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Abstract: Aiming at addressing the security and efficiency challenges during image transmission, an
efficient image cryptosystem utilizing difference matrix and genetic algorithm is proposed in this
paper. A difference matrix is a typical combinatorial structure that exhibits properties of discretization
and approximate uniformity. It can serve as a pseudo-random sequence, offering various scrambling
techniques while occupying a small storage space. The genetic algorithm generates multiple cipher-
text images with strong randomness through local crossover and mutation operations, then obtains
high-quality ciphertext images through multiple iterations using the optimal preservation strategy.
The whole encryption process is divided into three stages: first, the difference matrix is generated;
second, it is utilized for initial encryption to ensure that the resulting ciphertext image has relatively
good initial randomness; finally, multiple rounds of local genetic operations are used to optimize the
output. The proposed cryptosystem is demonstrated to be effective and robust through simulation
experiments and statistical analyses, highlighting its superiority over other existing algorithms.

Keywords: image cryptosystem; difference matrix; genetic algorithm; optimal preservation strategy

1. Introduction

With the increasing transmission of multimedia information over the internet, it has
become essential to protect against unauthorized access. Digital images are a widely used
data format for storing more vivid information. Image encryption mainly involves con-
verting a meaningful image into a meaningless one through two fundamental techniques,
namely, scrambling and diffusion, thereby rendering it inaccessible to unauthorized individ-
uals. Scrambling involves the modification of the positioning or ordering of pixels within
an image. On the other hand, diffusion modifies pixel values to achieve a randomized
effect. These techniques can be applied independently or combined to create more complex
encryption schemes.

Numerous image encryption algorithms have been put forward recently, with chaos-
based ones garnering significant attention in this field due to their distinctive proper-
ties [1–3]. Chaotic systems are nonlinear dynamical systems that exhibit complex and
unpredictable behavior, making them suitable for cryptographic systems due to their er-
godicity, sensitivity to initial conditions, non-periodicity and non-convergence. However,
attackers can exploit regions of regularity or low chaos within these systems to break
encryption schemes, particularly if they possess knowledge of the plaintext used in encryp-
tion or can select it. Therefore, chaotic systems are frequently employed in conjunction
with other technologies to enhance their level of security, such as DNA [4–7], genetic
operations [8–10], compressive sensing [11–13], fractal sorting matrix [14], bit matrix [15],
combinatorial design structures [16–23], and others.

Most concepts in combinational design theory are directly defined on finite sets, which
can compensate for the limitations of applying chaos theory to cryptography. To date,
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many combinational design structures have been implemented in the field of cryptography,
including Latin squares [16–18], orthogonal arrays [19], Latin cubes [20–22], Hadamard
matrices [24], etc. Latin squares are commonly utilized in image encryption thanks to their
distinctive properties of dispersion, uniformity, and abundance. These algorithms initially
employ Latin squares to generate 1D maps for scrambling, then perform XOR operations di-
rectly on 2D images. However, they suffer from the drawbacks of low scrambling efficiency
and susceptibility to specific attacks. The utilization of orthogonal Latin squares enables
the direct construction of a 2D map, resulting in an enhanced scrambling efficiency [25].
Orthogonal arrays can be utilized to select appropriate rows for generating a pair of orthog-
onal Latin squares, albeit at the cost of requiring a relatively large storage space. Latin cubes
are particularly useful in encryption, especially when dealing with more complex scenarios.
Therefore, here we adopt another typical combinatorial design structure: the difference
matrix. With its discreteness and approximate uniformity, it requires only a small storage
space, making it an ideal candidate to serve as a pseudo-random sequence. Moreover, each
difference matrix possesses a crucial property in that selecting any nonzero row generates
a Latin square, while choosing any two non-zero rows produces a pair of orthogonal Latin
squares. Therefore, a difference matrix can provide multiple pseudo-random sequences
and a variety of scrambling methods, making it highly suitable for image encryption.

In recent years, the utilization of genetic algorithms (GA) in encryption technology has
emerged as a prominent research frontier within the realm of image encryption. GAs are a
type of optimization algorithm that operate on the principle of natural selection and evolu-
tion. Advantages such as simplicity, robustness, intrinsic parallelism, and self-adaptation
have made them a popular choice in various fields, including cryptography, combinatorial
optimization, and more. In 2012, Abdullah et al. put forward a hybrid model combining a
GA and a chaotic function [8]. It employed the correlation coefficient as the fitness func-
tion. This approach has weaknesses against certain attacks, however, primarily due to its
reliance on plaintext images and the utilization of identical chaotic sequences to encrypt
different images. Thus far, various enhanced genetic algorithms have emerged for image
encryption by leveraging the optimization capabilities of GAs to generate high-quality
ciphertext images [26–29], optimizing chaotic sequences [30], and employing genetic oper-
ations directly for encryption [10,31,32]. Additionally, some approaches have integrated
novel technologies along with GAs to improve the security and efficiency of the resulting
cryptosystem [33–35]. In 2018, Pashakolaee et al. put forward a novel image encryption
algorithm (IEA) named Hyper-chaotic Feeded GA (HFGA) [26]. This algorithm mainly uses
a GA in combination with a hyperchaotic system to optimize cryptographic images and
provide a secure decryption mechanism for authorized recipients. In the same year, Mozaf-
fari proposed a parallel IEA on the basis of bit-plane decomposition [27]. In this approach,
a GA was utilized to perform permutation and replacement steps through crossover and
mutation operations. The resulting algorithm enables parallel processing of multi-bit-plane
encryption, thereby enhancing the encryption speed and rendering it suitable for real-time
applications. In 2019, Premkumar et al. put forward a secure composite 3D chaos-based
image encryption algorithm utilizing a GA [31]. The algorithm was implemented by
arithmetic crossover, multi-point crossover, and permutation of combinatorial mutation
operators. In 2021, Zhang put forward a new IEA integrating genetic mutation and ML-
NCML [34]. The proposed encryption scheme employs DNA mutation and crossover
operations by chaotic sequences. By integrating chaotic systems into the DNA operations,
the scheme can effectively counter man-in-the-middle attacks, which are prevalent in
traditional DNA addition and subtraction operations. In 2022, Qobbi proposed a novel
encryption scheme combining a 2D logical mapping and genetic manipulations [10]. The
algorithm’s security was guaranteed through the use of CBC with genetic manipulations.
In 2022, Liang proposed an image cryptosystem combining the Fibonacci-Q matrix and
GA [29]. The four-layer encryption framework employed to bolster the encryption security
of this cryptosystem consists of diffusion, scrambling, diffusion, and optimization. In 2023,
Bhowmik put forward an IEA employing a modified chaotic system integrated with DE
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and GA [30]. The GA was used to generate a unique key-string that was employed for the
transposition process in the confusion stage. In summary, GAs represent a meta-heuristic
optimization technique that can be applied to enhance the behavior of chaotic sequences or
to improve the stochastic properties of ciphertext images during the encryption process.
By introducing a GA into image encryption, it is possible to achieve a highly secure and
efficient method for encrypting images.

