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Abstract: With this follow-up paper, we continue developing a mathematical framework based
on information geometry for representing physical objects. The long-term goal is to lay down
informational foundations for physics, especially quantum physics. We assume that we can now
model information sources as univariate normal probability distributions N (µ, σ0), as before, but
with a constant σ0 not necessarily equal to 1. Then, we also relaxed the independence condition when
modeling m sources of information. Now, we model m sources with a multivariate normal probability
distribution Nm(µµµ, ΣΣΣ0) with a constant variance–covariance matrix ΣΣΣ0 not necessarily diagonal,
i.e., with covariance values different to 0, which leads to the concept of modes rather than sources.
Invoking Schrödinger’s equation, we can still break the information into m quantum harmonic
oscillators, one for each mode, and with energy levels independent of the values of σ0, altogether
leading to the concept of “intrinsic”. Similarly, as in our previous work with the estimator’s variance,
we found that the expectation of the quadratic Mahalanobis distance to the sample mean equals
the energy levels of the quantum harmonic oscillator, being the minimum quadratic Mahalanobis
distance at the minimum energy level of the oscillator and reaching the “intrinsic” Cramér–Rao lower
bound at the lowest energy level. Also, we demonstrate that the global probability density function of
the collective mode of a set of m quantum harmonic oscillators at the lowest energy level still equals
the posterior probability distribution calculated using Bayes’ theorem from the sources of information
for all data values, taking as a prior the Riemannian volume of the informative metric. While these
new assumptions certainly add complexity to the mathematical framework, the results proven are
invariant under transformations, leading to the concept of “intrinsic” information-theoretic models,
which are essential for developing physics.

Keywords: information geometry; fisher’s information; riemannian manifolds; schrödinger’s equation;
principle of minimum fisher’s information; quantum harmonic oscillator; bayes’ theorem

1. Introduction

In this work, we continue developing the mathematical framework introduced in [1]
by implementing some variations to better account for reality. In particular, we model infor-
mation sources as univariate normal probability distributions N (µ , σ0) as before but with
a constant σ0 not necessarily equal to 1. We also relax the independence condition when
modeling m sources of information. Thus, we model m-dependent sources with a multivari-
ate normal probability distribution Nm (µ, Σ0) with a constant variance–covariance matrix
Σ0 not necessarily diagonal, i.e., with covariance values different than 0, which leads to the
concept of modes rather than sources when finding the solutions.

As in our initial work, the mathematical approach departs from the supposition that
physical objects are information-theoretic in origin, an idea that has recurrently appeared
in physics. In the following mathematical developments, we discover that the approach
is importantly “intrinsic”, giving rise to the paper’s title, which is the main feature we
want to emphasize in this study. In other words, regardless of how we parametrize the
modeling, the approach’s inherent properties, for example, energy levels, remain the same,
irrespective of updating the framework with the above modifications.
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This entire work builds upon this finding, which makes it ideal for studying the
properties of information representation and developing physics, and our modifications
can further improve the framework’s accuracy and applicability to real-world scenarios.
The long-term goal is to provide models to explain the “pre-physics” stage from which
everything may emerge. We refer to the initial preprocessing of the source data information
which is performed, in principle, by our sensory systems or organs. Therefore, the research
in this follow-up paper may significantly contribute to the field and potentially guide future
work in the area.

2. Mathematical Framework

The plan of this section, which we divide into eleven subsections for didactic purposes,
is the following. In Section 2.1, we outline modeling a single source with a single sample
and the derivation of Fisher’s information and the Riemannian manifold. In Section 2.2,
we describe modeling a single source with n samples. Section 2.3 is devoted to analyzing
the stationary states of a single source with n samples in the Riemannian manifold. In
Section 2.4, we present the solutions of the stationary states in our formalism. In Section 2.5,
we compute the probability density function, the mean quadratic Mahalanobis distance,
and the “intrinsic” Cramér–Rao lower bound for a single source with n samples. An
extension of this approach to m independent sources is conducted in Section 2.6 to compute
the global probability density function at the ground-state level. In Section 2.7, we outline
modeling m-dependent sources of a single sample, Fisher’s information, and the Rieman-
nian manifold. Section 2.8 describes m-dependent sources of n samples. In Section 2.9,
we analyze the stationary states of m-dependent sources of n samples in the Riemannian
manifold. Section 2.10 is devoted to finding the solutions. Finally, in Section 2.11, we use
Bayes’ theorem to obtain the posterior probability density function.

