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Abstract: Investigating causality to establish novel criteria for training robust natural language
processing (NLP) models is an active research area. However, current methods face various challenges
such as the difficulties in identifying keyword lexicons and obtaining data from multiple labeled
environments. In this paper, we study the problem of robust NLP from a complementary but different
angle: we treat the behavior of an attack model as a complex causal mechanism and quantify its
algorithmic information using the minimum description length (MDL) framework. Specifically, we
use masked language modeling (MLM) to measure the “amount of effort” needed to transform from
the original text to the altered text. Based on that, we develop techniques for judging whether a
specified set of tokens has been altered by the attack, even in the absence of the original text data.

Keywords: minimum description length; adversarial attack; NLP; causal learning

1. Introduction

Recent research has shown that language models are generally not robust and do not
generalize well when exposed to out-of-distribution data. This makes them vulnerable
to various types of adversarial attacks including spurious tokens, typos, and word order
changes [1–3]. These vulnerabilities are significant concerns as language models are increas-
ingly used in various applications. To address these challenges, researchers are exploring
methods to develop more robust and reliable language models by improving the diversity
and representativeness of training data as well as using techniques such as adversarial
training and regularization to enhance model robustness [4].

In the domain of adversarial attacks on machine learning models, a key area of interest
lies in the exploration of causality to develop new criteria for learning robust natural
language processing (NLP) models that go beyond exploiting correlations only. Existing
endeavors in using causal reasoning to help build robust NLP models mainly focus on
dealing with spurious correlations [5,6]. In these works, the words that may be targeted by
attacking models are viewed as confounders that introduce spurious correlations between
the features and the label. Popular approaches for mitigating spurious correlations include
data augmentation [7–10] and multi-environment training [11], where the former generates
counterfactual instances (e.g., replacing keywords with their synonyms) and incorporates
them into the training data, and the latter attempts to train the model or representation
function that is invariant across multiple environments. Although these approaches are
shown to be effective in many cases, they still present certain challenges and limitations.
For example, for data augmentation, it is difficult to identify the keywords and their
replacement. It has been shown that new spurious correlations may be introduced if the
keyword lexicons are incomplete [12]. For multi-environment training, obtaining data from
multiple labeled environments could be quite challenging.

In this work, we study the problem of robust NLP from a complementary but different
angle: as attack models are purposefully designed systems that exploit vulnerabilities to
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produce inaccurate predictions or classifications, we treat the behavior of attack models as
complex causal mechanisms. Our endeavor delves into understanding how the activities
of these adversarial models can be quantified in terms of causal influence. Specifically, we
aim to discover the causal relationship between the original text data and the modified text
data produced by the adversarial model. Building on that, we make a preliminary effort to
identify the actions of these adversarial models, that is, to detect if a specific set of tokens
has been altered.

Causal discovery has garnered significant attention across diverse datasets and con-
texts. Studies exploring causal discovery have been conducted for both static data [13]
and temporal data [14,15]. However, a noticeable research gap exists in relation to NLP
data. Inspired by [16] that demonstrates the validity of the principle of independent causal
mechanisms (ICMs) in NLP, we propose to investigate causal relationships between tokens
by utilizing the minimum description length (MDL) framework [17]. Our method is partic-
ularly centered around the use of masked language modeling (MLM) [18] for measuring
the “amount of effort” needed to predict one set of tokens from another set of tokens,
given the context (see Figure 1). Specifically, we postulate a causal graph as shown in
Figure 2 which presents different components of a text in a causal relationship. Here, B
represents a set of tokens altered by the attacking model, and A represents the original
tokens of B, satisfying the condition: |A| = |B|, A ∩ B = ∅ and they have shared positions.
The arrow from A to B signifies the causal influence exerted by the attacking behavior.
Additionally, C encompasses the remaining words existing within the text excluding A and
B, encapsulating the contextual background of the text. We presume the arrows from C
to A and B, which denote the contributory role of the remaining text words towards the
causal dynamics underpinning both A and B. As a result, the causal graph captures the
interplay between modified tokens, original tokens, and contextual cues, forming the basis
for comprehending the intricate behavior induced by adversarial interventions. Based on
that, MDL is computed as the code-length of compressing A, B given C, which reflects the
algorithmic information presented in the attacking model. In addition, to handle practical
situations where the original text data are absent, we propose to generate proxies of the
original tokens by using LLMs for the MDL computation. The experiment results show
that the MDL computed is propositional to the fraction of the modified tokens contained in
B, which can serve as an indicator of detecting adversarial attacks.

Figure 1. Procedure of MDL computation with masked language modeling (MLM): An initial review
is sourced from the original dataset and subjected to the BERT-ATTACK module, resulting in the
generation of an adversarial review. MLM is employed to evaluate the ‘amount of effort’ of prediction
for two categories of tokens: the original token and the modified token. Subsequently, the minimum
description length (MDL) is computed based on these evaluations.
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Figure 2. Causal graph for showing different components of a text in a causal relationship.

Our work creates innovative techniques that are complementary to existing robust NLP
methodologies. For example, the work by [10] showcases the feasibility of mitigating the
influence exerted by adversarial tokens, thus formulating a resilient hate speech detection
model. However, their study is based on prior knowledge of adversarial tokens—an
assumption that diverges from the intricate dynamics of real-world scenarios. Our method
has the potential to identify the adversarial tokens within the training data, enhancing the
applicability of the existing robust NLP models.

