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Abstract: The space- and temperature-dependent electron distribution n(r, T) determines opto-
electronic properties of disordered semiconductors. It is a challenging task to get access to n(r, T)
in random potentials, while avoiding the time-consuming numerical solution of the Schrödinger
equation. We present several numerical techniques targeted to fulfill this task. For a degenerate
system with Fermi statistics, a numerical approach based on a matrix inversion and one based on a
system of linear equations are developed. For a non-degenerate system with Boltzmann statistics, a
numerical technique based on a universal low-pass filter and one based on random wave functions
are introduced. The high accuracy of the approximate calculations are checked by comparison with
the exact quantum-mechanical solutions.

Keywords: disordered materials; electron states in random potential

1. Introduction

Disordered materials, such as amorphous organic and inorganic semiconductors and
semiconductor alloys, play an important role in modern optoelectronics for computing,
communications, photovoltaics, sensing, and light emission [1–8]. The spatial and energy
disorder creates a random potential, that decisively affects electron states. Among other
effects, the disorder potential causes spatial localization of electrons in the low-energy
range. The knowledge of the space- and temperature-dependent electron distribution
n(r, T), particularly in localized states, created by random potentials, is required to under-
stand charge transport and light absorption/emission in disordered semiconductors. The
distribution n(r, T) is most straightforwardly obtained by solving the Schrödinger equation
in the presence of disorder potential. However, this procedure is extremely demanding with
respect to computation facilities. It is hardly affordable for realistically large chemically
complex systems. Therefore, it is highly desirable to develop theoretical tools to get access
to n(r, T) without solving the Schrödinger equation.

One of the currently mostly used theoretical tools to reveal the individual features
of localized states in a random potential is the so-called localization-landscape theory
(LLT) [9–12]. In the LLT, the random potential is converted into some effective potential,
drastically simplifying the calculations. However, recent studies [13,14] revealed substantial
problems of the LLT. For instance, the effective potential in the LLT lacks the temperature
dependence, which is necessary to describe n(r, T) appropriately. Moreover, the LLT has
been proven equivalent to the Lorentzian filter applied to a random potential [13]. Such a
choice of the filter function is rather unfortunate. The Lorentzian filter yields a significantly
larger number of localized states in a random potential than the number of such states
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obtained via the exact solution of the Schrödinger equation [13]. Therefore, more-developed
computational techniques are desirable.

Here, we develop two numerical techniques to reveal n(r, T) in disordered systems
under degenerate conditions controlled by Fermi statistics, avoiding the time-consuming
numerical solution of the Schrödinger equation. One of the techniques is based on con-
verting the Hamiltonian into a matrix, which, being subjected to several multiplications
with itself, succeeded by inverting the outcome, yields the distribution n(r, T). The other
technique replaces the operation of matrix inversion by solving a system of linear equations
controlled by the matrix generated from the Hamiltonian.

We also describe two recently developed computational techniques for calculations of
n(r, T) in non-degenerate systems controlled by Boltzmann statistics [13,14]. One algorithm
is based on applying a temperature-dependent universal low-pass filter (ULF) to the
random potential V(r). This yields a temperature-dependent effective potential, W(r, T),
that enables a quasiclassical calculation of particle density n(r, T). The ULF algorithm
employs fast Fourier transformation for calculating the effective potential W, enabling the
analysis of very large systems.

The other algorithm is based on a recursive application of the Hamiltonian to multiple
sets of random wave functions (RWFs) for a specific realization of the random potential V(r).
Following the repeated application of the thermal operator, the temperature-dependent
electron density is determined by averaging the outcomes over different RWF sets. This
procedure offers several advantages over the widely used LLT. Unlike the LLT, which
relies on an adjustable parameter that can only be determined through comparison with
the exact solution [13,14], the RWF scheme does not involve adjustable parameters, and
it works across all temperatures. Additionally, the accuracy of the RWF approach in
computing n(r, T) can systematically be improved, whereas the accuracy of the LLT is
inherently limited.

2. Calculation of n(r, T) in a Degenerate System Controlled by Fermi Statistics

To be definite, we consider a disorder potential characterized by Gaussian statistics
(‘white noise’), i.e., the potential obeys ⟨V(r )⟩R = 0 with the auto-correlation function [15]

⟨V(r )V(r ′)⟩R = Sδ
(
r − r ′) , (1)

where ⟨. . .⟩R indicates the average over many realizations R of the random potential and S is
the strength of the interaction. The quantity S yields natural definitions for the characteristic
length scale and for the characteristic energy scale in the form

ℓ0 =

(
h̄4

m2S

)1/(4−d)

, (2)

T0 =
1

kB

(
mdS2

h̄2d

)1/(4−d)

, (3)

where d is the space dimensionality and kB is the Boltzmann constant.
We consider a collection of non-interacting electrons in some external potential in the

thermodynamic equilibrium characterized by the temperature T and the Fermi energy
ε f . The goal is to develop an effective numerical method to calculate the electron density
(concentration) n(r, T) as a function of coordinates r in a degenerate system. The electron
density can be defined as

n(r, T) = 2 ∑
a
|ψa(r)|2 f (εa). (4)