2.1. A Single Source with a Single Sample: The Fisher’s Information, the Riemannian Manifold,
and the Quadratic Mahalanobis Distance

We start our mathematical description by modeling a single source with a univariate
normal probability distribution N (µ, σ0) where σ0 > 0 is a known constant. This is a
well-known parametric statistical model in which unidimensional parameter space may
be identified with the real line, i.e., Θ = R. We can compute all the relevant quantities
relevant to our purpose. For a single sample, the univariate normal density (with respect to
the Lebesgue measure), its natural logarithm, and the partial derivative with respect to the
parameter µ are given by

f (x; µ) =
1√

2πσ0
e
− 1

2σ2
0
(x−µ)2

, (1)

ln f = −1
2

ln
(

2πσ2
0

)
− 1

2σ2
0
(x − µ)2 , (2)

∂ ln f
∂µ

=
x − µ

σ2
0

. (3)

From Equation (3), which is also called the score function, we can calculate Fisher’s infor-
mation [2] for a single sample as

I(µ) = Eµ

((
∂ ln f

∂µ

)2
)

= Eµ

( x − µ

σ2
0

)2
 =

1
σ2

0
Eµ

((
x − µ

σ0

)2
)

=
1
σ2

0
, (4)

since with the change z = x−µ
σ0

, we have that Eµ

((
x−µ
σ0

)2
)
=
∫ ∞
−∞ z2 1√

2π
e−

1
2 z2

dz = 1.
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The Riemannian metric [3] from a single source with a single sample derived from
the Fisher’s information (4) is a metric tensor whose covariant component, contravariant
component, and determinant, respectively, are

g11(µ) =
1
σ2

0
, (5)

g11(µ) = σ2
0 , (6)

det(g(µ)) =
1
σ2

0
. (7)

The corresponding square of the Riemannian distance induced in the parametric space
is the well-known quadratic Mahalanobis distance [4], i.e.,

d2
M(µ2, µ1) =

1
σ2

0

(
µ2 − µ1

)2
. (8)

The quadratic Mahalanobis distance will play a critical role in the next sections.

2.2. A Single Source with n Samples: The Fisher’s Information, the Riemannian Manifold, and the
Square of the Riemannian Distance

If the source generates n samples, (x1, . . . , xn), drawn independently from a univariate
normal probability distribution (1), the likelihood of this n variate sample, its log-likelihood,
and the scores, respectively, are

fn(x1, . . . , xn; µ) =
n

∏
i=1

f (xi; µ) =

(
1

2πσ2
0

) n
2

exp

(
− 1

2σ2
0

n

∑
i=1

(
xi − µ

)2
)

, (9)

ln fn = −n
2

ln
(

2πσ2
0

)
− 1

2σ2
0

n

∑
i=1

(
xi − µ

)2
, (10)

∂ ln fn

∂µ
=

1
σ2

0

n

∑
i=1

(
xi − µ

)
=

n
σ2

0
(x̄ − µ) . (11)

Likewise, from Equation (11) we can calculate the Fisher’s information corresponding to
an n size sample as

In(µ) = Eµ

((
∂ ln fn

∂µ

)2
)

=
n
σ2

0
Eµ

((
(x̄ − µ)

σ0/
√

n

)2
)

=
n
σ2

0
. (12)

since x̄ follows a univariate normal distribution with mean equal to µ and variance equal

to σ2
0

n .
In other words

In(µ) = nI(µ) , (13)

which shows the well-known additive property of the Fisher information for indepen-
dent samples.

The Riemannian metric [3] from a single source with n samples derived from the
Fisher’s information (12) is a metric tensor whose covariant component, contravariant
component, and determinant, respectively, are

g̃11(µ) =
n
σ2

0
, (14)

g̃11(µ) =
σ2

0
n

, (15)

det(g̃(µ)) =
n
σ2

0
. (16)



Entropy 2024, 26, 370 4 of 14

The square of the Riemannian distance, ρ2, induced by the Fisher information ma-
trix corresponding to a sample of arbitrary size n will be equal to n times the quadratic
Mahalanobis distance (8), i.e.,

ρ2(µ2, µ1) = n d2
M(µ2, µ1) =

n
σ2

0

(
µ2 − µ1

)2
. (17)

2.3. Stationary States of a Single Source of n Samples in the Riemannian Manifold

To calculate the stationary states of a single source of n samples, we can invoke the
principle of minimum Fisher information [5] or use the time-independent non-relativistic
Schrodinger’s equation [6]. The two approaches have been demonstrated to be equivalent
elsewhere [5]. The equation reads as follows

−k∇2ψ(µ) + U (µ)ψ(µ) = λψ(µ) , (18)

where U(µ) is a potential energy and k, λ > 0. The solution must also satisfy limµ→−∞ ψ(µ) =
limµ→+∞ ψ(µ) = 0 and

∫ ∞
−∞ ψ2(µ)dµ = 1. For simplicity, we will write ψ instead of ψ(µ).