To realize the advantageous properties of a difference matrix together with the opti-
mization capabilities of a GA, we propose an efficient image cryptosystem utilizing both
techniques. Difference matrices can serve as generators for Latin squares or pseudo-random
sequences, while GA operations of crossover and mutation are employed to generate new
individuals. This is followed by local optimization to achieve overall image optimization.
The proposed cryptosystem first generates a difference matrix, which is then utilized for
initial encryption. Subsequently, genetic operations are employed to cross and mutate the
encrypted image blocks, followed by multiple rounds of optimal preservation to enhance
the randomness of the final ciphertext image. The novel contributions of this research are
summarized below.

• We introduce a novel combinatorial structure for image encryption consisting of a
difference matrix. It can be utilized to generate Latin squares or serve as a pseudo-
random sequence while maintaining simplicity and requiring only a small amount of
memory.

• The above structure is used to generate a novel row-scrambling method using a pair
of orthogonal Latin squares.

• We define the formula for a single-point mutation. New individuals are then generated
through crossover and mutation operations. Multiple rounds of local optimization
using the optimal preservation strategy are used to further enhance the output.

• Our simulation results demonstrate the effectiveness of this cryptosystem in both
encryption and decryption processes, exhibiting both robustness and practicality
against conventional attacks.

The remaining sections of this paper are organized as follows: Section 2 presents a con-
cise overview of the definitions for the difference matrix and the GA; Section 3 is dedicated
to presenting the detailed processes for encryption and decryption; our simulation results
and security analyses are presented in Section 4; finally, Section 5 serves to summarize
this article.

2. Basic Definitions and Related Concepts
2.1. Difference Matrix

Let (G,+) be an Abel group of order n. An (n, k; 1)-difference matrix is a k × n matrix
D = (dij) with entries from G such that for any 1 ≤ i < j ≤ k, the multiset

{dis − djs : 1 ≤ s ≤ n}

(called the difference list) contains every element of G exactly once [36]. Removing any row
from an (n, k; 1)-difference matrix results in an (n, k − 1; 1)-difference matrix.

Example 1. D =

 0 0 0
0 1 2
0 2 1

 is a (3, 3; 1)-difference matrix over Z3.

A Latin square of order n (defined on an n-set S) is an n × n array in which each cell
contains a single symbol; thus, each symbol occurs exactly once in each row and column.
Two Latin squares of order n A = (aij) and B = (bij) are orthogonal if every ordered pair
in S × S occurs exactly once in the juxtaposition array C = ((aij, bij)).



Entropy 2024, 26, 351 4 of 21

Theorem 1 ([36]). An (n, k; 1)-difference matrix over an Abel group G gives rise to k − 1 mutually
orthogonal Latin squares of order n.

Theorem 2 ([37]). The multiplication table for the finite field Fq is a (q, q; 1)-difference matrix.

Theorem 2 demonstrates that each nonzero row in a difference matrix can be used to
generate a Latin square through the use of the addition operation. In addition, any two
rows in a difference matrix can be used to generate a pair of orthogonal Latin squares.

Example 2. Let F4 be a field of order 4. Supposing that x is a primitive root of F4 and that
the primitive polynomial is x2 + x + 1, let g0 = 0, g1 = 1, g2 = x, and g3 = x + 1; then,
F4 = {g0, g1, g2, g3}.

First, by utilizing Theorem 2 to generate the multiplication table of F4, we can obtain
a (4,4;1)-difference matrix Mt with Mt(i, j) = gi × gj. Subsequently, this matrix can be
converted into digital format:

Mt =


0 0 0 0
0 1 x x + 1
0 x x + 1 1
0 x + 1 1 x

 → Mt =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

.

By selecting two nonzero rows from the difference matrix Mt, namely, row1 = 2 and
row2 = 3, we can form two Latin squares Lm1 and Lm2 using the addition operation in F4:

Lm1 =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

, Lm2 =


0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2

.

We use Lm1 and Lm2 to construct the juxtaposition array Lm12, where each ordered
pair occurs only once. Thus, it can be inferred that Lm1 and Lm2 are orthogonal:

Lm12 =


00 12 23 31
11 03 32 20
22 30 01 13
33 21 10 02

.

2.2. Logistic Map

The logistic map signal, which is one of the most well-known signals exhibiting chaotic
behavior, can be described as follows (1):

xn+1 = µxn(1 − xn), n = 0, 1, 2, ... (1)

where xn is a real number between [0, 1] and µ is a system parameter. When 3.573815 <
µ ⩽ 4, the sequence {xn| n = 0, 1, 2, ...} has chaotic properties. Sensitivity to initial values
and non-periodicity are the characteristics required by cryptography for keys and chaotic
sequences.

2.3. Genetic Algorithm (GA)

Based on the principle of natural selection, John Holland first proposed GA as an
optimization algorithm utilizing random search techniques in 1975. By selecting the most
fit individuals and recombining their genetic information via crossover and mutation
operations, a GA evolves a population of candidate solutions to generate new individuals.
This process continues until satisfactory solutions are obtained or the algorithm reaches a
predetermined stopping criterion. Thanks to their robustness, flexibility. and effectiveness
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in finding optimal solutions, GAs have been widely used in multiple optimization problems
across different domains [38,39].

2.3.1. Selection

A GA mainly evaluates individuals according to their fitness, with commonly em-
ployed methods including sorting selection, roulette wheel selection, etc. Occasionally,
to prevent the loss of the best individuals, a strategy of optimal preservation is imple-
mented whereby the fittest members of the population are directly carried over into the
next generation without undergoing selection, crossover, or mutation.

