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Abstract: We analyze the general relation between canonical and grand canonical ensembles in the
thermodynamic limit. We begin our discussion by deriving, with an alternative approach, some
standard results first obtained by Kac and coworkers in the late 1970s. Then, motivated by the Bose–
Einstein condensation (BEC) of trapped gases with a fixed number of atoms, which is well described
by the canonical ensemble and by the recent groundbreaking experimental realization of BEC with
photons in a dye-filled optical microcavity under genuine grand canonical conditions, we apply our
formalism to a system of non-interacting Bose particles confined in a two-dimensional harmonic
trap. We discuss in detail the mathematical origin of the inequivalence of ensembles observed in the
condensed phase, giving place to the so-called grand canonical catastrophe of density fluctuations.
We also provide explicit analytical expressions for the internal energy and specific heat and compare
them with available experimental data. For these quantities, we show the equivalence of ensembles
in the thermodynamic limit.

Keywords: statistical ensemble; Bose–Einstein condensation; photons

1. Introduction

Bose–Einstein condensation (BEC) was first experimentally observed with ultracold
and dilute atomic gases in 1995 by several groups [1–3]. Since then, the phenomenon has
been reproduced in a huge variety of systems [4], such as trapped alkali gases [5,6], rotating
systems [7], quantum magnets [8], and so on. For all these systems, the number of atoms is
conserved and the statistical properties are well described within the canonical ensemble
(CE). More recently, however, and quite surprisingly, BEC has also been realized with
effectively massive photons in a dye-filled optical cavity [9–15], where it is possible to work
in a regime with a number of photons that are conserved only on average. In this case, the
proper ensemble to describe the system features is the grand canonical ensemble (GCE).

The relation between CE and GCE is a general problem of statistical mechanics and
the two ensembles are usually equivalent in the thermodynamic limit. This is the case
when correlations are short-ranged and, due to the central limit theorem, fluctuations
in extensive quantities become negligible for a large system size. However, there exist
noteworthy exceptions, where computations performed in the two ensembles lead to
different results. This occurs, for instance, in long-range systems [16], where the issue of
ensemble inequivalence is very well studied. In the framework of systems of free bosons,
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this topic has been considered theoretically in several studies [17–21]. The remarkable
result is that, while, in the CE, density fluctuations vanish in the thermodynamic limit as
generally expected, in the GCE, they are macroscopic and remain finite upon decreasing
the temperature, leading to the so-called grand canonical catastrophe, with an explicit
negative connotation. However, the experimental realization of BEC in genuine grand
canonical conditions has confirmed the theoretical predictions obtained in the GCE, making
the issue related to the inequivalence of ensembles in this context a heated topic of debate.
In a previous paper [22], building on an analogy with the celebrated spherical model of a
ferromagnet introduced by Berlin and Kac [23], some of us have interpreted the physical
meaning of the grand canonical catastrophe predicted for a homogeneous ideal Bose gas as
a phenomenon of the condensation of fluctuations [24].

In this paper, before considering the experimentally relevant case of quantum gases
of non-interacting bosons confined in a two-dimensional harmonic trap, we first present
an accurate discussion of the relation between canonical and grand canonical ensembles
in the general framework of statistical mechanics. In particular, we bring to the fore
the mathematical aspects related to the (in-)equivalence between ensembles, focusing on
the behaviors arising in the thermodynamic limit. We re-derive some important results
obtained by Ziff et al. [17] for ideal gases, following an alternative approach, based on
the theory of singular perturbations and boundary layer problems [25]. We then apply
our formalism to the case of a free gas of bosons confined by a parabolic potential and
investigate several physical features. We find that, in the thermodynamic limit, in the
Bose-condensed phase, the density fluctuations and the spatial density–density correlation
function have a quite different behavior in the two ensembles. In contrast, other quantities,
such as the critical temperature, the condensate fraction, internal energy, and the specific
heat behave similarly. For the last two quantities, we provide explicit analytical expressions
that very well compare to the experimental data reported in [12].

This paper is structured as follows: in Section 2, we develop the general formalism
to connect CE to GCE with the kernel introduced in ref. [26]. In Section 3, we discuss the
problem of Bose–Einstein condensation for an ideal gas of massive bosons confined in a
two-dimensional harmonic potential. In Section 3, we compare the theoretical predictions
of the CE and GCE for several quantities. We discuss in particular the issue related to the
grand canonical catastrophe and its meaning. We also show that our theory reproduces the
experimental results of internal energy and specific heat of the photons in an optical cavity
quite well. Conclusions are drawn in Section 4. It is important to stress that, in our two-
dimensional problem, there is true BEC due to the presence of the harmonic confinement,
while there is no Berezinskii–Kosterlitz–Thouless phase transition because the bosons are
not interacting.

2. Relation between Canonical and Grand Canonical Ensembles

We start by discussing some standard results of statistical mechanics. This allows us
to introduce the general problem and to fix the notation that will be used throughout the
paper. A general relation between the CE and GCE can be established at different levels.
We start by considering the connection between the partition functions. We denote by
σ = (σ1, . . . , σN) the state of a generic system, and by H(σ) its Hamiltonian. The natural
variables of the CE are the temperature kBT = β−1, the volume V, and the number of
elements N. It is important to underline that, in the subsequent sections, which investigate
the bosonic system under harmonic confinement, the volume V will be an “effective
volume” related to the frequency of the harmonic potential. The probability density of a
configuration σ is

PC(σ|β, V, N) =
1

ZC(β, V, N)
e−βH(σ), (1)

where
ZC(β, V, N) = ∑

{σ}
e−βH(σ) (2)
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is the canonical partition function, where the sum extends over all possible system configurations.
In the GCE, the natural variables are the temperature kBT = β−1, the volume V, and

the fugacity z = eβµ, where µ is the chemical potential. The probability that the system is in
the configuration σ with N elements is, in the GCE,

PGC(σ, N|β, V, z) =
zNe−βHN(σ)

ZGC(β, V, z)
, (3)

where

ZGC(β, V, z) = ∑
N≥0

∑
{σ}

zN e−βHN(σ)

= ∑
N≥0

zN ZC(β, V, N) (4)

is the grand canonical partition function defined for ℜz < z0, where z0 is a model-
dependent parameter ensuring the convergence of the sum in Equation (4). We have
added the subscript N to the Hamiltonian to indicate that HN(σ) refers to a system of N
elements. From the above relation, one immediately has that the GCE partition function
can be obtained as a z−transform of the CE partition function. The Relation (4) can be
inverted as

ZC(N) =
1

2πi

∮
Γ

dz z−1−N ZGC(z), (5)

where Γ is a generic curve in the complex plane encircling the origin z = 0 (to simplify the
notation, we have only indicated the relevant variables).

2.1. The Kernel K(N|z)
The connection between the GCE and CE can also be established at the level of

probability density. Indeed, writing

PGC(σ, N|z) = zN ZC(N)

ZGC(z)
e−βH(σ)

ZC(N)
, (6)

and using (1), one obtains

PGC(σ, N|z) = PC(σ|N)K(N|z), (7)

where

K(N|z) = zN ZC(N)

ZGC(z)
(8)

is the kernel relating the two distributions, and represents the probability that the sys-
tem consists of N elements for fixed z. Its explicit form depends on the specific model.
Celebrated examples are discussed in [26] for the spherical model and in [17] for the
homogeneous ideal Bose gas. We will consider the trapped ideal Bose gas in the follow-
ing sections.