2. Related Work
2.1. Adversarial Attacks in NLP

Adversarial attacks in natural language processing (NLP) are strategic perturbations
to textual input aimed at deceiving machine learning models while maintaining human
interpretability. Adversarial attacks can be typically categorized into character-level, word-
level, and sentence-level attacks. At the character level, adversarial attacks utilize subtle
character manipulations, including insertions, deletions, and swaps, often blending natural
spelling mistakes with synthetic noise, like keyboard neighbor substitutions, randomiza-
tion, and punctuation adjustments. Such methods, illustrated by DeepWordBug [19] and
TextBugger [20], monitor the edit distance to ensure sentence readability. At the word
level, adversaries exploit techniques like gradient-based [21], importance-based [22,23],
and replacement-based strategies [24]. These approaches manipulate whole words, lever-
aging gradients to reverse classification probabilities or replacing words with semantically
coherent alternatives using word vectors. Sentence-level attacks, on the other hand, alter
groups of words, introducing techniques like ADDSENT and ADDANY [25,26] and utiliz-
ing GANs to generate semantically consistent sentences, as seen in AdvGen [27]. Altogether,
these diverse and intricate adversarial strategies highlight the significant challenges and
vulnerabilities in ensuring the robustness of NLP models against malicious manipula-
tions [28]. In this paper, we mainly target character-level and word-level attacks and
employ BERT-ATTACK [22] and TextFooler [23] as the attacking models for our analysis.

2.2. Robust NLP

Ensuring robustness in natural language processing (NLP) is an important task. Typi-
cal approaches encompass defenses against adversarial attacks and techniques to enhance
model generalization and reduce sensitivity to input variations. Data augmentation strate-
gies, such as generating counterfactual instances and integrating them into training data,
are widely adopted to enhance model invariance and sensitivity by incorporating pertur-
bations to confounding factors [7,29,30]. To mitigate the impact of perturbations to these
confounding factors on the predictions, a penalty term can be introduced in the objective
function [10]. These counterfactuals can be generated through a variety of methods: manual
post-editing [7], which offers fluency but is time-consuming; keyword replacement [8,29],
which may lack generalizability; and automated text rewriting [9], which aims to balance
fluency with efficiency. While counterfactuals are a powerful tool, especially in addressing
the gaps inherent in causal inference, their generation poses challenges. It can be difficult
to create meaningful and precise counterfactuals, and there is a risk of introducing new
spurious correlations [31].



Entropy 2024, 26, 354 4 of 16

As an alternative to data augmentation, robust learning algorithms can be designed
directly using observed data. One strategy for invariance tests involves ensuring that the
model adopts to a specific distributional criteria. For instance, counterfactually invariant
predictors can be achieved by considering the causal structure of the data-generating pro-
cess [32]. This approach formalizes counterfactual invariance to certain factors, ensuring
that predictions are unaffected by particular attributes [16]. Observing the true causal
structure of the problem can help derive observed-data signatures of counterfactual in-
variance, which can be incorporated as regularization terms in training. Alternatively,
training data can be viewed as originating from different environments, each with distinct
cause distributions but a shared causal relationship. Environmental invariance criteria
require an invariant representation function to ensure uniform predictor performance
across causally compatible domains, known as domain generalization [33,34]. Both ap-
proaches necessitate richer training data compared to standard supervised learning, posing
challenges, especially when explicit labels or data from multiple labeled environments are
required [31].

3. Background and Preliminaries
3.1. Masked Language Modeling (MLM)

Masked language modeling [18] involves the task of predicting a specific token within
a given context. To formally describe this process, let us consider an input sequence denoted
as X, comprising a series of K tokens represented as {x1, . . . , xK}. For ease of understanding,
let xi symbolize the i-th token within sequence X, and let Xmask

[i] represent the sequence
obtained by substituting the i-th token with a special token denoted as [MASK]. In a more
precise manner, the expression Xmask

[i] corresponds to the following sequence:

Xmask
[i] = {x1, . . . , xi−1, [MASK], xi+1, . . . , xK}

Additionally, we define the sequence Xmask
[i,j] as the result of replacing both tokens xi

and xj with the [MASK] token. For a sequence with multiple tokens replaced with [MASK]
token, we denote it as Xmask. The objective of MLM is to acquire a probabilistic model
pθ , where θ denotes the model’s parameters, that learns to predict the masked tokens in
Xmask given X, the input sequence. The final output of the model is a sequence of tokens
Xpred, where the [MASK] tokens are replaced with the most probable tokens based on the
acquired probabilistic model pθ . This model is intended to capture the underlying patterns
and relationships in the language data, thereby enabling the accurate prediction of masked
tokens within various contexts. The inherent design of the masked language model ensures
that the produced sentences are coherent, grammatically accurate, and maintain most of
the semantic meaning [22].

The evaluation of the MLM task’s effectiveness can be accomplished through an
analysis of its associated loss function: Lossi = −∑j yi,j log

(
ŷi,j

)
. Here, ŷi represents the

anticipated probability distribution for the token at the i-th position, whereas yi signifies the
target distribution encoded in one-hot fashion for the said token, and j indexes each token
in the model’s vocabulary, allowing the loss calculation to assess the model’s predictions
against the actual token for each position i where a token was masked. The cumulative
loss for all instances where tokens have been replaced by the [MASK] token within the
Xmask sequence is computed as the sum of these individual losses, succinctly expressed as:
LossX = ∑i is masked Lossi .