In this equation, summation index a labels the eigenstates, i.e., solutions of the Schrö-
donger equation Ĥψa = εaψa, where ψa(r) and εa are the wavefunction and the energy of
the eigenstate, f (ε) is the Fermi function,
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f (ε) =
1

exp[(ε − ε f )/kBT] + 1
, (5)

and factor 2 in front of the sum in Equation (4) accounts for the two possible spin orientations.
We assume that the system under study is discretized with a finite-difference (or

tight-binding) method. The tight-binding method is widely used for modeling of various
transport phenomena in the presence of disorder, ranging from Anderson localization
to disordered topological insulators. As a few examples, let us mention studies of one-
dimensional disordered chains [16–18], tight-binding models of topological insulators
in amorphous systems [19], tight-binding models for lead halide perovskites [20], and
nucleic acid sequences [21]. A wavefunction ψ(r) is, therefore, represented as a collection
of probability amplitudes ψ1, . . . , ψL at L points (grid nodes) evenly distributed in space.
The Hamiltonian Ĥ is a matrix of size L × L. Equation (4) for n(r, T), in this discrete setting,
attains the form

ni =
2

∆V

L

∑
a=1

|ψa,i|2 f (εa), (6)

where ni is the electron density at the grid node i ∈ {1, . . . , L}, ψa,i is the value of the
eigenfunction ψa at node i; εa is the electron energy that corresponds to this eigenfunction;
and ∆V is the spatial volume per one grid node (in the one-dimensional case, ∆V is simply
the distance between nodes).

Equation (6) represents a standard way to calculate numerically the electron density
in degenerate systems. However, this way requires the solution of the eigenvalue problem,
which takes a large amount of computational resources for the large size L of the Hamilto-
nian matrix. Below, we suggest two methods that allow one to speed up the calculation of
n(r, T). In Method 1 (see Section 2.1), the numerical solution of the eigenvalue problem is
replaced by the matrix inversion. The latter numerical task is much faster than the solution
of the eigenvalue problem in the case of a sparse matrix, in which almost all entries are
equal to zero. In Method 2 (see Section 2.2), we employ a numerical solution of a system
of linear equations that is even faster than the matrix inversion. The performances of
Methods 1 and 2, as compared to the standard method based on the eigenvalue problem,
are tested in Section 2.3 on the example of a one-dimensional disordered system with one
occupied band.

The idea of Methods 1 and 2 is based on a simple observation that the shape of
the function

y(x) =
1

xN + 1
, (7)

where a number N is large, resembles the shape of the Fermi function in the vicinity of point
x = 1. Other approaches for approximating the Fermi function are also possible [22–25].
The essence of Methods 1 and 2 is the replacement of x with an appropriate linear function
of the Hamiltonian. The detailed justification is provided in Appendix A.

It is implicitly assumed in this section that the Fermi energy is inside the energy gap
far from the band edges, as the model Hamiltonians exclude two-particle interaction. In
a situation, when the two-particle interaction is unavoidable, it can be included into the
model via the exchange-correlation potential of the density functional theory. The latter
issue is out of scope in our study.

2.1. Method 1: Matrix Inversion

The inputs of Method 1 are the Hamiltonian Ĥ (a matrix L × L), the Fermi energy ε f ,
and two additional parameters, a “reference energy” ε0 and the number of iterations N.
The three latter parameters are related to temperature T via the equality

kBT =
|ε f − ε0|

2N . (8)

The details for the choice of these parameters are given in Appendix B.
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In Method 1, one first composes the matrix Â0 from the Hamiltonian,

Â0 =
Ĥ − ε0 Î
ε f − ε0

, (9)

where Î is the L × L unit matrix. This matrix Â0 is then squared N times

Âp =
(

Âp−1
)2, p = 1, 2, . . . , N. (10)

Afterwards, the unit matrix is added to matrix ÂN and the sum is inverted to yield a
new matrix

B̂ =
(

ÂN + Î
)−1. (11)

Finally, the electron density is obtained from the diagonal elements Bii of the matrix B̂:

ni =
2

∆V
Bii if ε0 < ε f , (12)

ni =
2

∆V
(1 − Bii) if ε0 > ε f . (13)

2.2. Method 2: Solving a System of Linear Equation

Similarly to Method 1, the input parameters are ε f , ε0 and N, which are related to
temperature T by Equation (8). In addition, Method 2 requires one extra parameter NC.
The choice of NC is discussed in Appendix B. For a given NC, a matrix Û of size L × NC
is to be composed, that fulfills the following conditions (see Figure 1 for the shape of this
matrix in the one-dimensional case):

• each entry of matrix Û is equal to either 0 or 1;
• in each row of matrix Û, exactly one entry is equal to 1;
• in each column of matrix Û, the nodes with nonzero entries are placed spatially as far

from each other as possible. For example, in the one-dimensional case, the unities in
each column are separated by (NC − 1) zeros, as illustrated in Figure 1.