We can use the modulus square of the score function (11) as the potential energy,
except for a constant term ∥∥∥∥∂ ln fn

∂µ

∥∥∥∥2
= g11(µ)

(
∂ ln fn

∂µ

)2
, (19a)

=
σ2

0
n

(
n
σ2

0
(x̄ − µ)

)2

, (19b)

=
n
σ2

0
(x̄ − µ)2 . (19c)

Alternatively, we can use as the potential energy the difference between the maximum
of the log-likelihood attained by the sample, (x1, . . . , xn), minus the log-likelihood at an
arbitrary point µ, up to a proportionality constant. Since the likelihood is given by (9), we
can rewrite it as

fn(x1, . . . , xn; µ) =

(
1

2πσ2
0

) n
2

exp

(
− n

2σ2
0

s2
n

)
exp

(
− n

2σ2
0
(x̄ − µ)2

)
, (20)

where x̄ = 1
n ∑n

i=1 xi and s2
n = 1

n ∑n
i=1(xi − x̄)2. The supreme likelihood is obviously

attained when µ = x̄, then, the previously mentioned potential will be

U (µ) ∝ ln fn(x1, . . . , xn; x̄)− ln fn(x1, . . . , xn; µ) =
n

2σ2
0
(x̄ − µ)2 . (21)

This expression is up to a proportionality constant equal to (19). Thus, we may choose as
the potential energy U (µ) = nC

σ2
0
(x̄ − µ)2 with C > 0, and Equation (18) reads as:

−k∇2ψ +
nC
σ2

0
(x̄ − µ)2ψ = λψ , (22)

We compute the Laplacian in Equation (22) as:



Entropy 2024, 26, 370 5 of 14

∇2ψ =
1√

|g(µ)|
∂

∂µ

(√
|g(µ)| g11(µ)

∂ψ

∂µ

)
, (23a)

=
σ0√

n
∂

∂µ

(√
n

σ0

σ2
0

n
∂ψ

∂µ

)
, (23b)

=
σ2

0
n

∂2ψ

∂µ2 =
σ2

0
n

ψ′′ . (23c)

Inserting Equation (23) into Equation (22), we obtain:

−
kσ2

0
n

ψ′′ +
nC
σ2

0
(x̄ − µ)2ψ = λψ , (24)

which is Schrödinger’s equation of the quantum harmonic oscillator [7].

2.4. Solutions of a Single Quantum Harmonic Oscillator in the Riemannian Manifold

Some steps now may seem obvious for those used to quantum mechanics. Considering
that ψ has the following form:

ψ(µ) = γeη , with γ > 0 real , η a function of µ . (25)

Equation (24) results:

−
k σ2

0
n

(
γeη(η′)2 + γeηη′′

)
+

nC
σ2

0
(x̄ − µ)2γeη = λγeη , (26a)

−
k σ2

0
n

(
(η′)2 + η′′

)
+

nC
σ2

0
(x̄ − µ)2 = λ . (26b)

Assuming a solution for η(µ) with the form

η(µ) = −ξn(x̄ − µ)2 , with ξ > 0 , (27)

And inserting this expression into Equation (26) gives

−
k σ2

0
n

(
4ξ2n2(x̄ − µ)2 − 2ξn

)
+

nC
σ2

0
(x̄ − µ)2 = λ , (28)

which implies that

4kσ2
0 ξ2 =

C
σ2

0
, 2kσ2

0 ξ = λ . (29)

In other words, k, C, λ, ξ can not be chosen arbitrarily because they have to satisfy these
equations. For example, we can choose k = 2

n and C = 1
2n , which forces ξ = 1

4σ2
0

, and λ = 1
n .

