i.e., inconspicuous edges and high integration with the surrounding en-
vironment [70-72]. Therefore, COD has a high potential application in the medical field.
Figure 14 shows the visualization results of MAGNET applied to polyp detection, where
the dataset used for the experiment is the Kvasir-SEG polyp dataset [70]. Table 7 shows
the experimental comparison between the MAGNet method proposed in this paper and
other medical image segmentation methods in the Kvasir-SEG polyp dataset. Here, we
follow the experimental setup used in the literature [5]. The quantitative results of other
algorithms are used from the original paper. It is worth noting that although MAGNet is
not specifically designed for polyp detection; its performance is close to that of the best
polyp-detection networks (where it achieves sub-optimal performance) and where it is ev-
ident that MAGNet has high potential for applications. When using migration learning
coupled with model optimization for MAGNet, quantitative evaluation may be an even
better option.
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Figure 13. Visualization results on the in-house military camouflaged object dataset. (% medical im-
age segmentation method, ¢: saliency object detection method, % COD method, bold: our method).
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Figure 14. Visualization of detection results on the Kvasir-SEG polyp dataset.
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Table 7. Comparison results on the Kvasir-SEG polyp dataset. ¢ medical image segmentation
method, ¥ COD method, bold: our method. The top three performances are highlighted in red,
blue, and green.)

Methods Pub. “Year meanDic MAE Se E‘;,d meanloU
UNet++ £ DLMIA ‘17 0.821 0.048 0.862 0.910 /
HarDNet * ICCV ‘19 0.912 0.025 0.923 0.958 0.857
PraNet * MICCAI ‘20 0.898 0.030 0.915 0.948 0.849
UACANet-L o ACM MM 21 0.912 0.025 0.917 0.958 0.862
CaraNet & MIIP ‘22 0.918 0.023 0.929 0.968 0.865
MAGNet ¥ Ours 0.890 0.033 0.912 0.960 0.830

In addition, we explore other extended applications similar to COD. Figure 15 shows
the visualization results applied for defect detection in industry, where the used dataset
is the magnetic tile defect dataset [73]. Figure 16 shows the visualization results from
applying MAGNET to infrared vehicle detection in rain and fog at night with the AAU-
RainSnow dataset [74]. In these applications, similar to camouflaged objects, the object
to be detected exhibits a high degree of fusion with the background, so the detection of
camouflaged objects can be extended to similar applications.

Image

GT

MAGNet

Figure 15. Visualization of the detection results on the magnetic tile defect dataset.



Entropy 2022, 24, 1804

22 of 26

Infrared

Figure 16. Visualization of detection results on the AAU-RainSnow dataset.

5. Conclusions

This paper is dedicated to achieving more accurate detection of camouflaged objects.
By simulating the search function of a magnifier, we propose a new network based on the
observed effect of a magnifier named MAGNet. We designed two bionic modules that can
be processed in parallel and presented a more applicable weighted key-point- area percep-
tion loss that allows the network to exploit important information about an object further,
and thus, achieving an accurate search for camouflaged objects. The results demonstrate
the accuracy advantages of MAGNet for COD through quantitative and qualitative eval-
uation of challenging public datasets and an in-house-built dataset. MAGNet also offers
lower computational complexity and faster segmentation than other COD methods. Addi-
tionally, MAGNet has potential value for applications in other fields (e.g., medical image
segmentation, nighttime vehicle detection, and industrial defect detection). In the future,
we will continue to explore the accurate recognition of low-detectability objects.
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