Finally, from the Relation (7), a connection between averages readily follows. Indeed,
we have

⟨ f (σ)⟩GC(z) = ∑
N
⟨ f (σ)⟩C(N)K(N|z), (9)

where we have denoted by ⟨. . .⟩GC and ⟨. . .⟩C averages in the GCE and CE, respectively,
and f (σ) is a generic function of the system configuration. The above equation can also
be interpreted as the generating function of ⟨ f (σ)⟩C, as first introduced in [17]; see their
Equation (2.34). As detailed in Appendix A, this relation can be formally inverted, yielding

⟨ f (σ)⟩C(N) =
1

2πi

∮
Γ

dz
z
⟨ f (σ)⟩GC(z)

K(N|z) . (10)
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2.2. Thermodynamic Limit

The discussion presented in the previous section can be simplified in the large N
limit, leading to some more explicit general results. The thermodynamic limit is obtained
by taking

N ≫ 1, V ≫ 1 but N/V = ρ = constant. (11)

Rewriting the GCE partition function (4) as

ZGC(z, V) = ∑
N

eN ln z+ln ZC(N,V), (12)

since ln ZC(N, V) = O(N) as N ≫ 1, the sum is dominated in the thermodynamic limit (11)
by the term with the largest value of the exponent:

ZGC(z, V) ∼ zN∗(z) ZC(N∗(z), V), (13)

where
N∗(z) = arg max

N
[N ln z + ln ZC(N, V)

]
. (14)

To evaluate N∗(z), we rewrite Equation (12) as

ZGC(z, V) = V ∑
N

∆ρ eV
[

ρ ln z+ 1
V ln ZC(ρ,V)

]
, (15)

where ∆ρ = 1/V ≪ 1 as V ≫ 1, and, in the thermodynamic limit, we have

ZGC(z, V) ∼ V
∫

dρ eVϕ(ρ), V ≫ 1 (16)

with
ϕ(ρ) = ρ ln z +

1
V

ln ZC(ρ, V). (17)

Note that, since ln ZC(ρ, V) = O(V) in the large volume limit, the second term on
the right-hand side becomes independent of V. We will drop O(1/V) corrections in the
following. The integral can then be evaluated using the Laplace method, expanding ϕ(ρ) as

ϕ(ρ) = ϕ(ρ∗) +
1
2

ϕ′′(ρ∗)(ρ − ρ∗)2 + O(ρ − ρ∗)3, (18)

where ρ∗ is the solution of the stationary point equation

ϕ′(ρ∗) = ln z +
1
V

∂

∂ρ∗
ln ZC(ρ

∗, V) = 0. (19)

Then, introducing σ−2
ϕ = −(∂/∂ρ∗)2 ln ZC(ρ

∗, V) > 0, we have

ZGC(z, V) ∼ V
√

2πσ2
ϕ eV

[
ρ∗ ln z+ 1

V ln ZC(ρ
∗ ,V)

]
, V ≫ 1. (20)

Writing N∗(z) = Vρ∗, and taking only the leading term, we recover Equation (13),
with N∗(z) given by the solution of

N∗(z) :
∂

∂N
ln ZC(N, V) = − ln z. (21)

Equation (13) implies that

ln ZGC(z, V) = ln ZC(N, V) + N ln z, (22)
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where N = N∗(z) is obtained from Equation (21). Equations (21) and (22) show that, in the
thermodynamic limit (11), the ln ZGC(z, V) is the Legendre transform of ln ZC(N, V) with
respect to N.

We now consider the kernel K(N|z). From the previous discussion, it follows that, in
the thermodynamic limit, for fixed z,

K(N|z) =
zN ZC(N, V)

ZGC(z, V)
=

eVϕ(ρ)

V
∫

dρ eVϕ(ρ)

∼ e
− 1

2σ2
ϕ
(ρ−ρ∗)2

V
√

2πσ2
ϕ

, (23)

where, in the second equality, we have used Equation (17), and hence, since σ2
ϕ = O(1/N),

K(N|z) ∼ ∆ρ δ(ρ − ρ∗) ∼ δKr(N − N∗(z)
)
, (24)

with N∗(z) the solution of (21) and δKr the Kronecker delta. This result is also discussed, for
instance, in [17]—see their Equation (2.63)—and shows the equivalence of the ensembles in
the thermodynamic limit. The same result can be obtained starting from the expression
of ZC(N) as a transform of ZGC(z), as reported in Appendix B of this paper. The above
discussion shows that, for a fixed z, with ℜz < z0, there exists a corresponding N∗(z) and
therefore there exists an equivalent canonical ensemble with N = N∗(z).

The general findings obtained so far break down in specific cases, where the application
of the Laplace method requires particular care. This can lead to different behaviors in
different ensembles, as described in the next section.

3. Ideal Bose Gas in a Harmonic Trap

As a specific system, we consider a two-dimensional (2D) harmonically trapped system
of non-interacting massive bosons. This model has been shown to provide a very good
description of a photon gas confined in a high-finesse dye-filled microcavity, studied in the
experiments [9–15], where Bose–Einstein condensation has been observed. In particular,
the microcavity was realized by two curved mirrors, where photons were continuously
absorbed and re-emitted by the dye medium, which is crucial for the equilibration. Due to
a cavity length of the same order as the photon wavelength, a frequency gap between the
longitudinal resonator modes was realized. Thus, the system consists of photons with a
fixed longitudinal mode number that are allowed to populate several transversally excited
cavity modes, making the photon gas effectively two-dimensional. The energy–momentum
relation is described by a quadratic term, with an effective mass, and a trapping parabolic
potential induced by the mirror curvature [10].

It has been shown that this experimental setup realizes bona fide grand canonical
conditions where theoretical predictions can be tested [13–15]. We are interested in the
different behaviors that can arise in different ensembles, in particular for what concerns the
fluctuations in the occupation number of the condensed phase. In the following, we will
apply the formalism introduced in the previous section to the system of trapped bosons in
2D. Our theoretical treatment differs from that presented in [9], where the photon number
statistics are derived from a rate equation model in the stationary regime. Our analysis
follows rather the analytical theory of Ziff et al. [17], developed for the case of a free ideal
gas. The main difference relies on the derivation of the Kac kernel in the region below the
critical temperature, which we present here for the case of a trapped Bose gas, following an
alternative approach based on the theory of singular perturbations.
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3.1. The Model

In second quantization, the Hamiltonian of the system can be written as [27]

Ĥ =
∫

d2r ψ̂†(r)

[
− h̄2

2meff
∇2 + U(r)

]
ψ̂(r) , (25)

where ψ̂(r) (ψ̂†(r)) is the bosonic field operator, which destroys (creates) a boson at the
position r = (x, y), meff is the effective mass of each photon, which depends on the mirror
separation and on the linear index of the refraction of the medium (see [10] for details), and

U(r) =
1
2

meffω
2(x2 + y2) (26)

is the 2D harmonic potential with trapping frequency ω. The local number density operator
is given by

ρ̂(r) = ψ̂†(r)ψ̂(r), (27)

while
N̂ =

∫
d2r ρ̂(r) (28)

is the total number operator.
The single-particle quantum mechanics in the 2D harmonic potential (26) are described

by the stationary Schrödinger equation[
− h̄2

2meff
∇2 + U(r)

]
ϕm(r) = ϵm ϕm(r) , (29)

where m = (mx, my) and the eigenvalues are given by ϵm = h̄ω(mx + my + 1) with
mx, my = 0, 1, 2, ... being the two natural quantum numbers, while ϕm(r) are the corre-
sponding orthonormal eigenfunctions. In particular, for the single-particle ground state,
we have ϵ0 = h̄ω and

ϕ0(r) =
1√
πlH

e
− x2+y2

2l2H , (30)

with lH =
√

h̄
meffω

the characteristic length of the harmonic confinement.