2.3.2. Crossover Operation

The crossover operation is a fundamental genetic operator in a GA that combines the
genetic material of two or more parent individuals to generate new offspring. This process
mimics the sexual reproduction found in nature, in which genes are inherited from parents.
Various types of crossover operators exist within genetic algorithms, such as single-point,
double-point, and multi-point crossovers, uniform crossover, arithmetical crossover, and
many others. The crossover operation formula used in our proposed cryptosystem is
presented below (2):

ns1 = f loor(ps1/2c)× 2c + ps2 (mod 2c),

ns2 = f loor(ps2/2c)× 2c + ps1 (mod 2c),
(2)

where c denotes a crossover point, which is the index at which the genetic material of
the two parent solutions is swapped; ps1 and ps2 represent two parent solutions, usually
expressed as integers; ns1 and ns2 indicate two offspring solutions; and f loor and mod
represent the down round and module integer functions, respectively. We use (2) to
formulate the crossover function (ns1, ns2) = crossover(ps1, ps2, c), which can be directly
applied later. An illustrative example of the crossover operation is presented in Table 1.

Table 1. An example of a crossover operation with c = 3.

Pixel Value Decimal Representation Binary Representation

ps1 178 10110 | 010
ps2 46 00101 | 110

ns1 182 10110 | 110
ns2 42 00101 | 010

2.3.3. Mutation Operation

Mutation is another crucial genetic operator in GAs, introducing random changes to
an individual’s genetic material to create new candidate solutions. This operator plays
a vital role in maintaining population diversity, preventing premature convergence, and
enhancing the algorithm’s local search capability. Various mutation operators are utilized
in genetic algorithms, such as basic bit mutation, uniform mutation, Gaussian mutation,
and others. In this paper, we define the rule of the mutation operation as follows (3):

gm = f loor(pm/2c)× 2c + 2c − 1 − pm (mod 2c) (3)

where c is a mutation point, pm denotes a parent solution, and gm represents a newly
generated solution. We use (3) to formulate the mutation function gm=mutation(pm, c) for
direct application in subsequent steps. An illustrative example of the mutation operation is
presented in Table 2.
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Table 2. An example mutation operation with c = 6.

Pixel Value Decimal Representation Binary Representation

pm 178 10 | 110010
gm 141 10 | 001101

3. The Proposed Cryptosystem

We now introduce several symbols that are utilized in the rest of this paper. The
symbol n represents a prime power, Q denotes an n × n grayscale image, C signifies
the corresponding ciphertext image, and K1 refers to the initial encryption key. This
cryptosystem is comprised of the following three parts. In Algorithm I, a difference matrix
M defined on a finite field is generated using K1. Algorithm II is utilized to perform the
initial encryption, which consists of three layers: large-scale mutation, scrambling, and
diffusion. This results in the formation of the initial encrypted image Cini. In Algorithm III,
both crossover and mutation operations are applied block-by-block to Cini, and the final
ciphertext image C is obtained over multiple iterations through the optimal preservation
strategy. The encryption diagram of this cryptosystem is shown in Figure 1.

Figure 1. Encryption diagram of the proposed cryptosystem.

3.1. Generation of a Difference Matrix M

We generate a difference matrix M on a finite field. Initially, K1 is utilized to produce
an n-length chaotic sequence, which is employed to construct a finite field of order n.
Subsequently, the difference matrix M is generated.

Algorithm I: The generation of M
Input: K1 = (µ0, key0, key1).
Output: An (n, n; 1)-difference matrix M.
Step 1: Generate a logistic sequence of length 1000+ n using (1) with system parameter

µ0 and initial value x0 = key0. The sequence obtained by excluding the initial 1000 values
is denoted as X = {xi | i = 0, 1, 2, ..., n − 1}. Use the function

[ f x, lx] = sort(X) (4)

to sort X in ascending order and obtain a new sequence f x, and corresponding index
subscript vector lx.



Entropy 2024, 26, 351 7 of 21

Step 2: Redefine the addition and multiplication operations on lx, then construct
a finite field F1 = {g0, ..., gn−1} [23]. generate an (n, n; 1)-difference matrix M with
M(i, j) = gi × gj.

3.2. Generation of the Initial Ciphertext Image

This section describes the generation of the initial ciphertext image Cini. First, a new
encryption key is generated by adopting the information of the plaintext image. Then, a
new n-length chaotic sequence is generated to construct the second finite field according
to the method of generating a finite field from a sequence, as described in Algorithm I.
Subsequently, a pair of orthogonal Latin squares is generated by selecting two nonzero rows
from M. Finally, Cini is generated through three steps: large-scale mutation, scrambling,
and diffusion.

Algorithm II: Generate the initial ciphertext image Cini.
Input: An n × n grayscale image Q, K1 = (µ0, key0, key1), M and a public parameter a.
Output: The initial ciphertext image Cini.
Step 1: Read Q and calculate the sum of all the pixel values, denoted as sumQ. Letting

s = f loor(mod(sumQ, 256)/256 × 102)/102, (5)

compute key1_new = (key1 + s)/2. Using µ0 as the system parameter and key1_new as the
initial value, generate the second n-length chaotic sequence, then form the second finite
field F2 using the method in Algorithm I.

Step 2: Obtain an (n, n − 1; 1)-difference matrix by removing the zero row of matrix M.
Select rows mod(sumQ, n − 1) and mod(sumQ + a, n − 1) to generate two n × n orthogonal
Latin squares Lm1 and Lm2 via F2. By transforming these squares into row vectors, denoted
as L1 and L2, respectively, two index indicators ind1 and ind2 can be constructed based on
their uniformity using the following formula:

indk = mod(Lk, 8) + 1, k = 1, 2. (6)

Step 3: Large-scale mutation. Transform Q into a row vector P1. Based on the parity
of sumQ, distinct index indicators can be selected to sequentially mutate each element of P1
and generate a new row vector P2 using the mutation formula provided below.

P2(i) = mutation(P1(i), ind2−mod(sumQ,2)(i)), i = 0, 1, 2, ..., n2 − 1. (7)

Step 4: Image scrambling. Utilize the orthogonality of L1 and L2 to scramble P2 and Lt
(The row vector formed by the transposition of M), resulting in the scrambled row vector
P3 and an approximately uniform vector LT .

P3(i) = P2(L1(i)× n + L2(i) + 1), i = 0, 1, 2, ..., n2 − 1.