Therefore, we can write

−
2σ2

0
n2 ψ′′ +

1
2σ2

0
(x̄ − µ)2ψ =

1
n

ψ , (30)

whose solution is given by

ψ(µ) = γe
− 1

4σ2
0

n(x̄−µ)2

. (31)

With this configuration, we compute the normalization constant γ

1 =
∫ ∞

−∞
ψ2(µ)dµ = γ2

∫ ∞

−∞
e
− 1

2σ2
0

n(x̄−µ)2

dµ = 2γ2σ0

∫ ∞

0
e−

1
2 nt2

dt , (32)
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where we used a first change of variable x̄−µ
σ0

= t. Now, using a second change of variable
1
2 nt2 = s, dt =

√
2
n

1
2 s−

1
2 ds, Equation (32) writes as

1 = 2γ2σ0

∫ ∞

0
e−s
√

2
n

1
2

s−
1
2 ds = γ2

√
2
n

σ0

∫ ∞

0
s−

1
2 e−sds = γ2

√
2
n
√

πσ0 . (33)

Isolating γ from Equation (33), we obtain γ =

(
n

2πσ2
0

) 1
4
. Therefore, Equation (31) reads as

ψ(µ) =

(
n

2πσ2
0

) 1
4

e
− 1

4σ2
0

n(x̄−µ)2

= ψ0(µ) , (34)

which is the ground-state solution of the quantum harmonic oscillator problem, and the
wave function for the ground-state. The solutions of the quantum harmonic oscillator
involve Hermite Polynomials, which were introduced elsewhere [8,9]. In this way, we can
prove, after some tedious but straightforward computations, that the wave function:

ψ1(µ) = γ1

(
x̄ − µ

σ0

)
e
− 1

4σ2
0

n(x̄−µ)2

, with γ1 > 0 , (35)

is also a solution of

−
2σ2

0
n2 ψ′′ +

1
2σ2

0
(x̄ − µ)2ψ = λ1ψ1 , (36)

where λ1 = 3
n is the energy of the first excited state, and γ1 =

(
n3

2πσ2
0

) 1
4

is the normalization

constant. With this representation, the λ’s (energy levels) are given by

λν =
2
n
(ν +

1
2
) = Eν , with ν = 0, 1, . . . . (37)

Looking closely at Equation (37), we appreciate that the energy levels depend on two num-
bers, ν and n. The ground state at ν = 0 has a finite energy E0 = 1

n , and can become
arbitrarily close to zero by massive sampling. Notably, the energy levels are independent
of σ0. In other words, they do not depend on the informative parameters, leading to the
concept of “intrinsic” information-theoretic models which will be discussed in greater
detail later.

2.5. Probability Density Function of a Single Source of n Samples, Mean Quadratic Mahalanobis
Distance, and Intrinsic Cramér–Rao Lower Bound

Assuming that the square modulus of the wave function can be interpreted as the
probability density function:

∥ψ(µ)∥2 = ψ∗(µ)ψ(µ) = ρ(µ) , (38)

we can compute the performance of the estimations of µ. For instance, we can calculate the
expectation of the quadratic Mahalanobis distance (8) to the sample mean x̄ at the ground
state (34), obtaining

Eµ,ρ0(µ)

((
x̄ − µ

σ0

)2
)

=
1
n

∫ ∞

−∞

(
x̄ − µ

σ0/
√

n

)2 1√
2π(σ0/

√
n)2

e
− 1

2(σ0/
√

n)2
(x̄−µ)2

dµ =
1
n

. (39)

Likewise, we can compute the expectation of the quadratic Mahalanobis distance (8) to the
sample mean x̄ at the first excited state, obtaining
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Eµ,ρ1(µ)

((
x̄ − µ

σ0

)2
)

=
1
n

∫ ∞

−∞

1√
2π(σ0/

√
n)2

(
x̄ − µ

σ0/
√

n

)4
e
− 1

2(σ0/
√

n)2
(x̄−µ)2

dµ =
3
n

. (40)

The expectation of the quadratic Mahalanobis distances to the sample mean x̄ at the
different states equal the quantum harmonic oscillator’s energy levels, i.e., this quantity is
definitively quantized. Interestingly, the expectation of the quadratic Mahalanobis distance
to the sample mean x̄ at the ground state (39) equals the intrinsic Cramér–Rao lower bound
(ICRLB) for unbiased estimators

Eµ

((
x̄ − µ

σ0

)2
)

≥ m
n

∣∣∣∣
m=1

=
1
n

, (41)

considering that we are modeling a single source of n samples with a single informative
parameter µ, i.e., m = 1. For further details, see [10].