The field operator ψ̂(r) can be expanded in any orthonormal basis. Here, we choose
the basis of the eigenfunctions ϕm(r) of the single-particle problem of Equation (29), i.e.,

ψ̂(r) = ∑
m∈N2

âmϕm(r), (31)

ψ̂†(r) = ∑
m∈N2

â†
mϕ∗

m(r), (32)

where âm and â†
m are the ladder operators which, respectively, destroy and create a boson

in the single-particle quantum state ϕm(r). Inserting the Formulas (31) and (32) into
Equation (25), and using Equation (29) and the orthonormal property, we obtain

Ĥ = ∑
m∈N2

ϵm N̂m , (33)

where
N̂m = â†

m âm (34)

is the number operator of the single-particle quantum state. Similarly, we find

ρ̂(r) = ∑
m,m′∈N2

â†
m âm′ϕ∗

m(r)ϕm′(r), (35)
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and clearly
N̂ = ∑

m∈N2

N̂m (36)

is the total number operator of the bosons under investigation.
The Fock state |nm⟩ represents the occupation number quantum state describing

the number n of bosons that are in the single-particle quantum state |m⟩. It satisfies the
eigenvalue equation

N̂m|nm⟩ = nm|nm⟩ . (37)

We can also introduce a generic multi-mode Fock state [22,27] of our problem associ-
ated with the set of occupation numbers

n = {nm} = (n00, n01, n10, n11, ...), (38)

as
|n⟩ = ∏

m∈N2

|nm⟩ = |n00⟩ |n01⟩ |n10⟩ |n11⟩ ... (39)

This state is characterized by n00 photons in the single-particle state |00⟩, n01 photons
in the single-particle state |01⟩, n11 photons in the single-particle state |11⟩, et cetera.
These multi-mode Fock states can be used to obtain the following spectral resolution of
the identity

1̂ = ∑
n
|n⟩⟨n| . (40)

3.2. Grand Canonical Formulation

In order to describe the phenomenon of the Bose–Einstein condensation in this system,
we start from the GCE, where the density operator is

D̂ = e−β(Ĥ−µN̂), (41)

and the probability of the set of occupation numbers n is given by

PGC(n) =
1

ZGC
⟨n|D̂|n⟩ = 1

ZGC
e−β ∑m(ϵm−µ)nm , (42)

where
ZGC = Tr[e−β(Ĥ−µN̂)] = ∏

m

[
1 − e−(βλm+κ)

]−1
(43)

and

λm = ϵm − ϵ0, (44)

κ = β(ϵ0 − µ). (45)

3.2.1. Equation of State

The grand canonical thermal average of the total number operator reads

⟨N̂⟩GC =
Tr[N̂e−β(Ĥ−µN̂)]

ZGC
= − ∂

∂κ
ln ZGC, (46)

where
− ln ZGC = ∑

m
ln
[
1 − e−(βλm+κ)

]
, (47)

and
⟨N̂m⟩ = 1

e(βλm+κ) − 1
. (48)
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In order to proceed further, we now introduce the definition of the thermodynamic
limit for our system of bosons confined by a harmonic potential. Following [6], we consider
the conditions

N ≫ 1, ω ≪ 1, Nh̄2ω2 = ρ = finite, (49)

where we have included h̄ into the definition of the pseudo-density ρ for simplicity. To
keep the notation formally similar to the more familiar case of a system of particles in a box
of volume V, as considered in the previous sections, we now introduce a pseudo-volume
V = 1/(h̄ω)2 so that the condition of the thermodynamic limit can be also written as
N ≫ 1 and V ≫ 1, with ρ = N/V fixed.

Next, separating from the sum in Equation (47) the m = 0 term, we have

ln ZGC(β, s) = − ln
(
1 − s

)
− V

β2 J(s), (50)

where we have defined s = e−κ = ze−βϵ0 ≤ 1, which plays the role of a fugacity in a
rescaled reference frame with zero lowest energy. In the following, we will find it more
convenient to consider the thermodynamic quantities as a function of s rather than z. The
function J(s) ≡ −g3(s), where gn(s) denotes the Bose functions [17], represents the sum
over the excited states and is given by

J(s) =
∫ +∞

0
dy y ln

(
1 − s e−y). (51)

Using (50), we have

⟨N̂⟩GC = s
∂

∂s
ln ZGC(β, s) =

s
1 − s

+ N1(β, s), (52)

where
N1(β, s) =

V
β2 I(s), (53)

with
I(s)≡ g2(s) = −s

∂

∂s
J(s) =

∫ +∞

0
dy

y
s−1 ey − 1

. (54)

3.2.2. Bose-Einstein Phase Transition

The standard argument leading to the phenomenon of condensation is as follows:
since I′(s) > 0, the function I(s) is a monotonous increasing function of s, so that, for any
β, one has

N1(β, s) ≤ Nc(β) =
V
β2 I(1). (55)

If I(1) is finite, as in our case I(1) = π2/6, Nc(β) is a finite decreasing function of
β so that, for any fixed integer number N, there exists a finite βc(N), the inverse critical
temperature, such that

βc(N) : Nc(βc) = N. (56)

To address the issue of the ensemble (in)equivalence in the condensed phase, we
consider the condition

⟨N̂⟩GC = N, (57)

where N now plays the role of a control parameter in the corresponding CE (see also the
derivation reported in Appendix B leading to Equation (A18)). Then, for N > Nc(β),
or β > βc(N), the contribution from the lowest energy level in Equation (52) cannot be
neglected. In terms of the pseudo-density ρ, the conditions (55) and (56) become

ρ1(β, s) ≤ ρc(β) =
1
β2 I(1), (58)
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and
βc(ρ) : ρc(βc) = ρ. (59)

Then, from the condition (57), one has

ρ =
1
V

s
1 − s

+ ρ1(β, s), (60)

where ρ1(β, s) = N1(β, V, s)/V. We stress that, in Equation (59), the density ρ is an arbitrary
parameter, as N in Equation (56). In Equation (60), the density ρ on the left-hand side refers
to the canonical ensemble (β, V, N) while the quantities on the right-hand side refer to the
grand canonical ensemble (β, V, s).

From this structure, it is clear that, in order to study the thermodynamic limit correctly,
we must distinguish two regions: the first, where 1 − s = O(1) as V ≫ 1, which is
appropriate for β < βc, and the second, where 1 − s = O(1/V) as V ≫ 1, describing the
case β > βc. In singular perturbation theory, this case represents an instance of a boundary
layer problem with a boundary layer at s = 1. The regions are called, respectively, the outer
and inner region in boundary layer theory. We note that the results discussed in Section 2.2
hold for β < βc above the critical temperature.

3.3. The Kac Kernel

We now study the behavior of the Kac kernel, which represents the mathematical
transformation connecting corresponding quantities in the two ensembles. This allows us
to address the issue related to the ensemble equivalence, in the case β > βc. The explicit
form of the kernel was first derived in [17] in the case of a uniform system. Here, we
obtain the same results for the case of the trapped gas following an alternative approach.
In particular, we have to consider what happens in the region where 1 − s = O(1/V) as
V ≫ 1, and this can be achieved by performing a convenient change in variable prior to
the thermodynamic limit. To be specific, let us rewrite K(N|z) in the following form (see
Equation (A6) in the Appendix A for details):

K(N′|z) = 1
2πi

∮
Γ

dξ ξ−1−N′ ZGC(β, ξz)
ZGC(β, z)

. (61)

We use N′ to emphasize that it is a running argument unrelated to z. The fugacity
z is related to ⟨N̂⟩GC imposing the condition (60) but substituting ρ with ρ̄ = ⟨N̂⟩GC/V,
namely

ρ̄ =
1
V

s
1 − s

+ ρ1(β, s). (62)