LT(i) = Lt(L2(i)× n + L1(i) + 1), i = 0, 1, 2, ..., n2 − 1.
(8)

Step 5: Image diffusion. The initial ciphertext image Cini is formed using L1, L2 and
LT as pseudo-random sequences for auxiliary diffusion.{

temp = mod(L1(i) + L2(i) + LT(i), 256),

Cini(i) = P3(i)⊕ temp ⊕ Cini(i − 1), i = 0, 1, 2, ..., n2 − 1,
(9)

where temp represents a temporary variable, Cini(−1) = 0 and ⊕ represents an XOR
operation.
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3.3. Optimization Process Using GA

In this section, we use a GA to optimize Cini in order to enhance the randomness of the
final encrypted image. First, owing to the inherent randomness of GAs, multiple indexes
are determined in order to restore the original plaintext image. Then, local crossover
and mutation operations on Cini blocks are used to construct a large number of encrypted
images, which significantly increases the level of randomness. Finally, after multiple rounds
of genetic operations and using the optimal preservation strategy, the final encrypted image
C and secondary key K2 are generated.

Algorithm III: The optimization process using GA.
Input: Cini, ind1, ind2, LT , the number of crossover blocks Nc, the number of mutation

blocks Nm, and the number of iterations Num.
Output: The final encrypted image C and the secondary key K2.
Step 1: Process LT as follows to acquire the third index indicator ind3:

ind3 = mod(LT , 8) + 1. (10)

Step 2: Crossover operation. Divide Cini into Nc parts from left to right and intersect
each part according to ind1 and ind2 to form 2 × Nc new individuals. These individuals
are then stored in the matrix CM1. Using entropy as the fitness function, select the best in-
dividual, denoted as C1, through the optimal preservation strategy. Simultaneously, record
the corresponding index value Indcbest in the first row component of K2. The Algorithm 1
is presented below, where crossover represents the compiled crossover function (2).

Algorithm 1 Local crossover operation

1: for all k = 1 : Nc do
2: for all i = n2/Nc ∗ (k − 1) + 1 : 2 : n2/Nc ∗ k − 1 do
3: (CM1(k, i), CM1(k, i + 1)) =crossover(Cini(i), Cini(i + 1), ind1(i));
4: (CM1(Nc + k, i), CM1(Nc + k, i + 1)) =crossover(Cini(i), Cini(i + 1), ind2(i));
5: end for
6: end for
7: C1 = CM1(Indcbest, :);
8: return C1

Step 3: Mutation operation. Divide C1 into Nm parts from left to right; each part
undergoes mutation according to ind2 and ind3, resulting in the formation of 2 × Nm
new individuals that are stored in the matrix CM2. Use the optimal preservation strategy
to select the best individual as C2 and record the corresponding index value Indmbest in
the second row component of K2. The Algorithm 2 is presented below, where mutation
represents the compiled mutation function (3).

Algorithm 2 Local mutation operation

1: for all k = 1 : Nm do
2: for all i = n2/Nm ∗ (k − 1) + 1 : 1 : n2/Nm ∗ k do
3: CM2(k, i) =mutation(C2(i), ind2(i));
4: CM2(Nm + k, i) =mutation(C2(i), ind3(i));
5: end for
6: end for
7: C2 = CM2(Indmbest, :);
8: return C2

Step 4: Let Cini = C2. Continue with Steps 2 and 3 until the number of iterations
Num or Indcbest and Indmbest match that of the previous column in K2, then terminate the
calculation and record final iteration number as Indbest.

Step 5: Transpose C2, the vector obtained after the iteration, into an n × n matrix in
order to obtain C and output K2.



Entropy 2024, 26, 351 9 of 21

3.4. Image Decryption Process

The proposed cryptosystem employs asymmetric processes for both encryption and
decryption. To decrypt C, the receiver requires K1 and K2 along with the characteristic
value sumQ and the public parameter a. The decryption diagram of this cryptosystem is
illustrated in Figure 2.

The steps are described in detail below.
Step 1: First, K1 is utilized to generate M following Algorithm I. Then, three row

vectors L1, L2, and LT are generated using sumQ and a.
Step 2: Cis transformed into a row vector R1 and the pre-optimized image R2 is

decrypted using K2. This step is asymmetric with regard to the optimization process, and
can be decrypted directly by using K2. Initially, mutation is performed according to the
second index block of the last column of K2, then crossover is conducted according to the
first index block, iterating Indbest times to obtain R2.

Step 3: The original image R is recovered from R2. First, reverse diffusion is performed
on R2 to obtain R3, then reverse scrambling to obtain R4, followed by reverse large-scale
mutation to acquire R5. Finally, the result is transposed into an n × n matrix in order to
obtain the decrypted image R. This step is a complete reversal of the initial encryption
process, and is not repeated.

�1 = (�0, ���0, ���1)

(�0, ���1_���)

Ciphertext image �

R1

R2     L1, L2,  LT

sumQ 

转_3
(�0, ���0)

Difference matrix M

转_3转_3

Step 1：Generate M  Step 2：Reverse optimization Step 3： Reverse initial encryption

Crossover 

R2

R4

Decrypted image R

R3

R5

�2

a 

Transposition

Reverse  
scrambling 

Reverse 
diffusion 

Reverse large-scale 
mutation

Iteration

Mutation

Transposition

Figure 2. Decryption diagram of the proposed cryptosystem.

4. Simulation Results and Safety Analyses

To validate the security and efficacy of the cryptosystem proposed in this paper, a set
of 256 × 256 grayscale images from the USC-SIPI2 image set were selected as test samples.
The initial key K1 was set to µ0 = 3.99999, key0 = 0.123456 and key1 = 0.234567, whilehe
public parameters were set to a = 31, Nc = 16, Nm = 32, and Num = 20.

In the process of utilizing GAs for image encryption, fitness functions such as entropy
and correlation coefficients are commonly employed for assessing the quality of ciphertext
images. However, due to the stochastic nature of correlation coefficients, in this paper
we have instead adopted the information entropy of the encrypted image as the fitness
function.

We evaluated our proposed cryptosystem through simulation experiments from vari-
ous aspects, including key space and sensitivity analyses, statistical analyses, resistance
to differential attacks, and more. To demonstrate its superiority over recent algorithms, a
comparison is provided in terms of security and efficiency.
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4.1. Simulation Results

Our cryptosystem is highly effective in converting a grayscale image into a mean-
ingless encrypted image, thereby ensuring the confidentiality and privacy of the original.
Additionally, the decrypted image remains unchanged, with no loss or distortion, guaran-
teeing its integrity and authenticity. Figure 3a shows the several plaintext images, Figure 3c
depicts the corresponding ciphertext images, and Figure 3e illustrates the lossless decrypted
images. In this cryptosystem, the initial encryption process ensures that any image meets
the requirements for encryption, while the optimization stage further enhances the overall
randomness. The second keys and the iteration numbers required for optimization are dis-
played in Table 3. For a majority of the images, the optimization process can be completed
within 20 generations, resulting in relatively higher-quality ciphertext images.