2.6. m Independent Sources of n Samples and Global Probability Density Function

With m independent sources, each generating n samples, a finite set of m quantum
harmonic oscillators may represent reality. Presuming independence of the sources of
information, the “global” wave function (also called the collective wave function) can factor
as the product of single wave functions. We can write the global wave function as

ψ(µ) = ψ(µ1, µ2, . . . , µm) = ψ(µ1)ψ(µ2) . . . ψ(µm) , (42)

It constitutes a many-body system, and we may refer to the vector µ as the µ field.
For example, in the case of modeling two independent sources, the global wave

function at the ground state will be the product of single wave functions, each of them at
the ground state

ψ0(µ) = ψ0(µ
1)ψ0(µ

2) , (43a)

=

(
n

2πσ2
0

) 1
4

exp

{
− 1

4σ2
0

n
(

x̄1 − µ1
)2
}(

n
2πσ2

0

) 1
4

exp

{
− 1

4σ2
0

n
(

x̄2 − µ2
)2
}

, (43b)

=

(
n

2πσ2
0

) 1
4
(

n
2πσ2

0

) 1
4

exp

{
− 1

4σ2
0

(
n
(

x̄1 − µ1
)2

+ n
(

x̄2 − µ2
)2
)}

, (43c)

=

(
n

2πσ2
0

) 1
2

exp

{
− 1

4σ2
0

n
((

x̄1 − µ1, x̄2 − µ2
)(x̄1 − µ1

x̄2 − µ2

))}
. (43d)

We can generalize Equation (43) for having m independent sources. The global wave
function is written as

ψ0(µ) =

(
n

2πσ2
0

)m
4

exp

{
− 1

4σ2
0

n (x̄ − µ)T(x̄ − µ)

}
. (44)

Using Equation (38), the probability density function is:

ρ0(µ) =

(
n

2πσ2
0

)m
2

exp

{
− 1

2σ2
0

n (x̄ − µ)T(x̄ − µ)

}
. (45)

2.7. m Dependent Sources of a Single Sample, the Fisher’s Information, the Riemannian Manifold,
and the Quadratic Mahalanobis Distance

Consider now m possibly dependent sources, generating a multivariate sample of size
1, x. Now, although we have a finite set of m univariate quantum harmonic oscillators
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that can also represent reality, since these sources may be dependent, it is convenient
to model this situation as a single m variate source with an m-variate random vector x
following a m variate normal probability distribution Nm(µ, Σ0) where µ ∈ Rm and Σ0 is a
known constant strictly positive definite m × m matrix, the covariance matrix of random
vector x, i.e., cov(x) = Σ0 > 0. This is a well-known parametric statistical model in which
their m-dimensional parameter space may be identified with Θ = Rm; for further details,
see [11]. Identifying, as is customary, the points of the manifold Θ with their coordinates
µ = (µ1, . . . , µm), we can compute all the quantities relevant to our purpose. For a single
sample, the m-variate normal density (with respect to the Lebesgue measure), its natural
logarithm, and the partial derivative with respect to µi are given by

fm(x; µ) = (2π)−
m
2 det(Σ0)

− 1
2 exp

(
−1

2
(x − µ)TΣ−1

0 (x − µ)

)
, (46)

ln fm = −m
2

ln(2π)− 1
2

ln(det(Σ0))−
1
2
(x − µ)TΣ−1

0 (x − µ) , (47)

∂ ln fm

∂µi =
m

∑
α=1

σiα(xα − µα) . (48)

where, following a standard matrix calculus notation, σiα is the element located in row i
and column α of the inverse covariance matrix Σ0.