Figure 1. Sketch of matrix Û for the one-dimensional case. White and black squares represent zeros
and unities, respectively.

The matrix ÂN is calculated, as done in Method 1, see Equations (9) and (10). How-
ever, in contrast to Method 1, no matrix inversion is necessary. Instead, a system of
linear equations (

ÂN + Î
)
X̂ = Û (14)

is to be solved with respect to the yet unknown matrix X̂ of size L × NC. This is a computa-
tionally easier task than the matrix inversion used in Method 1.
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Finally, the electron density is calculated as

ni =
2

∆V

NC

∑
a=1

XiaUia if ε0 < ε f , (15)

ni =
2

∆V

(
1 −

NC

∑
a=1

XiaUia

)
if ε0 > ε f . (16)

2.3. A Numerical Example: One-Dimensional Disordered System with a Single Occupied Band

Let us compare the performances of different methods in calculating n(r, T) on a
simple one-dimensional tight-binding model with energy bands and disorder. We consider
a linear chain of L lattice nodes at the distance a = 0.1 from each other. The distances
and energies are measured in the units determined by Equations (2) and (3). In these
units, the hopping integrals between the neighboring nodes Hi,i+1 and Hi+1,i are equal to
−1/(2a2) = −50. The on-site energies Hjj are chosen to be

Hjj = V0 + V1 cos(π j/2) + V2ξ j , (17)

where ξ j are the random numbers uniformly distributed in the range −1 < ξ j < 1. All
the other matrix elements of the Hamiltonian Ĥ are equal to zero. Periodic boundary
conditions apply. The constant term V0 = 100 makes the lower boundary of the energy
spectrum εmin close to zero, and the higher boundary is εmax ≈ 200. The amplitude
of the periodic variations of the potential is V1 = 20. The amplitude of the random-
noise potential V2 =

√
30 is chosen to set the ’disorder strength’ S equal to unity. This

relation can be understood as follows. In a discretized 1D model, the Dirac delta function
δ(xi − xj) turns into (1/a)δ(i, j), where δ(i, j) is a Kronecker delta, and a is the distance
between sites. Hence, Equation (1), reformulated with the discrete variables, has the form
⟨Vi Vj⟩R = (S/a)δ(i, j). Inserting potentials V2ξi, V2ξ j yields V2

2 ⟨ξi ξ j ⟩R = (S/a)δ(i, j).
Since ⟨ξi ξ j ⟩R = (1/3)δ(i, j), one obtains V2 =

√
3S/a =

√
30 for the assumed values S = 1

and a = 0.1. As an example, we show one realization of the on-site energies in Figure 2a.
As a consequence of the periodic potential (the second term in the right-hand side of

Equation (17)), the electron energy spectrum consists of the four energy bands separated
from each other by band gaps. We consider the situation when the lowest energy band is
completely occupied by electrons, and three other bands are empty (quarter filling). The
electron density in such a case is expressed as

ni =
2

∆V ∑
a∈OB

|ψa,i|2, (18)

where summation is performed over the eigenstates of the occupied band.
The wave functions ψa, that enter Equation (18), can be obtained by diagonalizing

the Hamiltonian. An example of the calculated electron density distribution is shown in
Figure 2b by blue lines.

Also we show in Figure 2b the approximated electron density obtained by Method 1
(red dots) and by Method 2 (orange circles). The parameters for these methods are: ε f = 28.5
(the middle of the lowest band gap), ε0 = 10, N = 3, and NC = 30. One can see that both
Methods provide quite accurate results for the electron density.
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Figure 2. Numerical example of one-dimensional tight-binding model: (a) on-site energies Hjj at
different nodes; (b) electron density in the lowest energy band calculated by three methods: exact
diagonalization of the Hamiltonian (Equation (18), blue lines), Method 1 (red dots), and Method 2
(orange circles).

In Figure 3, we compare the time required by three ways of calculating the electron
density—the exact method based on the Hamiltonian diagonalization, Method 1, and Method
2—on a desktop PC with MATLAB (version R2023b, by MathWorks) used for the matrix
manipulations. One can see that Method 1, which employs matrix inversion, is approxi-
mately one order of magnitude faster than the usual method of Hamiltonian diagonalization.
Method 2 provides additional increase in speed by more than an order of magnitude.

Figure 3. The average calculation time for the electron density in the one-dimensional tight-binding
model shown in Figure 2 as a function of the number of nodes L. Different curves correspond to
different numerical methods.
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Note that Method 1 can be further improved by using advanced techniques to calculate
the diagonal part of the inverted matrix [26–28]. For the sake of simplicity, we use here
the standard MATLAB functions in Method 1. Even in such a non-optimized setting, this
method demonstrates a substantial speedup in comparison with matrix diagonalization.