(a) (b) (c) (d) (e)

Figure 3. Histograms of different plaintext images and ciphertext images. The plaintext images from
top to bottom are as follows: Lena, Cameraman, Plane, Allblack, Allwhite. (a) Plaintext images;
(b) the corresponding histograms of (a); (c) ciphertext images; (d) the corresponding histograms of
(c); (e) the decryption of (c).
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Table 3. The final results of the iteration numbers and K2 required for optimization.

Image Iteration Number K2

Lena 19 17 25 12 5 30 30 13 10 26 13 13 12 2 4 4 7 1 1 22
15 26 64 12 61 28 22 19 47 45 20 39 27 31 44 11 52 43 52

Cameraman 14 16 26 24 17 29 24 14 14 1 31 12 31 19 31
3 38 51 10 52 22 12 28 30 24 26 45 38 41

Plane 13 6 16 13 20 18 22 11 32 28 17 18 2 1
44 15 22 32 19 5 36 11 24 15 36 15 15

Pepper 18 15 11 17 19 18 30 24 10 13 18 24 14 14 14 30 29 13 13
46 20 22 17 32 18 27 3 58 15 43 44 30 55 57 12 55 6

5.1.09 15 17 18 3 22 19 14 20 20 7 23 29 29 4 23 17
48 28 49 59 6 52 40 45 4 5 46 60 58 46 46

6.1.01 13 31 9 24 17 32 18 2 11 5 5 12 7 22
12 7 52 58 30 16 43 31 11 42 24 13 24

6.2.01 11 22 4 32 24 27 30 26 18 32 8 12
15 37 22 27 50 24 28 62 27 32 42

Allwhite 20 13 8 26 6 31 18 23 3 7 28 11 11 11 29 28 20 31 19 31 12
8 33 50 34 45 39 35 19 56 63 47 29 61 25 46 63 37 57 24 55

Allblack 20 20 24 22 26 13 16 7 32 7 31 27 5 27 13 27 27 27 21 7 27
37 31 25 29 64 56 6 52 61 61 57 62 9 33 1 15 46 47 56 54

4.2. Key Analyses
4.2.1. Key Space Analysis

The key space of a cryptosystem is a metric describing its resistance against brute-force
attacks. A larger key space results in increased resistance to such attacks, making it more
difficult for attackers to determine the correct key. The initial key K1 = (µ0, key0, key1)
has a precision of 10−15 for each real number. Therefore, the key space can reach at least
1045 ≈ 2149, which is significantly larger than 2128 [40,41]. In addition, each image has a
unique K2 value during decryption, and there is a public parameter that can be selected.
Therefore, the key space of the proposed cryptosystem is of sufficient size to defend against
brute-force attacks.

4.2.2. Key Sensitivity Analyses

Key sensitivity is a crucial property of an image cryptosystem, ensuring that even the
slightest alteration in the encryption or decryption key will result in two entirely distinct
datasets. In regard to the proposed cryptosystem, the key sensitivity can be analyzed from
two perspectives: during the encryption stage and during the decryption stage.

To analyze the key sensitivities of the proposed cryptosystem, we selected Lena as
the test image. The resulting ciphertext image when encrypting Lena with the initial key
K1 = (3.99999, 0.123456, 0.234567) is denoted as cipher1. A minute value of 10−15 was
subsequently added to each element of K1, resulting in cipher2 as the ciphertext image
obtained by encrypting Lena with the altered key. A comparison of the results of two
encrypted images under three sets of parameters is shown in Figure 4, revealing that while
both images contain noise, they differ significantly from each other. Table 4 calculates
the percentages of different pixels in the two contrasting images after encryption, with
the results surpassing 99.6%. This fully demonstrates the exceptional sensitivity of the
proposed cryptosystem during encryption.

For the sensitivity analysis performed during decryption, we again used Lena as the
test image. Utilizing K1 = (3.99999, 0.123456, 0.234567) and K2 to decrypt C, the original
image can be obtained; however, even a slight alteration of 10−15 in each value of K1 results
in a meaningless and completely different decryption compared to the original image.
The contrasting results are presented in Figure 5. Further, Table 4 lists the percentages of
different pixels between Q and the decryption using the modified key, reaching more than
99.52%. This fully demonstrates that the proposed cryptosystem is highly sensitive to K1.
Additionally, there is an equally strong sensitivity to K2, which need not be reiterated here.
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(a) (b) (c)

Figure 4. Key sensitivity test results in the encryption stage: (a) µ0 + 10−15, (b) key0 + 10−15, and
(c) key1 + 10−15.

Table 4. Number and percentage changes during encryption and decryption.

Image
Encryption Decryption

Figure 4a Figure 4b Figure 4c Figure 5a Figure 5b Figure 5c

The number of
different pixels 65,293 65,279 65,289 65,277 65,263 65,224

Percentage(%) 99.6292 99.6078 99.6231 99.6048 99.5834 99.5239

(a) (b) (c)

Figure 5. Key sensitivity test results in the decryption stage: (a) µ0 + 10−15, (b) key0 + 10−15, and
(c) key1 + 10−15.

4.3. Histogram Analyses

In the context of image encryption algorithms, the randomness and uniformity of the
encrypted image are important for protecting against statistical attacks. The more random
and uniform the ciphertext image is, the more challenging it becomes for attackers to
identify correlations or patterns that can be exploited to break the encryption [40]. Typically,
the variance S is employed as to describe the uniformity of the pixel distribution. Its
calculation formula is

S =
1

256

255

∑
i=0

(histi − aver)2, (11)

where histi (i = 0, 1, ..., 255) represents the occurrence of the ith grayscale value in the
image and aver denotes the mean value of histi. A smaller value of S implies a more
homogeneous distribution of grayscale pixels in the encrypted image, posing a challenge
for attackers to exploit any statistical patterns and break the encryption.