3.2. Minimum Description Length (MDL)

The minimum description length (MDL) concept operates as a statistical framework
that balances the intricate interplay between model complexity and its alignment with
observed data. This is achieved by merging the data and the generative model into a
single entity, resulting in a unified encoding. The optimal model choice is determined by
minimizing the resulting encoding length [17,35].
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The fundamental principle of MDL asserts that the model producing the shortest
encoding length for the data is better equipped to capture the underlying structures within
the data [17]. For a given set of variable pairs {(xi, yi)}n

i=1 ∼ PY,X, MDL provides a
concise bit-length for compression along with the necessary parameters for subsequent
decompression. This inherent fusion of intricacy and alignment confers upon MDL a
powerful utility for both selecting models and analyzing data. In cases involving two
independent variables, represented as X and Y, the computation of MDL is as follows:

MDL(X, Y) = MDL(X) + MDL(Y|X) = MDL(Y) + MDL(X|Y), (1)

where the notation MDL(·|·) denotes the conditional compression in which the second
argument is regarded as “free parameters” and does not contribute to the compression
length of the first argument. Equation (1) can be interpreted as a comparison between
two methods for compressing matching data points (X, Y). In the first approach, X is
compressed first, followed by the compression of Y, which is conditional on X. In the
second approach, Y is compressed first, followed by the compression of X, where the
conditioning is rooted in Y.

3.3. Causal Relation and MDL

Causal graphs are a widely utilized framework for representing and deducing causal
relationships among variables. Typically structured as directed acyclic graphs (DAGs),
denoted as G = {V, E}, these graphs consist of a set of variables V, and E depicts the causal
connections between them [36]. A directed edge stemming from variable X and pointing to
variable Y signifies that X acts as the cause, exerting a direct influence on Y. The integration
of causal graphs in activities such as causal representation, inference, and reasoning is
pervasive [37].

In instances where X is the causal factor and Y is the effect, the determination of the
likelihood of Y given X corresponds to the causal direction (X → Y). Conversely, evaluating
the probability of X given Y represents the anticausal direction (Y → X). The authors
in [38] introduced the concepts of “causal learning” (X → Y) and “anticausal learning”
(Y → X) to describe learning in the respective directions. For a given pair of variables X and
Y, if the generative processes PX , PY, PX|Y, and PY|X are mutually independent—adhering
to the independent causal mechanism (ICM) principle [38]—the minimum description
length (MDL) framework can be employed to compute causal direction (X → Y), which is
inherently less than or equal to the computation of the anticausal direction (Y → X) [16].

4. Methodologies

Our objective is to detect the algorithmic information of the attacking model (e.g., BERT-
ATTACK) as causal influences given the modified text data. To this end, we first consider
any two sets of tokens A, B and a context C and devise the technique of quantifying the
‘amount of effort’ needed for predicting B from A given C by using MDL. We view this
quantification as the algorithmic information of the mechanism transitioning from A to B,
i.e., (A→ B|C) (e.g., when A and B are original and modified tokens, this arrow represents
the mechanism of the attacking model). Then, based on that, we develop techniques for
judging whether a specified set of tokens has been modified by the attacking model, even
in the absence of the original text data.

4.1. Attacking Model

In this paper, we employ BERT-ATTACK [22] and TextFooler [23] as the attacking
model. This methods are used for conducting adversarial attacks on text models.

4.1.1. BERT-ATTACK

BERT-ATTACK leverages the BERT language model to create adversarial texts for
black-box untargeted attacks in machine learning. In these attacks, the attacker does not
have information about the target model’s structure, parameters, or gradients. The tech-
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nique involves identifying key tokens that significantly impact the model’s prediction.
These tokens are then replaced with semantically similar and grammatically correct alter-
natives until the model’s prediction is altered. The approach exploits the characteristics of
the original BERT model to deceive a fine-tuned BERT model, encompassing two primary
steps: identifying influential tokens and replacing them to change the prediction.

• Identification of Vulnerable Words:

In the first step, the method assigns an importance score, denoted as Iwi , to each word
or token in the text. This score is determined by comparing the logit output of the target
model when using the original text and when using the same text with the word wi masked.
The importance score Iwi is formally defined as:

Iwi = oy(S)− oy(S\wi
),

where S = [w0, · · · , wi, · · · ] denote the input sentence, and oy(S) represents the logit
output of S. Similarly, S\wi

= [w0, · · · , wi−1, [MASK], wi+1, · · · ] denotes the sentence with
the word wi masked, and oy(S\wi

) represents the logit output respectively. The words or
tokens are then ranked based on their importance score and the top x most vulnerable
words are selected.

• Word Replacement:

After identifying the list of vulnerable words, the method iteratively replaces these
words to discover perturbations that can confuse the target model. Notably, this process
ensures that the generated sentences remain both semantically coherent and grammatically
accurate by using the BERT’s masked language model. To enhance diversity, the method
considers the K most probable predictions at each position, as opposed to relying solely on
the argmax prediction from the BERT model.

Additionally, because BERT uses Byte-Pair Encoding (BPE) for tokenization, word
substitutes for tokens with sub-word components are chosen based on the perplexity of sub-
word combinations, ensuring that suitable word replacements are selected at the sub-word
level. This comprehensive approach results in a tactful execution of the attack, with the
ultimate aim of compromising the target model’s performance without compromising the
attack sentence’s semantic and grammatical structure.

4.1.2. TextFooler

Similar to BERT-ATTACK, TextFooler initiates its adversarial process by identifying
and modifying key tokens, aiming to alter the predictive output of the model. The process
involves two main steps:

• Identification of Vulnerable Words:

The initial stage of this process involves using a selection technique to assess the impact
of individual tokens on the model’s prediction. This is achieved by assigning an importance
score, denoted as Iwi , for each word wi in the input sequence X = {w1, w2, · · · , wn}. The im-
portance score quantifies the effect of word wi on the model’s prediction. The calculation of
Iwi is based on the variation in prediction when the word wi is removed. This is formally
expressed as:

Iwi =


FY(X)− FY(X\wi

), if F(X) = F(X\wi
) = Y,

(FY(X)− FY(X\wi
)) + (FȲ(X\wi

)− FȲ(X)),
if F(X) = Y, F(X\wi

) = Ȳ, and Y ̸= Ȳ.