So far, we considered here degenerate systems with Fermi statistics. In Section 3,
we address a complementary case of a non-degenerate system with Boltzmann statistics,
following two recent studies [13,14]. While in those studies, hundreds of equations were
used to treat the non-degenerate case, we demonstrate in this paper that the essence of the
theory for Boltzmann statistics can be introduced using only several equations.

3. Calculation of n(r, T) in a Non-Degenerate System Controlled by
Boltzmann Statistics
3.1. Low-Pass Filter (LF) Approach
3.1.1. Motivation

Already in the 1960s, Halperin and Lax recognized that electrons in a random potential
cannot follow very short-range potential fluctuations [15]. This effect is illustrated in
Figure 4, where the random white-noise potential V(x) in one dimension is depicted
by the green solid line. The detailed shape of V(x) in the region 275 ≤ x ≤ 325 (in
the dimensionless units given by Equation (2)) is compared with the shape of the wave
function ψ for the lowest energy state in this spatial region. Apparently, the characteristic
width ℓw f of the wave function, even for low-energy localized states, is substantially larger
than the spatial scale of the fluctuations of the disorder potential V(r). The latter scale
in semiconductor alloys is of the order of the lattice constant a ≈ 0.5 nm. The strong
inequality ℓw f ≫ a suggests that electrons in localized states are affected only by the mean
disorder potential, averaged over the space scale ℓw f . It is, therefore, not necessary to solve
exactly the Schrödinger equation with the real disorder potential in order to get access to
the individual features of electron states. Instead, one can apply to the disorder potential
V(r) a low-pass filter [15] (LF) that smooths the spatial fluctuations of V(r).

Figure 4. Realization of the white-noise disorder potential on a one-dimensional strip. Insert: the
wave function ψ(x) of the state with the lowest energy in the region 275 ≤ x ≤ 325. The coordinate x
is dimensionless in the units given by Equation (2).

Halperin and Lax suggested the square of the wave function as the filter function [15].
The width of the filter function, ℓ ≈ ℓw f was adjusted dependent on the energy, ε, of the
localized state, ℓ ∝ |ε|−1/2, where ε is counted from the band edge in the absence of disorder.
A variational approach was used to determine the shape of the low-energy density of states
in a random potential [15]. Baranovskii and Efros [29] addressed the same problem by a
slightly different variational approach and confirmed the result of Halperin and Lax.
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Neither of the two groups considered, however, the individual features of localized
states, being focused solely on the structure of the density of states in the low-energy
region [15,29]. Our aim here is, in contrast, to calculate the spatial distribution of electron
density, n(r, T), in a given disorder potential V(r). We start below with the definition
of the low-pass filter and then formulate the algorithm to calculate n(r, T). Afterwards,
we will formulate an even more accurate technique for calculating n(r, T) based on the
random-wave-function approach.

3.1.2. Definition of a Low-Pass Filter (LF)

In one dimension, the low-pass filter (LF) is determined by the operation

W(x) =
∫

dx′Γ(x − x′)V(x′) , (19)

where the filter function Γ should contain the appropriate length scale ℓ. This operation
converts the real disorder potential V(x) into the smooth effective potential W(x). For
instance, one can try a Lorentzian function ΓL,

ΓL(x) =
e−|x|/ℓL

2ℓL
, (20)

because using as LF a Lorentzian function with ℓL = 0.27 ℓ0 has recently been proven [13]
to be equivalent to the popular LLT approach [9–12].

Halperin and Lax [15] suggested instead to use for LF the square of the wave func-
tion Γ(x) = ψ2(x). The shape of the wave functions ψ(x) for the low-energy states was
determined by the optimal-fluctuation-approach that yields the filtering function

ΓHL(x) =
1

2ℓHL

1
cosh2(x/ℓHL)

, (21)

where the characteristic length ℓHL should depend on the state energy [15,29]. Remarkably,
it appears that a universal, energy-independent value for ℓHL, can be introduced [13],
ℓHL = 0.76 ℓ0 as evidenced in Figure 5a, where the effective potential yielded by the
filtering function given by Equation (21), is compared with the positions and energies
of the eigenstates. The eigenstates for the given realization of disorder potential V(x)
were obtained via a straightforward solution of the Schrödinger equation. In Figure 5, the
30 eigenstates, with the lowest energies are depicted by red points. The excellent agreement
between the local minima of the effective potential (shown by the solid green line) and the
positions and energies of the exactly calculated eigenstates justifies the filter function given
by Equation (21).

In Figure 5b, such a comparison is illustrated for the case of a Lorentzian filter, deter-
mined by Equation (20) with ℓL = 0.27 ℓ0 chosen to mimic the LLT result [13]. Evidently,
the choice of a Lorentzian filter function is not satisfying. The number of the local minima
in the effective potential W(x) (shown by the solid blue line) is significantly larger than the
true number of the exactly calculated eigenstates. This happens because the Lorentzian
function given by Equation (20) is not smooth at x = 0. The cusp at x = 0 filters too
many extrema from the real disorder potential V(x), preventing the identification of true
localized electron states by searching the minima of the effective potential W(x). The filter
function suggested by Halperin and Lax [15] does not possess such a deficiency.