Figure 3 illustrates the changes in the histograms of multiple images pre- and post-
encryption. The histograms of the ciphertext images display a more homogeneous dis-
tribution in comparison to that of the original image, indicating an approximately equal
frequency of occurrence for each grayscale value. Table 5 presents the variance values of
multiple images pre- and post-encryption. The data indicate that after encryption, the vari-
ance values decrease significantly and are all smaller than the standard value χ2

0.05 = 293.25,
which meets the encryption requirement. Notably, the variance of the encrypted Lena
image is as low as 101.133, indicating the effectiveness of our proposed cryptosystem in
resisting histogram analyses.
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Table 5. Complete results of several images pre- and post-encryption.

Image
Testing Direction Average Value Variance Entropy

H V D

Lena 0.9410 0.9654 0.9221 0.9428 4.14 × 104 7.42489
Ciphertext image Lena 0.0010 0.0029 -0.002 0.0020 101.133 7.99888
Cameraman 0.9553 0.9735 0.9406 0.9565 1.06 × 105 7.03056
Ciphertext image Cameraman 0.0025 −0.0005 −0.0036 0.0022 117.188 7.99871
Plane 0.9426 0.9249 0.8833 0.9169 1.75 × 105 6.72033
Ciphertext image Plane 0.0005 0.0043 0.0013 0.0020 117.82 7.9987
Pepper 0.9547 0.9542 0.9041 0.9376 3.67 × 104 7.53524
Ciphertext image Pepper −0.0024 0.0069 0.0039 0.0044 119.22 7.99869
5.1.09 0.9040 0.9360 0.9000 0.9134 1.36 × 105 6.70931
Ciphertext image 5.1.09 0.0006 −0.0032 −0.0034 0.0024 124.813 7.99863

6.1.01 0.9862 0.9917 0.9738 0.9839 1.22 × 105 7.20445
Ciphertext image 6.1.01 −0.0014 0.0025 0.0006 0.0015 112.344 7.99876
6.2.01 0.9424 0.9105 0.8818 0.9116 6.33 × 104 7.16791
Ciphertext image 6.2.01 0.0013 0.0026 −0.0027 0.0022 133.18 7.99853
Allwhite NaN NaN NaN NaN 1.67 × 107 0
Ciphertext image Allwhite 0.0029 0.0025 −0.0001 0.0018 108.656 7.99881
Allblack NaN NaN NaN NaN 1.67 × 107 0
Ciphertext image Allblack −0.0019 0.0018 −0.0008 0.0015 104.469 7.99886

4.4. Correlation Coefficient Analyses

In a plaintext image, adjacent pixels exhibit a strong correlation, which can be exploited
by attackers to break the encryption using statistical patterns or correlations. Therefore,
an effective encryption algorithm should eliminate the correlation of adjacent pixels in
order to increase resistance against statistical analyses. Typically, correlation coefficients
are commonly computed to assess the strength of correlations using the formula

ruv =
E[u − E(u)][v − E(v)]√

D(u)
√

D(v)
, (12)

E(u) =
1
N

N

∑
i=1

ui, D(u) =
1
N

N

∑
i=1

(ui − E(u))2, (13)

where u and v represent the gray values of two adjacent pixels, E(u) denotes the expected
value of u, D(u) represents its variance, and N denotes the quantity of samples randomly
selected from the image.

In this study, we selected 4000 pairs of adjacent pixels in a stochastic manner from
the vertical, horizontal, and diagonal directions in the image. The coefficients in the three
directions x, y, and z were then calculated according to Equations (12) and (13) and the
average coefficients were obtained using Equation (14).

avercoe f =
|x|+ |y|+ |z|

3
(14)

The resulting coefficients are presented in Table 5. In the table, the correlation coeffi-
cient of each plaintext image is highly proximate to 1 in three distinct directions, indicating
a strong correlation between adjacent pixels. Conversely, the correlation coefficient of every
ciphertext image approaches 0, signifying a weakened correlation. To demonstrate the
optimization effect of our cryptosystem, we compared the correlation coefficients of the
encrypted Lena image with those obtained from several recently proposed algorithms.
The contrasting results of the coefficients are displayed in Table 6. As can be seen, the
average correlation coefficient when using our cryptosystem is larger than the results for
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those in [29,42], but smaller than those in the other seven papers. This indicates that our
approach can effectively mitigate the pixel correlation.

To obtain a more intuitive visual comparison, Figure 6 displays the pre- and post-
encryption distribution of neighboring pixels in three directions for three different images
when using our proposed cryptosystem. The midpoint of the original grayscale image is
effectively scattered along the diagonal line, whereas that of the corresponding ciphertext
image is more uniformly distributed within the entire scope. This demonstrates that the pro-
posed cryptosystem is capable of achieving superior confounding effects and successfully
passing the correlation test.

Table 6. Contrasting results for Lena.

Image
Testing Direction Average Value Entropy NPCR(%) UACI(%)

H V D

The proposed cryptosystem 0.0010 0.0029 −0.0020 0.0020 7.99888 99.6081 33.581
Lena in [10] 0.0019 0.0014 0.0052 0.0028 7.9992 99.614 33.364
Lena in [12] 0.0076 0.0093 −0.016 0.011 7.9995 99.65 33.64
Lena in [27] −0.00058 0.0048 −0.0243 0.0099 7.9968 99.58 33.08
Lena in [29] −0.0063 0.0022 −0.0006 0.003 7.9985 99.61 33.48
Lena in [34] −0.0239 −0.0033 0.0046 0.0106 7.9966 99.64 33.48
Lena in [42] −0.0026 −0.0012 −0.0011 0.0016 7.9976 99.59 33.43
Lena in [43] 0.0056 0.0037 0.0032 0.0042 7.9976 99.62 33.4169
Lena in [44] 0.0305 −0.0043 0.0042 0.013 7.9976 99.61 33.51
Lena in [45] 0.0015 −0.0026 0.0042 0.0028 7.9976 99.6002 33.4592

(a) (b) (c) (d)

Figure 6. Distribution of adjacent pixels of Lena, Pepper, and 5.1.09: (a) Plaintext images; (b) Distribu-
tion of adjacent pixels of (a); (c) ciphertext images; (d) Distribution of adjacent pixels of (c).
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4.5. Entropy Analyses

Information entropy is another crucial measure for testing the uncertainty or ran-
domness of ciphertext images, and can also be used to assess the efficacy of encryption
algorithms. Its symbolic representation is H, and the calculation formula can be expressed
as follows:

H(m) = −
l−1

∑
i=0

p(mi)log2 p(mi) (15)

where l is the number of gray values and mi and p(mi) are the gray values and their
occurrence probabilities, respectively. In cryptography, a secure cryptosystem should
produce ciphertext images with uniform gray values in order to increase randomness
and security. The ideal value of information entropy for an image with 256 gray levels
is 8 [46].