where, FY(·) denotes the model’s prediction score for label Y on some input, and X\wi
=

{w1, · · · , wi−1, wi+1, · · · , wn} represents the sequence obtained after removing the word
wi from X.
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• Word Replacement:

After identifying the important words, this process involves two primary steps: select-
ing suitable synonyms and ensuring semantic and grammatical alignment with the original
sentence. In the first phase, Synonym Selection and POS Alignment, the strategy begins
by identifying potential synonyms for vulnerable words using a pre-trained embedding
model [39]. Using these embedding vectors, top N synonyms were selected based on their
cosine similarity with a word w, exceeding a set threshold. This method aims to strike a
balance between synonym diversity and maintaining semantic similarity, focusing on the
most semantically similar synonyms for word replacement. The process then includes a
Part-of-Speech (POS) check, retaining only synonyms that match the POS of the original
word, thus preserving grammatical consistency.

In the second phase, Semantic Evaluation and Finalization, the next step involves
assessing the semantic similarity between the original and modified sentences using the
Universal Sentence Encoder (USE) [40]. Synonyms exceeding a set similarity threshold
are shortlisted. The final selection of a synonym is guided by its potential to alter the
target model’s prediction or by having the lowest confidence score for the original label.
This iterative approach is continued until the prediction is modified, ensuring that the
adversarial examples are both effective in deceiving the model and semantically similar to
the original text.

4.2. MDL for Inferring Causal Direction between Tokens

Consider X as the tokenized input sequence. Let A, B be two disjoint subsets of tokens
in X and let C = X\{A, B} be the context. By assuming the causal graph in Figure 2,
the MDL for compressing A, B given C is computed as

MDL(A, B|C) = MDL(A|C) + MDL(B|A, C) ≤ MDL(B|C) + MDL(A|B, C),

where, [MDL(A|C) + MDL(B|A, C)] is the MDL of encoding MDL(A, B|C) in causal direc-
tion and [MDL(B|C) + MDL(A|B, C)] is for anticuasal direction.

The independent causal mechanisms (ICM) principle is a fundamental concept in
causal inference, stating that in any complex system, causal processes operate indepen-
dently of one another. According to the ICM principle, the MDL computed by following
the causal direction, i.e., first compressing A given C and then compressing B given A, C
should be smaller than the MDL computed vice versa, which leads to the above inequality.

To measure the quality of causal relations in the data, we consider a normalized metric
to ensure a fair comparison between different data sizes and randomness. Following the
methodology presented by [41], we define the causal indicator ∆A→B as follows:

∆A→B =
MDL(A|C) + MDL(B|A, C)

MDL(A|C) + MDL(B|C) .

The numerator denotes the combined description length for the causal direction,
reflecting the ‘amount of effort’ to predict B. On the contrary, the denominator acts as
an equalizer, considering the individual description lengths needed to predict both A
and B with the textual context C. Intuitively, this metric gauges the relative efficiency of
describing B when A is known, compared to when it is not. Similarly, we also define the
causal indicator ∆B→A, which evaluates the potential causal relationship in the reverse
direction. Finally, a confidence score S based on [41] is defined as:

S = |∆A→B − ∆B→A|,

which serves as a measure of the strength of the causal relationship between A and B.
A higher confidence score indicates a stronger causal relationship, while a score close to 0
suggests the absence of any causal relationship between the two sets of words.
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4.3. Calculating MDL with MLM

We compute the code-length for MDL(A, B|C) by leveraging masked language mod-
eling (MLM) which revolves around determining the optimal token replacement for the
designated mask token. Initially, the BERT’s masked language model is fine-tuned using
the context C to enable a comprehensive assessment of code-length for both directions.
Throughout this fine-tuning process, the positional integrity of A and B is maintained.
This is facilitated through the introduction of a specialized token, denoted as [CAUSAL],
which serves to preserve the positional information of A and B. This strategy is essential
as our objective is to refine the model’s ability to predict A independently of B. Therefore,
to clearly distinguish the roles of A and B, we employ two different special tokens: [MASK]
and [CAUSAL]. The introduction of the [CAUSAL] token plays a pivotal role in making the
model aware of the positional importance of these variables.

The resultant fine-tuned model, denoted as p f 1
θ subsequently serves as the founda-

tion for calculating the code-length of the conditional terms and conditional joint terms.
The adoption of the fine-tuned model offers the advantage of avoiding the necessity to
compute the marginal term MDL(C) through alternative language models while simultane-
ously ensuring the effective transmission of contextual information C in the computation.

Next, we extend the methodology outlined by [42] from its original application in
classification to the context of MLM. As a result, the computation of the MDL can be given
by Equation (2):

MDLonline(A|C) = t1 log2 K−
n−1

∑
i=1

log2 pθi

(
Aout

ti+1:ti+1
| Cin

ti+1:ti+1

)
, (2)

where t1 is the length of the first subset of data, and K is the fixed number of tokens, set to
8000 for computational uniformity, for which a uniform code length is maintained. This
setup ensures that the initial segment of the data is encoded with a uniform probability
distribution over K possible tokens, reflecting a non-informative prior or a starting point in
the absence of specific data-driven probabilities. The term pθi represents the probability
distribution parameterized by θi, which models the likelihood of observing a certain
sequence of output tokens Aout

ti+1:ti+1
given the contextual input Cin

ti+1:ti+1
for each interval

from ti + 1 to ti+1. Here, θi denotes the set of parameters that define the model’s state at the
i-th interval, encapsulating the learned relationships between input contexts and output
token sequences up to that point in the sequence.