We introduce the variable η through the relation s = ze−βϵ0 = 1 − η/V, where
η = O(1) as V ≫ 1. A similar change in variable must be carried out for ξ. We have seen
in Section 2.2 that, in the limit of large N, the integral is dominated by a path parallel to the
imaginary axis. This remains true also for β > βc because (∂/∂ξ)2 ln ZGC(β, ξz) > 0. Thus,
we write ξ = 1 + iv/V, where v = O(1) as V ≫ 1. Using (50) and

ξs = (1 + iv/V)(1 − η/V) ∼ 1 − (η − iv)/V + O(1/V2), (63)

we have

ln
ZGC(β, ξz)
ZGC(β, z)

∼ − ln
(
(η − iv)/V

)
+ ln

(
η/V

)
− V

β2

[
J(1 − (η − iv)/V)− J(1 − η/V)

]
∼ − ln

(
1 − iv/η)− J′(1)

iv
β2 + O(1/V)

∼ − ln
(
1 − iv/η) + iρcv + O(1/V),

(64)
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because, from Equations (54) and (58), it follows that J′(1)/β2 = −ρc. Using now

ξ−N′
= e−N′ ln(1+iv/V) ∼ e−iρ′v, (65)

where ρ′ = N′/V, we have

K(N′|z) ∼ 1
2πV

∫ ∞

−∞
dv

e−i(ρ′−ρc)v

1 − iv/η

∼ − η

2πiV

∫ ∞

−∞
dv

e−i(ρ′−ρc)v

v + iη

∼ ∆ρ′ η e−(ρ′−ρc) η θ(ρ′ − ρc),

(66)

with ∆ρ′ = 1/V. This expression can be written in terms of ρ = N/V, expressing
η = V(1 − ze−βϵ0) and using Equation (60). Indeed, substituting s = 1 − η/V into Equa-
tion (60), we obtain

ρ =
1 − η/V

η
+ ρ1(1 − η/V, β) ∼ η−1 + ρc(β) + O(1/V), (67)

and replacing η−1 = ρ − ρc in Equation (66), we finally have the explicit form of the kernel:

K(ρ′|ρ) ≡ K(N′|z)/∆ρ′ =
e−(ρ′−ρc)/(ρ−ρc)

ρ − ρc
θ(ρ′ − ρc), (68)

valid for β > βc. This result was obtained by Ziff et al. for the free ideal Bose gas in [17],
and the kernel K(ρ′|ρ) is known as Kac density. In Appendix C, we give an alternative
derivation of Equations (66) and (68) that makes use of the Laplace method.

The explicit expression of the kernel can be used to connect averages in the CE and
GCE expressed in terms of ρ

⟨ f ⟩GC(ρ) =
∫ ∞

0
dρ′ K(ρ′|ρ) ⟨ f ⟩C(ρ

′). (69)

In particular, it is easy to show that
∫

dρ′ K(ρ′|ρ) = 1, and that the following rela-
tion holds:

(ρ − ρc)
k =

∫ ∞

0
dρ′ K(ρ′|ρ) (ρ

′ − ρc)k

k!
. (70)

The above result will play an important role in the study of the occupation number
fluctuations in the canonical and grand canonical ensembles.

Finally, we observe that, when expressed in the variable z, the kernel takes the form

K(N′|z)/∆ρ′ = V(1 − s) e−V(1−s)(ρ′−ρc), (71)

and therefore, in the limit V ≫ 1 with 1 − s = O(1), i.e., for η ≫ 1, it reduces to

K(N′|z) = ∆ρ′δ(ρ′ − ρc) = δKr(N′ − Nc), (72)

where δKr is the Kronecker delta. Thus, as expected, in the limit β → β−
c , we recover the

expression (24) valid for β < βc, i.e., in the non-condensed phase.

3.4. Density Fluctuations and Grand Canonical Catastrophe

As mentioned before, the explicit form of the Kac kernel allows us to connect averages
in the GCE with those in the CE. Since the analytical expression of the Kac kernel is the
same as in the case of the uniform system, the relations between density fluctuations in the
CE and in the GCE coincide with those derived in [17]. We report here the formulae to keep
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the paper self-contained. In particular, the average number of bosons in the condensed
phase in the GCE is given by Equation (48) and therefore one has, for large V,

⟨N̂0⟩GC =
1

s−1 − 1
∼ V(ρ − ρc), (73)

where we have used Equation (67), and the dependence on T is through ρc. From the
Relations (69) and (70), we then obtain that the averages of N̂0 are equal in the two ensembles

⟨N̂0⟩C = ⟨N̂0⟩GC. (74)

On the contrary, considering the mean square occupation number, in the GCE, one has

⟨N̂2
0 ⟩GC = ⟨N̂0⟩GC + 2⟨N̂0⟩2

GC = V(ρ − ρc) + 2V2(ρ − ρc)
2 (75)

and therefore
⟨N̂2

0 ⟩GC − ⟨N̂0⟩2
GC = V(ρ − ρc) + V2(ρ − ρc)

2. (76)

Exploiting again the Relation (70), in the CE, one obtains

⟨N̂2
0 ⟩C = ⟨N̂0⟩C + ⟨N̂0⟩2

C = V(ρ − ρc) + V2(ρ − ρc)
2, (77)

and
⟨N̂2

0 ⟩C − ⟨N̂0⟩2
C = V(ρ − ρc). (78)

In particular, for the second-order correlation function (at zero time delay; see also
Section 3.4), we have

g(2)(0) ≡
⟨N̂2

0 ⟩ − ⟨N̂0⟩
⟨N̂0⟩2

=

{
1 in the CE
2 in the GCE,

(79)

in agreement with what was observed in experiments [28]. Indeed, in Ref. [28] (see
Figure 2b), experimental results are reported showing that g(2)(0) = 2, even in the low-
temperature phase, if a larger reservoir size is considered, which corresponds to the
realization of a genuine grand canonical conditions. On the other hand, when canonical
conditions are realized, the same figure shows that fluctuations are damped, and g(2)(0) = 1
is observed.

Moreover, for the intensive density fluctuations, one has

lim
V→∞

⟨N̂2
0 ⟩C − ⟨N̂0⟩2

C
V2 = 0 in the CE, (80)

while

lim
V→∞

⟨N̂2
0 ⟩GC − ⟨N̂0⟩2

GC
V2 = (ρ − ρc)

2 in the GCE. (81)

The latter result is known as a grand canonical catastrophe [17] because of the counter-
intuitive phenomenon of macroscopic fluctuations, non-vanishing in the low temperature
limit T → 0. This finding shows the inequivalence of ensembles at the level of fluctuations
and has been interpreted as an example where the GCE is not appropriate for computing av-
erages [17–21]. However, in the experimental setup with photons in the microcavity, where
GCE conditions are realized, macroscopic fluctuations have been actually observed [14],
making the prediction of the GCE physically consistent [24].

The mathematical origin of such huge fluctuations can be traced back to the specific
form of the Kac kernel connecting the CE and GCE, as detailed in the previous subsection.

Spatial Density–Density Correlation Function of the Condensate

We now discuss another quantity that is affected by the grand canonical catastrophe:
the spatial density–density correlation function of the Bose–Einstein condensate.
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We start by noting that, for both the CE and GCE, the one-body correlation function
⟨ψ̂+(r)ψ̂(r′)⟩ can be written in terms of ladder operators in this way:

⟨ψ̂+(r)ψ̂(r′)⟩ = ∑
m,m′

⟨â+m âm′⟩ϕ∗
m(r)ϕm′(r′)

= ⟨â+0 â0⟩ϕ∗
0(r)ϕ0(r′) + ...