Following Equation (15), we calculated the information entropy values of multiple
encrypted images. Table 5 displays the results, while Table 6 lists the contrasting results
obtained for Lena with different algorithms. As can be seen, all entropy values are very
close to 8; the information entropy for the encrypted Lena image reaches 7.99888, which is a
larger value than most of the other algorithms. Therefore, the proposed image cryptosystem
is capable of generating ciphertext images with a more random and uniform distribution of
pixel values, resulting in increased security and confidentiality.

4.6. Differential Attack Analyses

In order to be resistant to differential attacks, a secure cryptosystem should guarantee
that even minor alterations to the plaintext will lead to large changes in the encrypted image.
In general, two criteria, NPCR and UACI, are used to evaluate resistance to differential
attacks. The respective formulas are provided below.

NPCR =
∑M−1

i=0 ∑N−1
j=0 D(i, j)

M × N
× 100%, (16)

where Di,j =

{
0, C1(i, j) = C2(i, j)

1, C1(i, j) ̸= C2(i, j)

UACI =
∑M−1

i=0 ∑N−1
j=0 |C1(i, j)− C2(i, j)|
255 × M × N

× 100%. (17)

In the above formulas, C1 and C2 are two ciphertext images that correspond to plaintext
images with only one different pixel, while M and N represent the width and height of the
encrypted image, respectively.

For each plaintext image, 100 pixels at different positions are randomly selected and
increased by 1. Table 7 displays the maximum, lowest, and average values of NPCR
and UACI. The significance level was set to 0.05, and the ideal expected values of NPCR
and UACI for grayscale images with a size of 256 × 256 were obtained from [47]. The
average NPCR values in Table 7 exceed the ideal values. Moreover, the average values of
UACI are found to fall within the interval [U ∗−

0.05, U ∗+
0.05]. This testifies that the proposed

image cryptosystem exhibits high resistance to differential attacks with respect to pixel
modifications.
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Table 7. NPCR and UACI results for several test images.

Image
NPCR(%) Results UACI(%) Results

max min mean N ∗
0.05 Results max min mean U ∗−

0.05 U ∗+
0.05 Results

Lena 99.6643 99.5483 99.6081 99.5693 Pass 33.6895 33.448 33.581 33.2824 33.6447 Pass
Cameraman 99.6765 99.5514 99.6184 99.5693 Pass 33.6778 33.4022 33.5571 33.2824 33.6447 Pass
Pepper 99.6674 99.5499 99.6043 99.5693 Pass 33.5379 33.3183 33.4285 33.2824 33.6447 Pass
Plane 99.6521 99.5438 99.6003 99.5693 Pass 33.5982 33.3891 33.4953 33.2824 33.6447 Pass
5.1.09 99.6643 99.5377 99.6109 99.5693 Pass 33.4543 33.2354 33.3726 33.2824 33.6447 Pass
6.1.01 99.675 99.5743 99.6183 99.5693 Pass 33.7306 33.4918 33.6222 33.2824 33.6447 Pass
6.2.01 99.6735 99.5636 99.6175 99.5693 Pass 33.5592 33.31 33.4586 33.2824 33.6447 Pass
Allwhite 99.7589 99.5407 99.6434 99.5693 Pass 33.7763 33.2249 33.4591 33.2824 33.6447 Pass
Allblack 99.6689 99.5682 99.6287 99.5693 Pass 33.4928 33.334 33.4198 33.2824 33.6447 Pass

4.7. Cutting and Noise Attack Analyses

Signal loss or noise pollution can compromise the security and confidentiality of
transmitted ciphertext images. To test a ciphertext image’s resilience against data loss and
noise attacks, experiments can simulate such conditions to assess the encryption algorithm’s
ability to maintain data integrity [48].

Cutting parts of the ciphertext image can cause information loss and hinder the
successful recovery of the original plaintext message. Taking the Plane image as an example,
the corresponding decryptions are shown in Figure 7 when cutting 1/16, 1/8, 1/4, and
1/2 at the upper left corner of the encrypted image. As can be seen, even when up to
50% of the encrypted image is cut, the proposed cryptosystem is still able to recover a
visually recognizable image of the original message using the correct key. In addition,
it demonstrates strong robustness against various types of noise attacks, including salt
and pepper noise (SPN) with densities of 0.05 and 0.1 and Gaussian noise (GN) with a
mean value of 0 and variances of 0.01 and 0.1. Despite the introduction of such noise types
into the ciphertext image, the deciphering process utilizing the correct encryption key
remains discernible, as demonstrated in Figure 8. Overall, these results demonstrate the
good robustness of our cryptosystem against both cutting attacks and different types of
noise attacks.

(a) (b) (c) (d)

Figure 7. Ciphertext Plane images under different cutting levels and the corresponding decryptions:
(a) 1/16; (b) 1/8; (c) 1/4; (d) 1/2.
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(a) (b) (c) (d)

Figure 8. Ciphertext Plane images under noise attacks and the corresponding decryptions:
(a) SPN (0.05); (b) SPN (0.1); (c) GN (0.01); (d) GN (0.1).

Additionally, the PSNR index is usually employed for assessing the quality of de-
crypted images after attacks. The formula is

PSNR = 10 × log10
M × N × 2552

∑M−1
i=0 ∑N−1

j=0 (P1(i, j)− P(i, j))2
, (18)

where P and P1 denote the original decrypted image of size M × N and the decrypted
image after attacks, respectively. A higher PSNR value indicates better image quality.

Table 8 displays the PSNR values of various images that have undergone cutting and
noise attacks using the proposed encryption cryptosystem. The data in the table suggest
that the PSNR values under these cutting attacks are greater than 7.7 dB, while those for
the noise attack are greater than 7.2 dB. These findings suggest that the decrypted images
exhibit relatively low levels of distortion compared to their original counterparts even after
being attacked, and continue to maintain a high level of visual quality. Therefore, these
results indicate that our cryptosystem is robust against both cutting and noise attacks.

Table 8. All PSNR values for robustness analyses of multiple images.