Not only the energies and spatial positions of localized states in disorder potential
V(r), discussed above, are of interest for the theory. In fact, the key quantity for the
optoelectronic properties of disordered semiconductors is the space- and temperature-
dependent electron distribution n(r, T). Below we extend the LF approach to calculate
n(r, T). For that purpose, we introduce the temperature T into the filter function and,
concomitantly, into the definition of the effective potential W(r, T) that yields n(r, T).
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Figure 5. (a) Effective potential for a Halperin-Lax low-pass filter. (b) Effective potential for a
Lorentzian low-pass filter. Reprinted with permission from [13]. Copyright (2023) by the American
Physical Society.

3.1.3. Universal Filter Function to Determine n(r, T)

The T-dependent spatial distribution of electron density n(r, T) is related to the quasi-
classical effective potential W(r, T) as

n(r, T) = Nc exp
[

µ − W(r, T)
kBT

]
, (22)

where Nc is the effective density of states in the conduction band and µ is the chemical
potential. This equation serves as the definition of the quasi-classical effective potential
W(r, T). The effective potential is smooth in comparison to the initial disorder potential
V(r) because W(r, T) is derived from the electron density n(r, T), which has the spatial scale
of the electron wave functions, i.e., is broader than the scale of the short-range fluctuations
of V(r). Let us, therefore, obtain W(r, T) by subjecting V(r) to the action of a universal
low-pass filter (ULF).

The key question is how to find out the appropriate T-dependent filter function
Γ(r, T) that can be used to extract the shape of the effective potential W(r, T) for a given
realization of the white-noise potential V(r). One can represent this filter function as a
functional derivative

Γ(r − r′, T) =
δW(r, T)

δV(r′)
.

This derivative can be calculated analytically via the first-order perturbation the-
ory in the approximation of vanishing function V(r), i.e., for the free electron gas. This
perturbation approach yields the following shape of the filter function’s Fourier image [14]:

Γ̂(k) =
√

π

λk
e−λ2k2/4 erfi(λk/2) , (23)

where erfi is the imaginary error function, and λ = h̄/
√

2mkBT.
In order to reveal the electron density distribution n(r, T) for a given realization of the

white-noise potential V(r), one should first calculate the Fourier image V̂(k) of V(r) using
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a fast-Fourier-transform (FFT). This function V̂(k) should be then multiplied by Γ̂(|k|),
which is given by Equation (23). The inverse Fourier transform of the product V̂(k)Γ̂(|k|)
by the FFT yields the effective potential W(r, T) because the inverse Fourier transform
converts a product into a convolution [14]. Inserting W(r, T) into Equation (22) gives the
electron density n(r, T). In Figures 6 and 7, we compare the results for W(r, T) of the
above procedure with the effective potentials obtained via Equation (22) from the electron
density n(r, T) calculated using the exact solution of Schrödinger equation in one and two
dimensions, respectively. Coordinate x and temperature T in the figures are measured in
the units given by Equations (2) and (3).

Figure 6. Comparison between the exact effective potential (solid blue lines) and the filtered po-
tential (dashed red lines) for a one-dimensional sample with white-noise potential. Reprinted with
permission from [14]. Copyright (2023) by the American Physical Society.

Figure 7. Comparison between the exact electron density n(x, y, T) (upper part) and that obtained by
using the universal filter function (lower part) in a two-dimensional white-noise potential. Reprinted
with permission from [14]. Copyright (2023) by the American Physical Society.
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The data in Figures 6 and 7 demonstrate the high accuracy of the approach based on
the T-dependent low-pass filter. Notably, the FFT operation used in this approach does not
need a considerable computation time, in contrast to the exact calculations on the basis of
Schrödinger equation.

Below, we introduce an even more accurate technique to calculate electron density
n(r, T) while avoiding solving the Schrödinger equation. This technique is based on the
random-wave-functions approach.

3.2. Random Wave Functions (RWF) Approach to Calculate n(r, T)
3.2.1. Background

The idea of the RWF approach resembles the one suggested recently by Lu and
Steinerberger [30] to search for the low-lying eigenfunctions of various linear operators. An
iterative application of the operator leads to the increasing contributions of the low-energy
regions to the state vector [30]. A similar approach has been suggested by Krajewski and
Parrinello [31] for the calculation of the thermodynamic potential.