= ⟨N̂0⟩ϕ∗
0(r)ϕ0(r′) + ... , (82)

where the dots represent the contributions of the excited states.
Working at zero temperature, where the effect due to the excited states goes to zero,

we find that
⟨ψ̂+(r)ψ̂(r′)⟩ = ⟨N̂0⟩ϕ∗

0(r)ϕ0(r′) . (83)

Previously, we have seen that, at zero temperature,

⟨N̂0⟩ = N (84)

for both the CE and GCE. Thus,

⟨ψ̂+(r)ψ̂(r′)⟩ = N ϕ∗
0(r)ϕ0(r′) . (85)

Recalling Equation (30), namely ϕ0(r) = e−|r|2/(2l2
H)/(π1/2lH) with lH =

√
h̄/(me f f ω),

we eventually obtain

⟨ψ̂+(r)ψ̂(r′)⟩ = N
πl2

H
e−(|r|2+|r′ |2)/(2l2

H) . (86)

Setting r′ = 0, the previous expression becomes

⟨ψ̂+(r)ψ̂(0)⟩ = N
πl2

H
e−|r|2/(2l2

H), (87)

while, setting r′ = r, we obtain the result

⟨ψ̂+(r)ψ̂(r)⟩ = ⟨ρ̂(r)⟩ = N
πl2

H
e−|r|2/l2

H . (88)

We then study the density–density correlation function ⟨ρ̂(r)ρ̂(r′)⟩, which, for both
the CE and GCE, can be written in terms of ladder operators as follows:

⟨ρ̂(r)ρ̂(r′)⟩ = ∑
m,m′ ,m′′ ,m′′′

⟨â+m âm′ â+m′′ âm′′′⟩

× ϕ∗
m(r)ϕm′(r)ϕ∗

m′′(r′)ϕm′′′(r′)

= ⟨â+0 â0 â+0 â0⟩|ϕ0(r)|2|ϕ0(r′)|2 + ...

= ⟨N̂2
0 ⟩|ϕ0(r)|2|ϕ0(r′)|2 + ... , (89)

where the dots stand for the contributions of the excited states. Similarly, we have

⟨ρ̂(r)⟩⟨ρ̂(r′)⟩ = ∑
m,m′ ,m′′ ,m′′′

⟨â+m âm′⟩⟨â+m′′ âm′′′⟩

× ϕ∗
m(r)ϕm′(r)ϕ∗

m′′(r′)ϕm′′′(r′)

= ⟨â+0 â0⟩⟨â+0 â0⟩|ϕ0(r)|2|ϕ0(r′)|2 + ...

= ⟨N̂0⟩2|ϕ0(r)|2|ϕ0(r′)|2 + ... . (90)
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Thus, considering the zero temperature limit for simplicity and neglecting the effect
due to the excited states, we obtain

⟨ρ̂(r)ρ̂(r′)⟩ − ⟨ρ̂(r)⟩⟨ρ̂(r′)⟩ =
(
⟨N̂2

0 ⟩ − ⟨N̂0⟩2
)

× |ϕ0(r)|2|ϕ0(r′)|2 . (91)

By using our previous results of Equations (80) and (81), which crucially depend on
the statistical ensemble, at zero temperature, we then have

⟨N̂2
0 ⟩ − ⟨N̂0⟩2

V2 =

{
0 in the CE
ρ2 in the GCE.

(92)

As a consequence, for the density–density correlation function per particle, we fi-
nally obtain

⟨ρ̂(r)ρ̂(r′)⟩ − ⟨ρ̂(r)⟩⟨ρ̂(r′)⟩
N

= 0 (93)

in the CE, and
⟨ρ̂(r)ρ̂(r′)⟩ − ⟨ρ̂(r)⟩⟨ρ̂(r′)⟩

N
=

N
π2l4

H
e−(|r|2+|r′ |2)/l2

H , (94)

in the GCE. Equation (94) is not translationally invariant, as expected, due to the presence
of the confining harmonic potential. Moreover, setting r′ = 0, we obtain

⟨ρ̂(r)ρ̂(0)⟩ − ⟨ρ̂(r)⟩⟨ρ̂(0)⟩
N

=


0 in the CE

N
π2l4

H
e−|r|2/l2

H in the GCE,
(95)

showing a decay to zero for a large |r| with a correlation length lH , representing the size
of the bosonic cloud, that diverges in the thermodynamic limit as ω → 0. Note that the
prefactor in the above expression remains finite in the thermodynamic limit.

3.5. Internal Energy and Specific Heat

To complete the description of the thermodynamic properties of the system, we com-
pute the internal energy and the specific heat in the normal and condensed phases. These
quantities have been measured in experiments in [12], where a comparison with a numer-
ical evaluation of the Bose–Einstein distribution function is reported. Here, we provide
close analytical expressions for average energy and specific heat, valid both above and
below the critical temperature (see also ref. [29] for a similar computation in a 3D system).

3.5.1. Grand Canonical Ensemble

The (average) internal energy of the system in the GCE is given by

EGC(β, z) = − ∂

∂β

∣∣∣
z

ln ZGC(β, z)

=
∂

∂s

∣∣∣
β

[
ln
(
1 − s

)
+

1
(βh̄ω)2 J(s)

]
∂

∂β

∣∣∣
z
s

+
∂

∂β

∣∣∣
s

1
(βh̄ω)2 J(s)

= N(β, z) ϵ0 − 2
β−3

(h̄ω)2 J(s),

(96)

where we have used
∂

∂β

∣∣∣
z
s = −ϵ0 s, (97)
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and

− s
∂

∂s

∣∣∣
β

[
ln
(
1 − s

)
+

1
(βh̄ω)2 J(s)

]
=

= z
∂

∂z

∣∣∣
β

ln ZGC(β, z) = N(β, z) = ⟨N̂⟩GC. (98)

Note that zero-point energy goes to zero in the thermodynamic limit. Here, we keep
this term because we take into account first-order corrections.

Evaluating the derivative, we have the explicit form

N(β, z) =
s

1 − s
+

1
(βh̄ω)2 I(s). (99)

In the above expressions, J(s) and I(s) are defined in Equations (51) and (54), respec-
tively. Now using the condition ⟨N̂⟩GC = N, we have

EGC(β, z) = N ϵ0 − 2
β−3

(h̄ω)2 J(s). (100)

When β > βc, i.e., T < Tc, the variable s saturates to s = 1, so we have

EGC(β, N) =


Nh̄ω + 2

ζ(3)
(h̄ω)2 β−3, β > βc

Nh̄ω − 2
J(s)
(h̄ω)2 β−3, β < βc

(101)

where we have used J(1) = −ζ(3). In the regime β < βc, the variable s ≡ s(β, N) is
obtained from

1
(βh̄ω)2 I(s) = N, ⇒ I(s) = N(βh̄ω)2. (102)

Using

1
h̄ω

=

√
N

I(1)
βc =

√
6N
π2 βc, (103)

we can express (101) in terms of N and Tc. A simple calculation leads to

EGC

NTc
=



π√
6

[ 1
N1/2 +

12
√

6
π3 ζ(3)

(
T/Tc

)3
]
, T < Tc

π√
6

[ 1
N1/2 − 12

√
6

π3 J(s)
(
T/Tc

)3
]
, T > Tc

(104)

where s = s(T, Tc) for T > Tc is the solution of I(s) = (π2/6)(Tc/T)2.
Having the expression of the (average) internal energy, we can compute the specific

heat. From (101), we have, for β > βc,

∂

∂β

∣∣∣
N

EGC(β, N) = −6
ζ(3)
(h̄ω)2 β−4 (105)

which, using (∂/∂T) = −β2(∂/∂β), leads to

∂

∂T

∣∣∣
N

EGC(T, N) = 6
ζ(3)
(h̄ω)2 T2 = 6N

ζ(3)
I(1)

(
T
Tc

)2
, (106)
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Then,

c(T) =
1
N

∂

∂T

∣∣∣
N

EGC(T, N) = 6
ζ(3)
I(1)

(
T
Tc

)2
(107)

or

c(T) =
36 ζ(3)