Image
PSNR (dB) PSNR (dB)

Cut 1/16 Cut 1/8 Cut 1/4 Cut 1/2 SPN(0.05) SPN(0.1) GN(0.01) GN(0.1)

Lena 21.3081 18.2894 15.2783 12.2309 19.2083 16.5939 13.0183 11.9036
Cameraman 20.4213 17.3969 14.3934 11.4299 18.4421 15.5148 12.288 11.1186
Plane 19.9419 16.8564 13.9526 11.0007 18.1729 15.4114 11.9437 10.7354
Pepper 20.8825 17.9003 14.8761 11.955 18.9812 16.1368 12.9661 11.7686
5.1.09 22.2761 19.2009 16.1995 13.216 20.1598 17.2207 13.503 12.4539
6.1.01 20.1103 17.1455 14.1046 11.1382 18.2645 15.3268 11.736 10.7258
6.2.01 20.8657 17.8207 14.8093 11.802 18.8325 15.8396 12.6107 11.4927
Allwhite 16.7344 13.7197 10.739 7.7516 14.9826 12.1055 8.1539 7.226
Allblack 16.8237 13.7882 10.7569 7.7957 15.0808 12.295 8.1306 7.2233

4.8. Computational Complexity and Encryption Speed Analyses

Computational complexity (CC) and encryption speed are crucial factors to consider
when evaluating the validity of an image cryptosystem. First, Algorithm I generates a
chaotic sequence with length n, with computational complexity O(n), followed by con-
structing a difference matrix with computational complexity O(n2). In Algorithm II, there
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are three layers of encryption structure: large-scale mutation, scrambling, and diffusion;
thus, the CC is O(3n2). Algorithm III is an optimization process, including crossover
and mutation operations, meaning that the CC is also O(4n2). Therefore, the CC of our
cryptosystem is O(n2).

The experimental environment was MATLAB R2019b, Microsoft Windows 10, Intel
i5-1135G7, a 2.40 GHz processor, and 16 GB RAM. Based on 100 calculations, Table 9
presents the average time taken to perform encryption and decryption of six representative
images. The results indicate that each image takes approximately 5.86 s to encrypt and
about 0.43 s to decrypt, suggesting the effectiveness of our image cryptosystem for instant
encryption. The proposed cryptosystem employs an asymmetric process for encryption
and decryption that involves multi-segment and multi-round crossover and mutation
operations during encryption, which can be computationally expensive and result in longer
optimization and encryption times compared to other algorithms. However, the decryption
time is significantly shorter when using the secondary secret key to decrypt the ciphertext
image directly. The comparison results reported in Table 9 demonstrate that our GA-based
encryption cryptosystem is faster in both encryption and decryption compared to other
contrasting algorithms, with the exception of the algorithm presented in [29], reflecting the
efficient optimization process of the proposed cryptosystem.

Table 9. Time efficiency results for several images.

Image Encryption Time(s) Decryption Time(s)

Lena 7.2093 0.4303
Cameraman 5.3426 0.4105
Plane 5.1036 0.4116
Pepper 6.8045 0.528
5.1.09 5.7075 0.4088
6.1.01 4.9968 0.4122
Average 5.86 0.43
Encrypted Lena in [49] 10.9 –
Encrypted Lena in [50] 14.1 –
Encrypted Lena in [51] 6.9 –
Encrypted Lena in [52] 7.07 –
Encrypted Lena in [29] 0.88 –

4.9. Analysis of Resistance to Chosen-Plaintext Attacks

Chosen-plaintext attacks are a potent method of attacking encryption schemes. In
such an attack, the attacker has access to the encryption scheme, and can select plaintext
images and encrypt them to obtain the key’s information. If a cryptosystem is able to
withstand chosen-plaintext attacks, this usually indicates that the encryption approach is
secure against three other classical attacks as well: ciphertext-only attacks, known-plaintext
attacks and chosen-ciphertext attacks [21,53].

In the proposed cryptosystem, the same difference matrix is used for all images in
image encryption. This matrix only needs to be generated once, and can be reused to
encrypt multiple images. However, employing the information of plaintext images in the
key ensures that the encrypted data remain unique and secure for every individual image
even if the difference matrix is identical. Specifically, the entire cryptosystem is extremely
sensitive to both K1 = (µ0, key0, key1) and to the plaintext image. If even a single pixel is
altered, the resulting L1, L2, and LT will be completely distinct. Additionally, our encryption
cryptosystem utilizes two Latin squares and leverages the approximate uniformity of the
difference matrix during diffusion. With just one round of encryption processing required
to achieve a secure result, our cryptosystem is resistant to chosen-plaintext attacks, as well
as other forms of intrusion.

Additionally, all-black or all-white images are frequently utilized by hackers to launch
attacks on encryption algorithms. These special images were also subjected to experiments.
Table 5 shows the resulting correlation coefficients of approximately 0, variance values
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of approximately 100, and entropies of approximately 8 for two encrypted ciphertext
images. These results fully demonstrate that the proposed cryptosystem can resist statistical
attacks. Table 7 shows that both of the encrypted images pass the differential attack tests
successfully. Table 8 displays that all PSNR values related to both encrypted images exceed
7.2 dB, demonstrating our cryptosystem’s robustness. Moreover, our cryptosystem exhibits
resistance against chosen-plaintext attacks as well as other classical attack methods.

5. Conclusions

In this paper, an efficient image cryptosystem utilizing a difference matrix and a
genetic algorithm is put forward. The discreteness and approximate uniformity of the
difference matrix satisfy the characteristics of a pseudo-random sequence, enabling a
variety of scrambling methods while occupying a very small storage space. Additionally,
the GA’s crossover and mutation operations can generate numerous new individuals, and
the optimal preservation strategy can then select the best one. The proposed cryptosystem
first generates a difference matrix using the initial secret key; then, the difference matrix
is used to perform image encryption. The resulting initial ciphertext image already has
relatively good randomness. A large number of ciphertext images are then obtained
through local genetic operations in order to generate better-quality ciphertext images
through multiple iterations using the optimal preservation strategy, which strengthens
the randomness of the final ciphertext image. We used this cryptosystem to effectively
encrypt test images, and it successfully passed all tests. Furthermore, it offers a number of
advantages over other existing algorithms.

Finally, the use of a combined structure consisting of a difference matrix and a ge-
netic algorithm to generate more secure ciphertext images showcases interdisciplinary
advantages that can serve as a reference for future research.
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