To compute MDL(A|C) (and similarly for MDL(B|C)), the input sequence denoted as
Cin is the token sequence with A masked by [MASK] tokens and B replaced by [CAUSAL]
tokens. The corresponding out, denoted as Aout, is the sequence obtained from Cin by
substituting the [MASK] tokens with their predicted counterparts in A. Then, following
the online coding method [42], we partition the dataset into n non-overlapping subsets,
each increasing in size (in our experiments, we use n = 10 and the size percentages of the
10 subsets are 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.2, 12.5, 25, and 50, respectively). These subsets
are defined by their ending indices, represented as t1 through tn. Similarly, we can obtain
the token subsets of Cin and Aout, where the i-th subsets are denoted as Cin

ti−1+1:ti+1
and

Aout
ti−1+1:ti+1

. We then iteratively fine-tune and evaluate the model on the data. For the initial

time step, we employ the previously obtained fine-tuned model p f 1
θ to ensure that we have

a model equipped with contextual information from the text. We fine-tune the model on the
first subset of Aout (denote the fine-tuned model as p f 1

θ1
) and compute the code-length on the

second subsets by evaluating the log-likelihood log2 p f 1
θ1
(Aout

t1+1:t2
|Cin

t1+1:t2
). Then, in each

following time step i, we fine-tune the model on the aggregated data of Aout from subset 1
to subset i based on the previous model p f 1

θi−1
to obtain p f 1

θi
, and compute the code-length

on the i + 1 datasets, until the last time step n. We denote the final fine-tuned model p f 1
θn−1
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as p f 2
θ , which serves as the initial point for calculating the MDL of the conditional joint

terms in the next step.
To compute MDL(B|A, C) (and similarly for MDL(A|B, C)), the input sequence is the

token sequence with B masked by [MASK] tokens, and the output sequence is the original
token sequence where the [MASK] tokens are substituted by the original tokens in B. We
follow a similar data partitioning approach where the model is iteratively fine-tuned on one
subset of the data and evaluated on another subset of the data, using p f 2

θ as the initial model.
The MDLonline(B, A|C) is computed similarly to Equation (2). Finally, the MDL(A, B|C)
following the causal direction shown in Figure 2 is given by the sum of MDLonline(A|C)
and MDLonline(B, A|C).

4.4. Detecting Adversarial Attacks

When an adversarial attack is conducted, it modifies a subset of tokens in an imper-
ceptible way such that the performance of the language models (e.g., hate speech detection
models) significantly degrades. By viewing adversarial attacks as the causal mechanisms
between the original text and the altered text, we can quantify the algorithmic information
of the adversarial attack using the method presented in the last section. In this context, B
represents the tokens modified by the attack, A represents the original tokens of B before
the attack, and C represents the unmodified tokens. By computing the MDL following the
causal and anticausal directions shown in the causal graph in Figure 2, we expect to reveal
the adversarial attack from the difference in the MDL values derived from both causal and
anticausal directions.

However, there are two obstacles in directly applying the above method. First, the mod-
ified and original tokens share the same positions in the text, which is different from the
previous case where A, B are disjoint subsets. Second, in practice the original text data are
absent and only the altered text data are available, so the question is given a specified set of
tokens: how to determine whether it has been modified or partially modified by the attack.
To address these two issues, we propose to first generate a set of tokens as a proxy of the
original tokens and compute the MDL between the generated tokens and the specified
tokens. Specifically, given a specified set of tokens B and the context C, we generate the
proxy tokens (denoted as Â) based on C using LLMs (we use the pre-trained BERT in our
experiments). We then similarly mask the tokens in Â with [MASK] tokens to obtain the
input sequence Cin for computing MDLonline(Â|C) as well as the fine-tuned model p f 2

θ .
However, when computing MDL(B|Â, C), if we fine-tune the model on B, the model will
lose the information of Â as Â, B share the same positions. Thus, in this case we directly
evaluate the code-length of p f 2

θ without further fine-tuning it, resting on the belief that the

fine-tuned model p f 2
θ already encompasses sufficient information to encode B. We expect

the MDL values to reflect the algorithmic information of the attack as well in this case.
In addition, we expect the MDL values to be proportional to the fraction of the modified
tokens, serving as an indicator of detecting whether the specific set of tokens has been
modified by the attack.

Based on the above proposed method for computing the MDL, we identify two key
scenarios where the adversarial attacks can be effectively detected:

Scenario 1. In instances where a set of tokens can be verified to remain unaltered
during the attack, we can calculate the MDL in a causal context for this unaltered token set
to serve as a benchmark. Comparing this benchmark MDL against the MDL computed for
other token sets enables the identification of potentially altered tokens. Here, the premise is
that the benchmark set of unaltered tokens will exhibit a lower causal MDL compared to
sets that include modified tokens.

Scenario 2. When a reference set of unchanged tokens is unavailable, an alternative
approach involves randomly selecting subsets of tokens from the dataset to act as a compar-
ative baseline. In this method, token sets demonstrating a lower causal MDL are inferred
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to be less affected by adversarial modifications, serving as an indirect means to gauge the
extent of alteration within the data.

We outline the procedure for identifying potential adversarial modifications for both
scenarios in Algorithm 1. Lines 3–13 in the algorithm aim to establish a benchmark
MDL score. For Scenario 1, where the input comprises a specific set of unalteredTokens,
the MDL score for this set is directly computed and utilized as the benchmark. On the
other hand, for Scenario 2, where such a predefined set is absent, the algorithm generates
random subsets of tokens from the dataset, calculates the MDL score for each subset,
and subsequently identifies the subset with the lowest MDL score to serve as the benchmark.
Following this, the algorithm computes the MDL score for the targetTokens on line 14. Lines
15–17 then evaluate whether these targetTokens have been subject to adversarial alterations,
employing a predefined threshold δ to facilitate this determination.