π2

(
T
Tc

)2
, T < Tc. (108)

This analytical result is in agreement with the very recent finding of ref. [30].
For temperature T>Tc, the calculation is a bit more involved. Again from (101), we

have, for β < βc,

∂

∂β

∣∣∣
N

EGC(β, N) = 6
J(s)
(h̄ω)2 β−4 − 2

J′(s)
(h̄ω)2 β−3 ∂

∂β

∣∣∣
N

s

= 6
J(s)
(h̄ω)2 β−4 + 2

I(s)
s(h̄ω)2 β−3 ∂

∂β

∣∣∣
N

s
(109)

or, using (102),
∂

∂β

∣∣∣
N

EGC(β, N) = 6
J(s)
(h̄ω)2 β−4 + 2

N
s

β−1 ∂

∂β

∣∣∣
N

s. (110)

Now from (102), for N = const, we have

−2
I(s)
(h̄ω)2 β−3 dβ +

I′(s)
(βh̄ω)2 ds = 0, (111)

and then
∂

∂β

∣∣∣
N

s = 2
I(s)
I′(s)

β−1, (112)

with

I′(s) =
d
ds

∫ +∞

0+
dy

y
s−1ey − 1

=
∫ +∞

0+
dy

y e−y

(1 − s e−y)2

= −1
s

ln(1 − s).
(113)

Then,
∂

∂β

∣∣∣
N

EGC(β, N) = 6
J(s)
(h̄ω)2 β−4 − 4N

I(s)
ln(1 − s)

β−2, (114)

which, with (102), gives

∂

∂T

∣∣∣
N

EGC(T, N) = −6
J(s)
(h̄ω)2 β−2 + 4N2 (βh̄ω)2

ln(1 − s)
, T > Tc. (115)

so that, for T > Tc,

c(T) =
1
N

∂

∂T

∣∣∣
N

EGC(T, N) = −6
J(s)

N(βh̄ω)2 + 4N
(βh̄ω)2

ln(1 − s)
. (116)

If we finally express h̄ω in terms of N and Tc, i.e., using Equation (103), we obtain

c(T) = −6
J(s)
I(1)

(
T
Tc

)2
+ 4

I(1)
ln(1 − s)

(
Tc

T

)2
, T > Tc, (117)

where s = s(T, N) is again the solution of (102). Note that our Equation (117) also appears
in ref. [30].

In Figures 1 and 2, we plot the rescaled average energy E/(NTc) and the specific
heat c as a function of T/Tc, respectively, and compare the analytical predictions with
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experimental data taken from ref. [12]. There is a remarkable good agreement between
our analytical results and the experimental ones. Notice that in Ref. [12] are also reported
theoretical curves, obtained with a numerical procedure, that are very similar to the solid
curves of our Figures 1 and 2. The two figures strongly suggest that these experiments with
photons are in a regime where the thermodynamic limit is practically achieved.

Figure 1. Internal energy E as a function of temperature T. Here, Tc is the critical temperature
of Bose–Einstein condensation. Solid line: our analytical theory in the grand canonical ensemble,
Equation (104) in the limit N → ∞. Filled circles: experimental data of ref. [12].

Figure 2. Specific heat c as a function of temperature. Tc is the critical temperature. Solid line: our
analytical results, Equations (108) and (117) with N → ∞, in the grand canonical ensemble. Filled
circles: experimental data of ref. [12].

3.5.2. Canonical Ensemble

The same expression of the average internal energy, and therefore of the specific heat,
also hold in the CE. Let us prove it.

From Equation (9), we know that

⟨ f ⟩GC(s) = ∑
N′≥0

⟨ f ⟩C(N′)K(N′|s)

= ∑
N′≥0

∆ρ′ ⟨ f ⟩C(N′)
K(N′|s)

∆ρ′
, (118)
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where ∆ρ′ = 1/V; thus, in the thermodynamic limit, we have

⟨ f ⟩GC(ρ) =
∫ +∞

0
dρ′ ⟨ f ⟩C(ρ

′)K(ρ′|ρ), (119)

where s = s(ρ) = 1 − η/V with η−1 = ρ − ρc, and

K(ρ′|ρ) ≡ K(N′|s)/∆ρ′ =
e−(ρ′−ρc)/(ρ−ρc)

ρ − ρc
θ(ρ′ − ρc). (120)

From Equation (104), neglecting the first term irrelevant for N → ∞, we have

E
NTc

= − 2
I(1)

(
T
Tc

)3
J
(
s(ρ)

)
. (121)

Then, substituting

J(1 − η/V) ∼ J(1)− J′(1) η/V + O(1/V2)

∼ J(1) + I(1) η/V. + O(1/V2), V → ∞,
(122)

it follows that, in the grand canonical ensemble,

EGC

NTc
∼ 12

π2 ζ(3)
(

T
Tc

)3
− 2

(
T
Tc

)3 1
V(ρ − ρc)

+ O(1/V2), (123)

where we have used J(1) = −ζ(3) and I(1) = π2/6.
Using this expression in Equation (119) with the explicit form of the kernel, we obtain

∫ +∞

ρc
dρ′

e−(ρ′−ρc)/(ρ−ρc)

ρ − ρc

EC(ρ
′)

NTc

∼ E0

NTc
− 2

(
T
Tc

)3 1
V(ρ − ρc)

+ O(1/V2)

(124)

where
E0

NTc
=

12
π2 ζ(3)

(
T
Tc

)3
. (125)

Now, using the normalization of K(ρ′|ρ),

∫ +∞

ρc
dρ′

e−(ρ′−ρc)/(ρ−ρc)

ρ − ρc
= 1, (126)

it follows that
EC(ρ

′)

NTc
∼ E0

NTc
− 2

(
T
Tc

)3 1
V

δ(ρ′ − ρc) + O(1/V2), (127)

as one can check by substituting back the above expression into Equation (124). Recalling
that 1/V = ∆ρ′ and using the identity

∆ρ′δ(ρ′ − ρc) = δKr(N′ − Nc), (128)

we have
EC(N′)

NTc
∼ E0

NTc
− 2

(
T
Tc

)3
V δKr(N′ − Nc) + O(1/V2). (129)
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The number N in the grand canonical ensemble and N′ in the canonical ensemble are
related by the requirement N ≡ ⟨N̂⟩GC = N′; hence, the Kronecker delta vanishes and we
conclude that

EC(N, T)
NTc

=
EGC(N, T)

NTc
=

12
π2 ζ(3)

(
T
Tc

)3
, T < Tc. (130)

in the thermodynamic limit.

4. Conclusions

We have discussed a general formalism to derive physical quantities in the canoni-
cal ensemble from the corresponding ones in the grand canonical ensemble, where the
calculations are usually much simpler. Then, motivated by recent experiments with pho-
tons, we have applied this formalism to the study of an ideal Bose gas of particles under
harmonic confinement in two spatial dimensions. Quite remarkably, also working in the
thermodynamic limit, density fluctuations and spatial density–density correlations of the
Bose–Einstein condensate display a strongly different behavior in the two ensembles. Simi-
lar to previous predictions for the uniform Bose gas [17], for the non-uniform condensate,
we find that the density–density correlation is zero in the canonical ensemble and non-zero
in the grand canonical ensemble. This result, which is known as the grand canonical
catastrophe because of the counter-intuitive phenomenon of non-vanishing macroscopic
fluctuations in the low temperature limit T → 0, turns out to be a real phenomenon as it
has in fact been observed in experiments with photons in the microcavity [14]. Our study
sheds new light on the underlying mathematical and physical mechanisms that induce
this intriguing behavior. In the last part of this paper, we have also obtained analytical
formulas for the internal energy and the specific heat both in the condensed phase and
in the normal phase. Similar results, obtained with a fully numerical procedure, can be
found in ref. [12]. For these quantities, we have provided explicit analytical expressions,
including also finite-size effects. The comparison with the experimental data of ref. [12]
shows a good agreement between our analytical theory and the empirical results.
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Appendix A

By substituting the expression (8), we obtain

⟨ f ⟩GC(z) = ∑
N
⟨ f ⟩C(N)

zN ZC(N)

ZGC(z)
,
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and hence
⟨ f ⟩GC(z) ZGC(z) = ∑

N
zN ZC(N) ⟨ f ⟩C(N).