The Fisher’s information matrix G = gij(µ) is a m × m matrix whose elements are

gij(µ) = Eµ

(
∂ ln fm

∂µi
∂ ln fm

∂µj

)
, (49a)

= Eµ

(( m

∑
α=1

σiα(xα − µα)
)( m

∑
β=1

σjβ(xβ − µβ
))

, (49b)

=
m

∑
α=1

m

∑
β=1

σiασjβEµ

(
(xα − µα)(xβ − µβ)

)
, (49c)

=
m

∑
β=1

( m

∑
α=1

σiασαβ

)
σβj =

m

∑
β=1

δi
βσβj = σij , (49d)

where we have taken into account the symmetry of σjβ, and that cov((xα − µα), (xβ −
µβ)) = Eµ

(
(xα − µα)(xβ − µβ)

)
= σαβ, or, in matrix form, G = Σ−1

0 .
It is well known that the Fisher information matrix is a second-order covariant tensor

of the parameter space. It is positive definite and may be considered the metric tensor
of this manifold, giving it the structure of the Riemannian manifold. To avoid confusion,
we must emphasize that the subscripts or superscripts used to reference the variance and
covariance matrix or its inverse do not have a tensor character, i.e., the components of the
metric tensor gij(µ) are those of a covariant tensor, in tensor notation, they are written
as subscripts and are equal to the components of the inverse variance–covariance matrix
given in (49).

The Riemannian geometry induced by the Fisher information matrix in the parameter
space is, in this case, Euclidean, and the square of the Riemannian distance, also known as
the Rao distance, is the Mahalanobis distance given by

d2
M(µ2, µ1) = (µ2 − µ1)TΣ−1

0 (µ2 − µ1) . (50)

In this expression, the parameter space points are identified with their coordinates and
written in matrix notation as m × 1 column vectors.

All these results correspond to a multivariate with a sample size n = 1.
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2.8. m Dependent Sources of n Samples, the Fisher’s Information, the Riemannian Manifold, and
the Square of the Riemannian Distance

If each of the m dependent sources generates n samples, (x1, . . . , xn), drawn indepen-
dently from a multivariate normal probability distribution (46), the likelihood distribu-
tion is

fm,n(x1, . . . , xn; µ) =
n

∏
i=1

{
(2π)−

m
2 det(Σ0)

− 1
2 exp

(
−1

2
(xi − µ)TΣ−1

0 (xi − µ)

)}
, (51a)

= (2π)−
mn
2 det(Σ0)

− n
2 exp

(
−1

2

n

∑
i=1

(xi − µ)TΣ−1
0 (xi − µ)

)
. (51b)

The summation term within the exponential function can be decomposed into two terms

n

∑
i=1

(xi − µ)TΣ−1
0 (xi − µ) =

n

∑
i=1

Tr
(

Σ−1
0 (xi − µ)(xi − µ)T

)
, (52a)

= Tr

(
Σ−1

0

( n

∑
i=1

(xi − µ)(xi − µ)T
))

, (52b)

= Tr

(
Σ−1

0

( n

∑
i=1

(xi − x̄ + x̄ − µ)(xi − x̄ + x̄ − µ)T
))

, (52c)

= Tr

(
Σ−1

0

( n

∑
i=1

(xi − x̄)(xi − x̄)T +
n

∑
i=1

(x̄ − µ)(x̄ − µ)T
))

, (52d)

= n Tr
(

Σ−1
0 Sn

)
+ nd2

M(x̄, µ) , (52e)

where x̄ = (∑n
i=1 xi)/n, and Sn = (∑n

i=1(x
i − x̄)(xi − x̄)T)/n, i.e., the sample mean and the

sample covariance matrix corresponding to this random sample is the quadratic Maha-
lanobis distance to the sample mean, x̄.

Inserting Equation (52) into Equation (51) results

fm,n(x1, . . . , xn; µ) = (2π)−
mn
2 det(Σ0)

− n
2 exp

(
−n

2
Tr
{

Σ−1
0 Sn

})
exp

(
−n

2
d2

M(x̄, µ)
)

. (53)

The log-likelihood distribution is

ln fm,n = −mn
2

ln(2π)− n
2

ln det(Σ0)−
n
2

Tr
{

Σ−1
0 Sn

}
− n

2
d2

M(x̄, µ) , (54)

and the partial derivative of ln fm,n with respect to µα using standard classical notation for
covariant derivatives and additionally using repeated index summation convention is

∂ ln fm,n

∂µα
=
(

ln fm,n
)

, α
= n gαβ(x̄β − µβ) . (55)

The corresponding Fisher information matrix and the square of Riemannian distance
for a sample of size n will be the above Equations (49) and (50) multiplied by n.

2.9. Stationary States of m-Dependent Sources of n Samples in the Riemannian Manifold

To calculate the stationary states, we can invoke the time-independent non-relativistic
Schrodinger’s equation [6] as above. In the multivariate case, the wave equation reads
as follows

−k∇2ψ(µ) + U (µ)ψ(µ) = λψ(µ) , (56)

where U (µ) is the potential energy and k, λ > 0. The solution must also satisfy that vanish
to infinity and

∫
Rm ψ2(µ)dµ = 1. For simplicity, we will write ψ instead of ψ(µ).