Let us consider the action of the operator ĥ = exp[−Ĥ/(2kBT)] on an arbitrarily
chosen wave function. The goal is to model the equilibrium distribution of electrons, which
is described by the Boltzmann statistics in the nondegenerate case considered here. In
Boltzmann statistics, states with energy ε contribute to the distribution of electrons with the
probability proportional to exp[−ε/(kBT)]. The wave function is the probability amplitude,
which explains the factor 1/2 in the operator ĥ. The wave function is always a linear
combination of eigenfunctions that correspond to different energies. The action of the
operator ĥ suppresses the contributions of high-energy eigenfunctions in favor of the con-
tributions of low-energy eigenfunctions. By the application of the operator ĥ to a collection
of the random wave functions, the average contributions of eigenfunctions corresponding
to different energies approach their distribution in thermal equilibrium. The averaging
here is performed over the set of the random wave functions. Physically, this procedure
corresponds to the averaging of the electron density n(r, T). The question arises on how
to numerically subject a wave function to the action of the operator ĥ = exp[−Ĥ/(2kBT)].
This can be done by recursively applying the Hamiltonian Ĥ to the wave function:

ĥ = e−Ĥ/2kBT ≈ (1 − αĤ)M , (24)

with a natural number [14] M ≈ 1/(2αkBT) and a small parameter α. A simple analysis
justifies the choice [14] α = 1.5/ϵmax, where ϵmax is the estimate of the upper bound-
ary of the energy distribution. In the case of a regular grid with the lattice constant a,
ϵmax ≃ h̄2/(ma2). Below, we describe how to realize this idea technically.

3.2.2. The RWF Algorithm

Let us consider the RWF algorithm on a spatial lattice with the volume ∆V per lattice
site. The value of the random wave function ψ on each lattice site is chosen independently
as a random number extracted from a normal distribution with the average value zero and
variance 1/∆V. The following transformation of the wave function ψ,

ψ → ψ − αĤψ (25)

is applied M times. Then, an estimate of the reduced electron density ñR(r, T) is

ñR(r, T) = 2 |ψ(r)|2 . (26)

The calculation of ñR(r, T) is carried out for a large number NR of realizations R of the
random wave function ψ(r). Then, the electron density n(r, T) is the arithmetic mean of
the functions ñR(r) obtained for different realizations R, multiplied by a chemical-potential-
related factor eµ/(kBT),

n(r, T) = eµ/(kBT)⟨ñR(r, T)⟩R . (27)
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The larger the number of realizations NR is, the more accurate the calculated electron
density n(r, T) will be.

In Figure 8, the reduced electron densities obtained via the RWF algorithm are com-
pared with the exact one calculated using the solution of the Schrödinger equation for
three dimensions. Evidently, the RWF algorithm with 1000 iterations accurately yields the
electron density.

Figure 8. Reduced electron density ñ(x, y, z, T) in a three-dimensional sample with white-noise
potential. Compared are the exact density (solid orange lines) with that obtained by the RWF
algorithm (dashed green lines for NR = 20 and dotted blue lines for NR = 1000). Profiles along the
x-axis with different values of coordinates y and z are shown (see inset). Sample size is 2 × 2 × 2
dimensionless units, the discretization grid parameter is a = 0.1, the temperature is T = T0. Periodic
boundary conditions apply. For clarity, profiles are multiplied by different coefficients, as indicated
in the plot. Reprinted with permission from [14]. Copyright (2023) by the American Physical Society.

4. Conclusions

In this work, we introduce four theoretical tools to get access to the space- and
temperature-dependent electron density n(r, T) in disordered media with a random poten-
tial V(r), avoiding the time-consuming numerical solution of the Schrödinger equation.

For the case of degenerate conditions controlled by Fermi statistics, the Hamiltonian
is converted into a matrix, which, being subjected to several multiplications with itself,
succeeded by inverting the outcome, yields the distribution n(r, T). The other possible tech-
nique for the case of Fermi statistics replaces the operation of matrix inversion by solving a
system of linear equations controlled by the matrix generated from the Hamiltonian.

For non-degenerate conditions with Boltzmann statistics, the universal low-pass
filter (ULF) approach and the random-wave-function (RWF) algorithm are suggested for
approximate calculations of n(r, T). Both methods require far less computational resources
than the complete solution of the Schrödinger equation.

The ULF approach employs the temperature-dependent effective potential W(r, T).
This technique is based on the Fast Fourier Transformation, which does not impose any
demands on computational resources, such as processor time and memory. Therefore, it can
be applied to mesoscopically large three-dimensional disordered systems. Being superior
to the widely used approximate methods, the RWF is computationally more costly than the
ULF approach when mesoscopically large three-dimensional systems at low temperatures
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are addressed. However, the accuracy of calculations based on the RWF algorithm can be
unlimitedly improved by increasing the number of the RWF realizations.
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Appendix A. Why Do Methods 1 and 2 Work

To understand why Method 1 works, let us apply to the Hamiltonian Ĥ a unitary
transformation that diagonalizes it. This transformation also diagonalizes all the matrices
that appear in Method 1. In accordance with Equations (9)–(11), the diagonal elements of
matrices Ĥ, Â0, ÂN and B̂ are

Haa = εa , (A1)

A0,aa =
εa − ε0

ε f − ε0
, (A2)

AN,aa =

(
εa − ε0

ε f − ε0

)2N

, (A3)

Baa =
1(

εa−ε0
ε f −ε0

)2N

+ 1
. (A4)