Inverting this relation gives

⟨ f ⟩C(N) ZC(N) =
1

2πi

∮
Γ

dz z−1−N⟨ f ⟩GC(z) ZGC(z)

and hence

⟨ f ⟩C(N) =
1

2πi

∮
Γ

dz
z
⟨ f ⟩GC(z)

z−N ZGC(z)
ZC(N)

. (A1)

Recalling the expression of K(N|z), we finally obtain the following relation

⟨ f (σ)⟩C(N) =
1

2πi

∮
Γ

dz
z
⟨ f (σ)⟩GC(z)

K(N|z) (A2)

between averages in the GCE and averages in the CE.
From the expression (8), which involves both ZC(N) and ZGC(z), it seems that, in

order to evaluate K(N|z), the partition functions in both ensembles should be explicitly
known. However, an alternative approach would be to introduce the generating function

K̂(ξ|z) = ∑
N

ξN K(N|z) = 1
ZGC(z)

∑
N

ξN zN ZC(N)

=
ZGC(ξz)
ZGC(z)

, (A3)

so that

K(N|z) =
1

2πi

∮
Γ

dξ ξ−1−NK̂(ξ|z)

=
1

2πi

∮
Γ

dξ ξ−1−N ZGC(ξz)
ZGC(z)

(A4)

is expressed in terms of ZGC(z) only. This expression can also be obtained by substituting
the expression (5) into the definition (8):

K(N|z) = zN

ZGC(z)
1

2πi

∮
Γ

ds s−1−N ZGC(s), (A5)

and setting s = ξz

K(N|z) = 1
ZGC(z)

1
2πi

∮
Γ

dξ ξ−1−N ZGC(ξz). (A6)

Finally, let us mention that the same result can also be obtained by introducing the
discrete Fourier transform

K(ξ|z) = ∑
N

eiNξ/V K(N|z) = ZGC(zeiξ/V)

ZGC(z)
, (A7)

or, in terms of the chemical potential µ,

K(ξ|µ) = ZGC(µ + iTξ/V)

ZGC(z)
. (A8)

In this case, it should be noted that

K(N|z) =
∫ +∞

−∞

dξ

2π
e−iξx K(ξ|z), (A9)
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with x = N/V, is not the inverse of (A7) because∫ +∞

−∞

dξ

2π
e−iξx = δ(x), (A10)

where δ(x) is the Dirac delta function. If, however, the sum in (A7) is dominated by N ≫ 1,
as in the thermodynamic limit, then x = N/V can be considered a “continuous” variable
and the sum can be replaced by an integral so that (A9) becomes meaningful.

Appendix B

Consider

ZC(N) =
1

2πi

∮
Γ

dzz−1−N ZGC(z) =
1

2πi

∮
Γ

dz
z

eNψ(z), (A11)

with
ψ(z) = − ln z +

1
N

ln ZGC(z). (A12)

In the limit N ≫ 1, the integral is dominated by the neighborhood of the point z∗:

ψ′(z∗) = − 1
z∗

+
1
N

∂

∂z∗
ln ZGC(z∗) = 0, (A13)

which leads to the saddle point equation:

z∗
∂

∂z∗
ln ZGC(z∗) = N. (A14)

Since ZC(N) is real, the saddle point lies on the real axis, ℑz∗ = 0. A simple calculation
then shows that

ψ′′(z∗) =
1

z∗2 +
1
N

∂2

∂z2 ln ZGC(z)
∣∣∣
z=z∗

=
1

z∗2N
z∗

∂

∂z∗

[
z∗

∂

∂z∗
ln ZGC(z∗)

]
=

1
z∗2N

[
⟨N2⟩GC(z∗)− ⟨N⟩GC(z∗)2] > 0. (A15)

Then, by expanding ψ(z) about z∗ up to second order, as in Equation (18), and
integrating along the steepest descent path parallel to the imaginary axis z = z∗ + iy,
−∞ < y < +∞, we obtain

ZC(N) ∼

√
σ2

ψ

2π

eNψ(z∗)

z∗
=

√
σ2

ψ

2π
z∗−1−N ZGC(z∗), N ≫ 1, (A16)

where z∗ = z(N) is the solution of (A14) and we have defined σ−2
ψ = Nψ′′(z∗) > 0.

Dropping sub-leading terms as N ≫ 1, the expression (A16) implies that

ln ZC(N) = ln ZGC(z)− N ln z, N ≫ 1. (A17)

with z = z∗ = z(N) the solution of (A14).
Equations (A14) and (A17) imply that, in the thermodynamic limit N ≫ 1, ln ZC(N) is

the Legendre transform of ln ZGC(z) with respect to ln z, and hence it is the inverse Legendre
transform of (21) and (22). Note also that (A14) implies that, in the thermodynamic limit,

⟨N̂⟩GC(z∗) = N = ⟨N̂⟩C. (A18)
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Finally, for the kernel K(N|z)−1, we have

K(N|z)−1 =
z−N ZGC(z)

ZC(N)
= eNψ(z)

[
1

2πi

∮
Γ

dz
z

eNψ(z)
]−1

. (A19)

In the thermodynamic limit, using (A16), we have

K(N|z)−1 ∼
√

2π

σ2
ψ

z∗ e
1

2σ2
ψ
(z−z∗)2

=

√
2π

σ2
ψ

z∗ e
− 1

2σ2
ψ

y2

, (A20)

with y = −i(z− z∗). This expression can be simplified further by recalling that σ2
ψ = O(1/N).

Thus,

K(N|z)−1 ∼ 2πz∗√
2πσ2

ψ

e
− 1

2σ2
ψ

y2

∼ 2πz∗ δ(y), N ≫ 1, (A21)

and, using δ(ax) = (1/a)δ(x), we finally have

K(N|z)−1 ∼ 2πi z δ
(
z − z(N)

)
, N ≫ 1. (A22)

with z(N) the solution of (A17). Note that

1
2πi

∮
Γ

dz
z

K(N, z)−1 = 1, (A23)

as follows from the definition of K(N|z).

Appendix C

In the derivation of the Kac kernel, the assumption s = 1 − η/V may appear ad
hoc. Therefore, here, we present an alternative derivation of (66). The starting point is
Equation (61), i.e.,

K(N|z) = zN

ZGC(β, V, z)
1

2πi

∮
Γ

dξ ξ−1−N ZGC(β, V, ξ), (A24)

where, here, we use N instead of N′. The integral in this equation is the canonical partition
function (see (5)),

ZC(β, V, N) =
1

2πi

∮
Γ

dξ ξ−1−N ZGC(β, V, ξ), (A25)

where Γ is a closed curve in the complex ξ-plane encircling the origin and not crossing the
real axis on the cut ℜ ξ > eβϵ0 .

If ϵ0 ̸= 0, it is useful to define s = e−βϵ0 z = α0z so that

ZC(β, V, N) =
αN

0
2πi

∮
Γ

ds s−1−N ZGC(β, V, α−1
0 s), (A26)

where, now, Γ is a closed curve in the complex s-plane encircling the origin and not crossing
the real axis on the cut ℜ s > 1.