Algorithm 1 Detect Adversarial Tokens

1: Input: textData, targetTokens, unalteredTokens (optional)
2: Output: Identify if targetTokens contains adversarial modifications
3: if unalteredTokens is available then
4: benchmarkMDL← CALCULATEMDL(unalteredTokens)
5: else
6: randomSubsets← GENERATERANDOMSUBSETS(textData)
7: MDLScores← empty list
8: for each subset in randomSubsets do
9: mdl ← CALCULATEMDL(subset)

10: Append (subset, mdl) to MDLScores
11: end for
12: benchmarkMDL← min(MDLScores, key = mdl).mdl
13: end if
14: mdlScore← CALCULATEMDL(targetTokens)
15: if ISADVERSARIALLYMODIFIED(benchmarkMDL, mdlScore, δ) then
16: Ouput TRUE
17: else
18: Ouput FALSE
19: end if

We present in the next section the experiment results that support our method.

5. Experiments
5.1. Datasets

To conduct experiments for empirical evaluations, we adopt the Amazon Review
Polarity dataset [43] as our base dataset. This dataset is pre-labeled and is widely used for
sentiment analysis that aims to categorize reviews into negative and positive reviews. In the
raw dataset, there are 5 review sources where scores 1 and 2 are considered positive, scores 4
and 5 are considered negative, and score 3 is excluded. As a pre-processing step, we convert
the labels into binary labels with negative and positive sentiments. Then, we randomly
sample 20,000 instances from this dataset, pre-process it to remove any unnecessary tokens
and characters, and obtain the base dataset denoted as Dorg. We will later adapt this dataset
to cater to the various requirements of our experimental scenarios.

5.2. Evaluating MDL between Tokens in Original Text

First, we evaluate whether any clear causal relationships exist between different token
subsets that might affect our subsequent analysis. For this purpose, we randomly select
two disjoint subsets of tokens as A and B and compute the MDL following the causal
graph in Figure 2 for both causal and anticausal directions. Specifically, we randomly
select five different subsets as A, and for each A we further randomly select three different
subsets as B, resulting in 15 different pairs of A, B. The MDL values computed are shown
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in Table 1, where causal MDL is computed as MDL(A|C) + MDL(B|A, C) and anticausal
MDL is computed as MDL(B|C) + MDL(A|B, C). As can be seen, the MDL values from
both directions are nearly identical. The average confidence score S = 0.0013 suggests that
there is no clear causal relation between these two sets of tokens in the original text.

Table 1. MDL between tokens in the original text.

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.3653 0.3695 0.3664 0.3686 0.7348 0.7350 1.0042 1.0045 0.0003
2 0.3658 0.3689 0.3662 0.3691 0.7347 0.7353 1.0037 1.0045 0.0008
3 0.3651 0.3695 0.3661 0.3684 0.7346 0.7345 1.0046 1.0045 0.0001
4 0.3648 0.3677 0.3654 0.3685 0.7325 0.7339 1.0031 1.0051 0.0019
5 0.3659 0.3682 0.3662 0.3695 0.7341 0.7357 1.0027 1.0049 0.0022
6 0.3652 0.3694 0.3660 0.3689 0.7346 0.7349 1.0046 1.0051 0.0004
7 0.3658 0.3689 0.3653 0.3692 0.7347 0.7345 1.0049 1.0047 0.0003
8 0.3650 0.3683 0.3652 0.3684 0.7333 0.7336 1.0042 1.0047 0.0004
9 0.3657 0.3695 0.3661 0.3680 0.7352 0.7341 1.0046 1.0031 0.0015
10 0.3651 0.3692 0.3656 0.3692 0.7343 0.7348 1.0049 1.0056 0.0007
11 0.3646 0.3679 0.3664 0.3698 0.7325 0.7362 1.0021 1.0071 0.0051
12 0.3658 0.3684 0.3652 0.3695 0.7342 0.7347 1.0044 1.0051 0.0007
13 0.3657 0.3679 0.3651 0.3694 0.7336 0.7345 1.0038 1.0051 0.0012
14 0.3660 0.3699 0.3658 0.3698 0.7359 0.7356 1.0056 1.0052 0.0004
15 0.3661 0.3689 0.3646 0.3678 0.7350 0.7324 1.0059 1.0023 0.0036

Mean 0.36546 0.36881 0.36571 0.36894 0.73427 0.73465 1.00422 1.00477 0.00131
± ± ± ± ± ± ± ± ± ±

SD 0.00045 0.00067 0.00053 0.00061 0.00092 0.00090 0.00099 0.00103 0.00136

5.3. Evaluating MDL between Tokens in Original and Altered Text

Then, we perform the adversarial attack and evaluate the MDL between tokens
modified by the attack and their original counterparts. We employ two adversarial attacks,
BERT-ATTACK and TextFooler, to select a subset of tokens in each review to be altered to
potentially flip the model’s predicted label for that review. Specifically, for each review
Xi ∈ Dorg, we denote mi as a list of vulnerable tokens selected by the adversarial attack
such that mi = {t1, t2, . . . , tn} and M = {m1, m2, . . . , mi} is a list of all the vulnerable
tokens in Dorg. Then, instead of modifying all tokens in M, we randomly choose 30% of the
tokens in mi for each review and modify them according to the adversarial attack while
the remaining 70% tokens were kept in their original form. In this way we can repeat the
experiment mutiple times with different modified tokens. In the experiments, we repeat
the experiment five times. We denote the modified dataset as Dmod. The modified tokens
and their originals are denoted as B and A to maintain consistent notation.