Let us consider the values of εa that are close to the Fermi energy ε f . These values
obey the relation

(
εa − ε0

ε f − ε0

)2N

=

(
εa − ε f

ε f − ε0
+ 1

)2N

≈ exp

(
2N εa − ε f

ε f − ε0

)
. (A5)

Taking Equation (8) into account, one can rewrite this estimate as

(
εa − ε0

ε f − ε0

)2N

≈ exp
(
±

εa − ε f

kBT

)
, (A6)

where sign “+” is chosen if ε0 < ε f , and sign “−” is chosen in the opposite case. Substitu-
tion of Equation (A6) into Equation (A4), with further comparison to expression (5) for the
Fermi function f (ε), provides the relations

Baa ≈ f (εa) if ε0 < ε f , (A7)
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1 − Baa ≈ f (εa) if ε0 > ε f , (A8)

which arise after the unitary transformation that diagonalizes the Hamiltonian. Upon this
transformation, Equation (A7) acquires the form

Bij ≈
L

∑
a=1

f (εa)ψa,iψ
∗
a,j if ε0 < ε f , (A9)

yielding for the diagonal matrix elements of the matrix B̂ the relation

Bii ≈
L

∑
a=1

f (εa)|ψa,i|2 if ε0 < ε f , (A10)

or, due to Equation (6),

Bii ≈
∆V
2

ni if ε0 < ε f . (A11)

This justifies Equation (12) of Method 1.
Similarly, from Equation (A8) one can get after applying the unitary transformation,

the relation
1 − Bii ≈

∆V
2

ni if ε0 > ε f , (A12)

justifying Equation (13) of Method 1.
Let us now turn to Method 2. For simplicity, we restrict consideration to the case

ε0 < ε f . The case of the opposite inequality can be treated in a similar way. According to
Equations (11) and (14), matrix X̂ in Equation (14) can be expressed as X̂ = B̂Û. Hence, the
sum in the right-hand side of Equation (15) can be rewritten as

NC

∑
a=1

XiaUia =
NC

∑
a=1

L

∑
j=1

BijUjaUia . (A13)

According to construction of the matrix Û (see Section 2.2), there is only one value of a
for a given i, such that Uia = 1. For this value of a, there are only a few values of j such that
Uja = 1, as illustrated in Figure A1. Let us denote the set of these values of j as Si. One can
then rewrite Equation (A13) as

Figure A1. Illustration of set Si for a given row index i of matrix Û. White and black squares represent
zeros and ones, respectively. Row i and column a of the matrix are highlighted in green.

NC

∑
a=1

XiaUia = ∑
j∈Si

Bij . (A14)

Note that i ∈ Si since Uia = 1. Therefore, the sum in the right-hand side of Equa-
tion (A14) contains the term Bii. Notably, all other terms Bij in this sum with j ̸= i are
negligible at sufficiently large NC. Indeed, one can see from Equation (A9) that the matrix
B̂ is close to the projector P̂ to the set of eigenstates with energies below the Fermi energy.
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Particularly, in the situation when the filled states are separated by a band gap from the
empty ones, the matrix elements Pij of this projector decrease with increasing distance
between nodes i and j, and become negligible at some distance. Hence, matrix elements Bij
in the right-hand side of Equation (A14) become negligible if nodes i and j are far away
from each other, i.e., if i ̸= j. The only non-negligible term is Bii, and therefore,

NC

∑
a=1

XiaUia ≈ Bii . (A15)

Substituting Bii from Equation (A11), one arrives at Equation (15) of Method 2.
Similarly, the combination of Equations (A12) and (A15) justifies Equation (16) of

Method 2 in the case ε0 > ε f .

Appendix B. Choice of Parameters ε0, N and NC

There are two restrictions on the choice of parameters ε0 and N and, hence, on
the temperature value T, for which Methods 1 and 2 are valid. First, the approximate
Equalities (A7) and (A8) must hold over the whole range of electron energies. Second, the
matrix (ÂN + Î) must not be ill-conditioned.

To consider the first restriction, let us define the function f̃ (ε) as

f̃ (ε) =
1(

ε−ε0
ε f −ε0

)2N

+ 1
if ε0 < ε f , (A16)

f̃ (ε) = 1 − 1(
ε−ε0

ε f −ε0

)2N

+ 1
if ε0 > ε f . (A17)

Methods 1 and 2 are based on the fact that this function is close to the Fermi function
f (ε) in the vicinity of the Fermi energy ε f (see Equations (A4), (A7) and (A8)). Let us
consider the behavior of the function f̃ (ε) in a broader range of energies ε.