We can use the square of the norm of the log-likelihood gradient as the potential energy,
except for a constant term. The components of the gradient of (ln fm,n), a contravariant
vector field, observing that the inverse of the metric tensor corresponding to a sample of
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size n is given by 1
n gγα since gγα gαβ = δ

γ
β where δ

γ
β is the Kronecker delta’s, will be given

in classical notation by

(∇ ln fm,n)
γ = (ln fm,n)

γ
, =

1
n

gγα(ln fm,n), α =
1
n

gγα n gαβ(x̄β − µβ) = (x̄γ − µγ) , (57)

and, therefore, the square of the norm of the log-likelihood gradient will be

∥∇ ln fm,n∥2 = n gγβ(ln fm,n)
γ
, (ln fm,n)

β
, = n gγβ(x̄γ − µγ)(x̄β − µβ) = n d2

M(x̄, µ) . (58)

Alternatively, we can use the difference between the log-likelihood at an arbitrary
point µ0 = x̄ minus the log-likelihood attained by the sample as the potential

U (µ) ∝ ln fm,n(x̄)− ln fm,n(µ) =
n
2

d2
M(x̄, µ) , (59)

which is up to a proportionality constant equal to (58). Thus, Equations (58) and (59) suggest
to take as the potential energy U (µ) = nC d2

M(x̄, µ) with C > 0. In this way, Equation (56)
reads as

−k∇2ψ + nC d2
M(x̄, µ)ψ = λψ . (60)

To proceed, we must compute the Laplacian in Equation (60). If g = det(G), with G
defined in (49), i.e., the determinant corresponding to the tensor of the information metric
for samples of size n = 1, for a sample of arbitrary size n that determinant will be equal to
nmg. In this way, the Laplacian of a function ψ will be given by

∇2ψ =
1√
nmg

∂

∂µi

(√
nmg

1
n

gij ∂ψ

∂µj

)
=

1
n

gij ∂2ψ

∂µi∂µj , (61)

where we have used repeated index summation convention. For further details about this
formula, see, for instance, [12]. Notice that gij equals the variance–covariance matrix Σ0.

Moreover, if we introduce the symmetric m × m matrix Ψ′′
µ =

(
∂2ψ

∂µi∂µj

)
m×m

, which is the

Hessian matrix of ψ under the coordinates µ = (µ1, . . . , µm), Equation (61) can be written as

∇2ψ =
1
n

Tr
(

Σ0Ψ′′
µ

)
. (62)

Inserting Equation (62) into (60), we obtain

− k
n

Tr
(

Σ0Ψ′′
µ

)
+ nC d2

M(µ, x̄n)ψ = λψ , (63)

which is the Schrödinger’s equation of m-coupled quantum harmonic oscillators.

2.10. Solutions of m-Coupled Quantum Harmonic Oscillators in the Riemannian Manifold

We observe that both (58) and (61) are invariant under coordinate changes on Θ = Rn.
Therefore, Equation (63) will remain invariant under these changes, particularly linear ones.

Since Σ0 is a symmetric m × m matrix which diagonalizes on an orthonormal basis, it
can be written as Σ0 = UDUT , where U is an orthogonal m × m matrix and D is a diagonal
m × m matrix D = diag(γ2

1, . . . , γ2
m), i = 1, . . . , m, where γα > 0 are the eigenvalues of the

square root of the variance–covariance matrix Σ0.
Thus, by introducing the change of coordinates η = UTµ and ȳ = UT x̄, the metric

tensor becomes diagonal, i.e., Ĝ = D−1. Taking this coordinate change into account, the
Equation (58) becomes

n d2
M(x̄, µ) = n d2

M(ȳ, η) =
m

∑
i=1

1
γ2

i
(ȳi − ηi)2 . (64)
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Moreover, if we define the symmetric m × m matrix Ψ′′
η =

(
∂2Ψ

∂ηi∂η j

)
m×m

, which is the

Hessian matrix of ψ under the new coordinates η = (η1, . . . , ηm), the Equation (61) becomes

∇2ψ =
1
n

Tr
(

Σ0Ψ′′
µ

)
=

1
n

Tr
(

DΨ′′
η

)
. (65)