We then compute the MDL similarly according to the causal graph in Figure 2. Since
A and B share the same positions, we adopt the adapted method presented in Section 4.4.
The results are shown in Tables 2 and 3, from which we see that the causal MDL is
consistently smaller than the anticausal MDL. As Table 1 shows no clear causal relations
between tokens in the original text, the difference in the MDL values is likely to stem from
the difference in the difficulty of inference between the causal and anticausal directions.
For example, given a vulnerable token that is selected by the adversarial attack, we can infer
the modified token by encoding the mechanism of the adversarial attack model. Vice versa,
it is more difficult to infer the original token based on the modified token, which requires
reversing the mechanism of the adversarial attack. We may also interpret this situation
based on the principle of independent mechanisms; i.e., given t as a vulnerable token
selected by the adversarial attack, the modified counterpart of t is independent of the
distribution of t in the dataset. Thus, the results in Tables 2 and 3 can be considered as
evidence to support the hypothesis that the algorithmic information of the adversarial
attack model can be captured by computing the MDL values.
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Table 2. MDL between the tokens in the original and altered text (BERT-ATTACK).

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.3606 0.3617 0.3362 0.5674 0.7223 0.9036 1.0400 1.3000 0.2600
2 0.3659 0.3606 0.3363 0.5823 0.7265 0.9186 1.0300 1.3100 0.2800
3 0.3669 0.3623 0.3365 0.5826 0.7292 0.9191 1.0400 1.3100 0.2700
4 0.3662 0.3618 0.3364 0.5685 0.7280 0.9049 1.0400 1.2900 0.2500
5 0.3720 0.3603 0.3365 0.5754 0.7323 0.9119 1.0300 1.2900 0.2600

Mean 0.36632 0.36134 0.33638 0.57524 0.72766 0.91162 1.03600 1.30000 0.26400
± ± ± ± ± ± ± ± ± ±

SD 0.00362 0.00076 0.00012 0.00650 0.00329 0.00655 0.00490 0.00894 0.01020

Table 3. MDL between the tokens in the original and altered text (TextFooler).

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.4683 0.3614 0.324 1.6700 0.8297 1.9940 1.0500 2.5200 1.4700
2 0.4705 0.3730 0.3244 2.4532 0.8435 2.7776 1.0600 3.4900 2.4300
3 0.4686 0.3702 0.3235 1.1177 0.8388 1.4412 1.0600 1.8200 0.7600
4 0.4704 0.3833 0.3239 2.2307 0.8537 2.5546 1.0700 3.2200 2.1500
5 0.4741 0.3657 0.3242 2.2099 0.8398 2.5341 1.0500 3.1700 2.1200

Mean 0.47038 0.37072 0.32400 1.93630 0.84110 2.26030 1.05800 2.84400 1.78600
± ± ± ± ± ± ± ± ± ±

SD 0.00207 0.00743 0.00030 0.48368 0.00776 0.48395 0.00748 0.60308 0.60188

5.4. Evaluating MDL for Detecting Adversarial Attacks

Finally, we evaluate our approach for detecting adversarial attacks given Dmod only,
where we employ the base BERT to generate the tokens for MDL computation. Specifically,
given M, the vulnerable tokens, we similarly choose 30% of the tokens to modify and
denote them as B. Then, we mask the tokens in B by [MASK] and use the base BERT to
generate tokens in the corresponding positions, denoted as Â, for computing MDL(Â, B|C).
To repeat the experiment, we randomly select five different Bs and for each B we generate
three different Âs. The results of all 15 runs are shown in Table 4 for BERT-ATTACK and
Table 5 for TextFooler. As can be seen, the causal and anticausal MDL values are similar
to the results in Table 2, where the original tokens are used in the computation. This
result implies that the generated tokens could be used as proxies in estimating the MDL
between tokens modified by the attack and their original counterparts, which may reflect
the algorithmic information of the attacking model.

Table 4. MDL between the modified tokens and their generated counterparts (BERT-ATTACK).

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.3361 0.3400 0.3000 0.6487 0.6761 0.9487 1.0629 1.4914 0.4285
2 0.3330 0.3420 0.3000 0.6157 0.6750 0.9157 1.0664 1.4466 0.3803
3 0.3354 0.3421 0.3001 0.6243 0.6775 0.9244 1.0661 1.4546 0.3885
4 0.3334 0.3399 0.2996 0.6119 0.6733 0.9115 1.0637 1.4400 0.3763
5 0.3344 0.3397 0.2996 0.6070 0.6741 0.9066 1.0632 1.4300 0.3667
6 0.3369 0.3394 0.2994 0.6232 0.6763 0.9226 1.0629 1.4499 0.3871
7 0.3338 0.3404 0.2998 0.6275 0.6742 0.9273 1.0641 1.4635 0.3995
8 0.3356 0.3421 0.2996 0.6265 0.6777 0.9261 1.0669 1.4580 0.3911
9 0.3340 0.3405 0.2996 0.6175 0.6745 0.9171 1.0646 1.4474 0.3829
10 0.3275 0.3419 0.3000 0.5689 0.6694 0.8689 1.0668 1.3847 0.3179
11 0.3374 0.3409 0.3002 0.6350 0.6783 0.9352 1.0638 1.4668 0.4029
12 0.3367 0.3412 0.3000 0.6274 0.6779 0.9274 1.0647 1.4566 0.3919
13 0.3299 0.3403 0.3004 0.5998 0.6702 0.9002 1.0633 1.4282 0.3649
14 0.3343 0.3405 0.3003 0.6156 0.6748 0.9159 1.0633 1.4433 0.3799
15 0.3391 0.3407 0.3003 0.6508 0.6798 0.9511 1.0632 1.4875 0.4243

Mean 0.33450 0.34077 0.29993 0.61999 0.67527 0.91991 1.06439 1.44990 0.38551
± ± ± ± ± ± ± ± ± ±

SD 0.00282 0.00087 0.00030 0.01911 0.00279 0.01913 0.00141 0.02452 0.02508
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Table 5. MDL between the modified tokens and their generated counterparts (TextFooler).