As an example, Figure A2 shows f̃ (ε) along with the Fermi function f (ε) for N = 4
and two choices of the “reference energy” ε0: ε0 < ε f (upper panel) and ε0 > ε f (lower
panel). In both cases, there is a discrepancy between the functions f (ε) and f̃ (ε) below the
energy 2ε0 − ε f in the first case, and above the energy 2ε0 − ε f in the second case. Electron
energy levels must not fall into these areas of discrepancy, otherwise the contributions of
these levels into the electron density would not be accounted for correctly in Methods 1
and 2. Therefore, in the case of ε0 < ε f , the lowest electron energy εmin must be larger than
2ε0 − ε f . Similarly, in the case of ε0 > ε f , the highest electron energy εmax must be smaller
than 2ε0 − ε f . These conditions can be rewritten as restrictions to the “reference energy” ε0:

ε0 <
ε f + εmin

2
or ε0 >

ε f + εmax

2
. (A18)

Let us now consider the second restriction. The inversion of the matrix (ÂN + Î) in
Method 1, or solving a system of linear equations expressed by this matrix in Method 2, is
possible when this matrix is not ill-conditioned. This means that the condition number, a
ratio of the largest and the smallest eigenvalues of the matrix, is less than the maximal value
of the order of 1015 (a number that corresponds to the accuracy of representation of real
numbers in the computer memory). The minimal eigenvalue of matrix (ÂN + Î) is close to
unity, and corresponds to the energy levels close to ε0. The largest eigenvalue corresponds
to the energy level farthest from ε0, i. e., either to εmin or to εmax, and is approximately the

largest of the two values
[
(εmin − ε0)/(ε f − ε0)

]2N

and
[
(εmax − ε0)/(ε f − ε0)

]2N

. Hence,
the parameters ε0 and N have to obey the following restrictions:
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(
εmin − ε0

ε f − ε0

)2N

< 1015 and

(
εmax − ε0

ε f − ε0

)2N

< 1015 . (A19)

Figure A2. Comparison of the Fermi function f (ε) and function f̃ (ε). Above: the case of ε0 < ε f ,
below: the case of ε0 > ε f .

The choice of parameters ε0 and N is based on Equations (A18) and (A19). We consider
two different options: (i) the temperature T is given; (ii) the goal is to obtain the sharpest
possible boundary between filled and empty states.

In the first option, one should try the natural numbers in ascending order as values
of N. For each of such numbers N, one should find ε0 according to Equation (8) and
check whether conditions (A18) and (A19) are fulfilled. The smallest suitable value of N
is the best choice. Indeed, the smaller N is, the more sparse matrix

(
ÂN + Î

)
will be and,

consequently, the faster is matrix inversion in Method 1 or solution of linear equations in
Method 2 will be.

In the second option, the largest possible N is desirable, in order to minimize the
temperature T according to Equation (8). To achieve the largest N, one has to choose the
value ε0 that maximizes the denominator |ε f − ε0| in Equation (A19):

ε0 ≈
ε f + εmin

2
or ε0 ≈

ε f + εmax

2
, (A20)

and then one should choose the maximal number N that obeys the restrictions (A19),

N ≈ log2

 15

log10

∣∣∣ εmax−ε0
ε f −ε0

∣∣∣
 (A21)

or

N ≈ log2

 15

log10

∣∣∣ εmin−ε0
ε f −ε0

∣∣∣
 (A22)

for the first and the second choice of ε0 in Equation (A20), respectively.
Finally, let us consider the choice of parameter NC in Method 2. The accuracy of

Method 2 improves with rising NC. However, larger NC cause a longer computation
time due to the increase in the size of the matrix Û in Equation (14). Hence, there is a
trade-off between the accuracy and the efficiency. The best value of parameter NC can be
estimated as

NC ≃ (ℓ/a)d, (A23)
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where d is the dimensionality of the space, a is the distance between neighboring sites in
the lattice, and ℓ is a characteristic decay length of the matrix element Bij with increasing
distance between sites i and j.

A question might arise on whether the minimum NC value increases with increasing
disorder that forms tails in the density of states at the edges of the respective subbands.
Such an effect is unlikely, because the tail states are strongly localized. Therefore, their
contributions into projector P̂(r , r ′) would not enlarge its decay length ℓ.

The minimum value of NC is not directly related to the dimension of sub-bands.
Whereas the sub-band dimension is proportional to the sample volume, the value of NC is
determined by the characteristic decay length ℓ of the projector P̂(r , r ′) onto the subspace
of occupied states with increasing distance |r − r ′|. The relation between the minimum
value of NC and the length ℓ is given by Equation (A23). The idea behind using the
restricted value of NC for an arbitrarily large sample is that, due to the decay of projector
P̂(r , r ′) with the distance |r − r ′|, the matrix B̂ defined by Equation (11) consists mostly
of zeros. The number of non-negligible elements per each row of matrix B̂ is the minimal
value of NC, which provides the estimate of NC given in Equation (A23). The information
stored in matrix B̂ of size L × L (where L is the dimension of the sample) can therefore be
“packed” into a much smaller matrix X̂ = B̂Û of size L × NC. Hence, in order to obtain the
electron density that is stored in the diagonal elements Bii of matrix B̂, it is sufficient to
calculate the matrix X̂. This idea is rationalized in Appendix A; see the passage between
Equations (A14) and (A15).
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