In our specific case, we have (see (50))

ZGC(β, V, α−1
0 s) = − 1

1 − s
e
− V

β2 J(s)
, (A27)

where J(s) is given in (51). Inserting this expression into (A26), we have

ZC(β, V, N) =
αN

0
2πi

∮
Γ

ds
s

eVϕ(s)

1 − s
, (A28)
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where
ϕ(s) = −ρ ln s − 1

β2 J(s), (A29)

where ρ = N/V is the density in the canonical ensemble.
In the thermodynamic limit V → ∞, N → ∞ with ρ = constant, the integral is

dominated by the saddle point s∗. Assuming that 1 − s∗ = O(1) as V → ∞, the saddle
point is given by ϕ′(s∗) = 0, where

ϕ′(s) = −1
s
[
ρ − ρ1(β, s)

]
, (A30)

where, from (53),

ρ1(β, s) = − s
β2 J′(s) =

1
β2 I(s), (A31)

with I(s) given in (54). The saddle point is thus the solution of

ρ1(β, s∗) = ρ. (A32)

Since I(1) < ∞, it follows that

ρ1(β, s) ≤ ρ1(β, 1) ≡ ρc(β) =
1
β2 I(1). (A33)

As a consequence, the saddle point Equation (A32) does not have a solution for fixed
ρ if β > βc(ρ) with

βc(ρ) : ρc(βc) = ρ, (A34)

or, alternatively, for fixed β if ρ > ρc(β).
To study this regime, we consider

ϕ(s) = −ρ ln s +
1
V

ln ZGC(β, α−1
0 s)

= − 1
V

ln(1 − s) + ϕ(s).
(A35)

A simple calculation shows that

ϕ
′
(s) = −1

s
[
ρ − ρ(β, s)

]
, (A36)

where
ρ(β, s) =

1
V

N(β, V, s) =
s
V

∂

∂s
ln ZGC(β, α−1

0 s). (A37)

As a consequence, in the thermodynamic limit, the leading contribution to the integral

ZC(β, V, N) =
αN

0
2πi

∮
Γ

ds
s

eVϕ(s) (A38)

comes from the region close to the saddle point s∗ given by

ρ(β, s∗) = ρ. (A39)

Substituting (A35), the saddle point equation becomes

ϕ
′
(β, s∗) =

1
V

1
1 − s∗

+ ϕ′(s∗) = 0 (A40)
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which, using (A30), gives
1
V

s∗

1 − s∗
= ρ − ρ1(β, s∗). (A41)

From this, we see that, if ρ > ρc(β), then 1 − s∗ must be positive and, moreover,
1 − s∗ = O(1/V) as V → ∞. From (A41), it follows that

s∗ = 1 − 1
V

s∗

ρ − ρ1(β, s∗)
, (A42)

which, for V → ∞, gives

s∗ ∼ 1 − 1
V

1
ρ − ρc(β)

+ O(1/V2), V → ∞. (A43)

Since s∗ < 1, in (A28), we can integrate over the circle C∗ : s = s∗eiθ ; thus, in the limit
V → ∞,

ZC(β, V, N) =
αN

0
2πi

∮
C∗

ds
s

eVϕ(s)

1 − s
∼

αN
0

2πi

∫
s=s∗eiθ ,|θ|<ϵ

ds
s

eVϕ(s)

1 − s

∼
αN

0
2πi

∫
s=s∗+iy,|y|<ϵ

ds
s

eVϕ(s)

1 − s
,

(A44)

where ϵ is a small (arbitrary) parameter used to isolate the relevant region of integration.
Since ϵ is small, we can expand ϕ(s) as

ϕ(s∗ + iy) ∼ ϕ(s∗) + ϕ′(s∗)iy − 1
2

ϕ′′(s∗)y2 + O(y3), (A45)

where, from (A40) and (A43),

ϕ′(s∗) = − 1
η

, η−1 = ρ − ρc(β), (A46)

while
ϕ′′(s∗) = − 1

s∗
ϕ′(s∗) +

1
s

∂

∂s
ρ1(β, s)

∣∣∣
s=s∗

> 0. (A47)

Substituting, we then have, as V → ∞,

ZC(β, V, N) ∼
αN

0
2π

∫ +∞

−∞

dy
1 − η/V + iy

eV
[

ϕ(s∗)−iy/η− 1
2 ϕ′′y2

]
η/V − iy

[
1 + O(Vy3)

]
. (A48)

The proposed approach follows that described by Dingle in Ref. [31], where he
performs an additional change in variable, namely, takes y = t/

√
Vϕ′′ − iη/V and ex-

pands the term O(Vy3) and (1 − η/V + iy)−1 in powers of t. This is equivalent to taking
s = 1 + it/

√
Vϕ′′ as the integration path.Since we are only interested in the leading term of

ln ZC(β, V, N)/V as V → ∞, this step is not necessary, and we can just expand in powers
of V−1. Thus, we have

ZC(β, V, N) ∼
αN

0 eVϕ(s∗)

−2πi

∫ +∞

−∞
dy y−1 e−iyV/η− V

2 ϕ′′y2
+ . . . , (A49)

where the dots denote sub-leading terms as V → ∞. By rescaling y → y/
√

Vϕ′′, we finally
arrive at

ZC(β, V, N) ∼
αN

0 eVϕ(s∗)

−2πi

∫ +∞

−∞
dy y−1 eiya− 1

2 y2
+ . . . , (A50)
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where a = −
√

V/ϕ′′/η. The integral can be expressed in terms of the the parabolic cylinder
function D−1(a): ∫ +∞

∞

dy
y

e−
1
2 y2+iay = −i

√
2π ea2/4D−1(a), (A51)

so that

ZC(β, V, N) ∼
αN

0 eVϕ(s∗)
√

2π
ea2/4D−1(a) + . . . . (A52)

In the limit V → ∞, the term a is large and negative, D−1(a) ∼ e−a2/4, and hence

ZC(β, V, N) ∼
αN

0 eVϕ(s∗)
√

2π
+ . . . , V → ∞. (A53)

Finally,

ϕ(s∗) = −ρ ln s∗ − 1
β2 J(s∗)

∼ −ρ ln(1 − η/V)− 1
β2 J(1 − η/V)

∼ ρη/V − 1
β2 J(1) +

1
β2 J′(1)η/V + . . .

(A54)

But, J′(1)/β2 = −ρc(β); thus,

ϕ(s∗) ∼ [ρ − ρc(β)]η/V − 1
β2 J(1) + . . .

∼ 1/V − 1
β2 J(1) + . . . .

(A55)

In conclusion, the leading term ln ZC(β, V, N)/V as V → ∞ is

ZC(β, V, N) ∼ αN
0 e

− V
β2 J(1)

V → ∞. (A56)

We can now go back to (A24), which, using (A56), becomes

K(N|z) ∼ (zα0)
N

ZGC(β, V, z)
e
− V

β2 J(1)
, V → ∞. (A57)

Now, recalling that the fugacity z is related to ⟨N⟩GC via (62),

(zα0)
N = eN ln(zα0) ∼ eN ln(1−η/V) ∼ e−ρ η , (A58)

because α0z = 1 − η/V with η−1 = ρ − ρc(β). Similarly,

e
− V

β2 J(1)
ZGC(β, V, s)−1 = (1 − α0z)e

− V
β2

[
J(1)−J(zα0)

]
∼ η

V
e
− V

β2 J′(1) η/V
∼ η

V
e−ρc(β) η , V → ∞.

(A59)

Thus, collecting all the terms we have, cfr. (66) and (68),

K(N|z) = K(ρ|ρ)∆ρ ∼ η

V
e−[ρ−ρc] η

∼ ∆ρ
e−(ρ−ρc)/(ρ−ρc)

ρ − ρc
, ρ > ρc(β), V → ∞.

(A60)

where ∆ρ = 1/V.
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