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.3812 0.3966 0.324 0.9288 0.7778 1.2528 1.1029 1.7765 0.6736
2 0.3763 0.4012 0.3241 0.8416 0.7775 1.1657 1.1101 1.6643 0.5543
3 0.3719 0.3998 0.324 0.8603 0.7717 1.1843 1.1089 1.7018 0.5929
4 0.3742 0.4021 0.3244 0.8864 0.7763 1.2108 1.1112 1.7332 0.6220
5 0.37 0.3999 0.3244 0.8381 0.7699 1.1625 1.1087 1.6741 0.5654
6 0.3694 0.4009 0.3243 0.8432 0.7703 1.1675 1.1104 1.6830 0.5726
7 0.3725 0.4025 0.3235 0.8231 0.7750 1.1466 1.1135 1.6474 0.5339
8 0.379 0.3988 0.3235 0.888 0.7778 1.2115 1.1072 1.7246 0.6174
9 0.3705 0.4005 0.3235 0.8305 0.7710 1.1540 1.1110 1.6628 0.5519
10 0.3652 0.4019 0.3239 0.8162 0.7671 1.1401 1.1132 1.6545 0.5413
11 0.3735 0.4008 0.3241 0.866 0.7743 1.1901 1.1099 1.7060 0.5960
12 0.365 0.3984 0.3242 0.804 0.7634 1.1282 1.1077 1.6370 0.5293
13 0.3825 0.4005 0.3242 0.8632 0.7830 1.1874 1.1080 1.6802 0.5722
14 0.3782 0.4007 0.3239 0.8658 0.7789 1.1897 1.1094 1.6945 0.5851
15 0.3707 0.4013 0.3242 0.8165 0.7720 1.1407 1.1110 1.6415 0.5306

Mean 0.37334 0.40039 0.32401 0.85145 0.77373 1.17546 1.10954 1.68543 0.57589
± ± ± ± ± ± ± ± ± ±

SD 0.00511 0.00149 0.00030 0.03212 0.00490 0.03212 0.00249 0.03713 0.03875

To further assess our idea, we construct multiple Bs that involve different percentages
of the modified tokens and evaluate how the MDL values vary with the change of the
fraction of modified tokens. We first randomly select 30% tokens from M as B. Then,
we construct Bp by randomly selecting p% · |B| tokens from B that are truly modified by
the attacking model and (1− p%) · |B| from M that are not modified. Using this method,
we create B0, B25, B50, B75, and B100 where B100 is equivalent to B. Then, we generate Âp

similarly for each Bp and compute MDL(Âp, Bp|C). We repeat the experiment 15 times
for each p and present the results in Figure 3. We can see that the causal MDL rises
with an increasing percentage of modified tokens for both attacking models. This is as
expected according to our hypothesis that the MDL reflects the algorithmic information
of the attacking model, since a greater number of modified tokens would require a longer
code-length to compress the attack mechanism.

Figure 3. MDL for causal direction, anticausal direction, and confidence score (S) of MDL
with standard deviation for different percentages of modified words of BERTAttack (left) and
TextFooler (right).

However, we notice that the anticausal MDL does not follow a consistent trend for
different attacking models. We presume that this is due to the anticausal MDL being
primarily influenced by the difficulty of predicting tokens generated by the base BERT.
To verify this idea, we generate tokens based on the original text and compute the MDL
for the generated tokens Â and the original tokens B. The results are shown in Table 6. We
see that without any modification, the causal MDL remains prominently smaller than the
anticausal MDL, which verifies our conjecture to a certain extent.
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Table 6. MDL between the original tokens and their generated counterparts.

ID MDL(A|C) MDL(B|A, C) MDL(B|C) MDL(A|B, C) Causal Anticausal ∆A→B ∆B→A S = |∆A→B − ∆B→A|

1 0.3361 0.3405 0.3192 0.454 0.6766 0.7732 1.0300 1.1800 0.1500
2 0.3334 0.3444 0.3128 0.4141 0.6778 0.7269 1.0500 1.1200 0.0700
3 0.3338 0.3605 0.3171 0.4206 0.6943 0.7377 1.0700 1.1300 0.0600
4 0.3275 0.3519 0.3131 0.3846 0.6794 0.6977 1.0600 1.0900 0.0300
5 0.3299 0.3514 0.315 0.4004 0.6813 0.7154 1.0600 1.1100 0.0500

Mean 0.33214 0.34974 0.31544 0.41474 0.68188 0.73018 1.054 1.126 0.072
± ± ± ± ± ± ± ± ± ±

SD 0.00305 0.00689 0.00243 0.02320 0.00641 0.02526 0.01356 0.03007 0.04118

6. Conclusions

In this paper, we investigated the use of MDL to analyze the causal influence caused by
adversarial attacks. We developed techniques for computing the MDL for inferring causal
directions between tokens by using MLM. Based on that, we developed techniques for
judging whether a specified set of tokens has been altered by the attack, even in the absence
of the original text data. In the experiments, we showed a clear difference in the causal and
anticausal MDL values, implying that algorithmic information of the attacking model can
be captured by computing the MDL values. In addition, we showed that by generating
proxy tokens, the causal MDL values are proportional to the fraction of the modified tokens
in a specified subset, which could serve as an indicator of detecting whether the tokens
have undergone modification. Our work made a preliminary effort to identify adversarial
attacks and has the potential to enhance the applicability of existing robust NLP models.
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