Making use of Equation (64) and Equation (65) in Equation (63), we obtain

− k
n

Tr(DΨ′′
η) + nC d2

M(ȳ, η)ψ = λ ψ , (66)

which is the Schrödinger’s equation of the m-decoupled quantum harmonic oscillators. If
we choose k = 2

n and C = 1
2n , Equation (66) can be written as

m

∑
i=1

(
−

2γ2
i

n2
∂2ψ

∂(ηi)2 +
1

2γ2
i
(ȳi − ηi)2ψ

)
= λ ψ . (67)

Additionally, if we define λ = ∑m
i=1 λα with λα > 0, we may write

m

∑
i=1

(
−

2γ2
i

n2
∂2ψ

∂(ηi)2 +
1

2γ2
i
(ȳi − ηi)2ψ − λα ψ

)
= 0 . (68)

Note, that if ψα is a non–trivial solution of

−2γ2
α

n2
∂2ψα

∂(ηα)2 +
1

2γ2
α
(ȳα − ηα)2ψα = λα ψα , α = 1, . . . , m . (69)

then, Equation (66) admits a solution of the form

ψ(η1, . . . , ηm) =
m

∏
α=1

ψα(η
α) . (70)

Each of the Equations in (69) admits infinite solutions for different values of λα, as in our
previous work [1]. More specifically, it admits solutions for

λα,ν =
2
n
(ν +

1
2
) , ν ∈ N . (71)

In particular, for ν = 0, we have λα,0 = 1
n and the wave function for the ground-state is

ψα,0(η
α) =

(
n

2πγ2
α

) 1
4
e
− 1

4γ2
α

n(ȳα−ηα)2

, (72)

Then, the global wave function at the ground state will be

ψ0(η
1, . . . , ηm) =

m

∏
α=1

ψα,0(η
α) , (73)

with λ = ∑m
α=1

1
n = m

n , which is the intrinsic Cramér–Rao lower bound (ICRLB) for m
sources of information of n samples, with each source being modeled with an informative
parameter µ, i.e., a total of m informative parameters. For further details, see [10]. The
global probability density function at the ground state can be written as
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ρ0(η
1, . . . , ηm) = ∥ψ0(η

1, . . . , ηm)∥2 =
m

∏
α=1

ψ2
α,0(η

α) , (74a)

=
( n

2π

)m
2

(
m

∏
α=1

(γα)
2

)− 1
2

exp

(
−n

2

m

∑
α=1

1
γ2

α
(ȳα − ηα)2

)
, (74b)

=
( n

2π

)m
2
(det(D))−

1
2 exp

(
−n

2
(ȳα − ηα)TD−1(ȳα − ηα)

)
. (74c)

Since η = UTµ and ȳ = UT x̄, where U is an orthonormal m × m matrix and, therefore,
|det U| = 1, we can express Equation (74) as a function of the original coordinates

ρ0(µ
1, . . . , µm) =

( n
2π

)m
2
(det(Σ0))

− 1
2 exp

(
−n

2
(x̄ − µ)TΣ−1

0 (x̄ − µ)
)

(75)

However, there are many other solutions in (69) considering different values of ν in (71).
It is well-known that the solutions of the quantum harmonic oscillator involve Hermite
Polynomials, which were introduced elsewhere [8,9]. In particular, for ν = 1, we will have
λα,1 = 3

n and the wave function at the first-excited state will be

ψα,1(η
α) =

(
n3

2πγ2
α

) 1
4
(

ȳα − ηα

γα

)
e
− 1

4γ2
α

n(ȳα−ηα)2

. (76)

We can obtain other solutions via the Hermite polynomials, representing excited states of
the quantum harmonic oscillator. For instance, we may obtain the solution ψα,ν for each of
the sources α = 1, . . . , m and for each energy level ν = 0, . . . , k. Combining the m sources
with the k + 1 energy levels, we can build up all possible solutions and, therefore, obtain
up to (k + 1)m different solutions

ψ(η1, . . . , ηm) =
m

∏
α=1

ψα,ϵα(η
α) , (77)

where ϵα ∈ {0, 1, . . . , k} and λ = ∑m
α=1
[ 2

n

(
ϵα +

1
2

)]
= m

n + 2
n ∑m

α=1 ϵα, the total energy of m

oscillators, such that m
n ≤ λ ≤ 2mk

n .

2.11. Bayesian Framework and Posterior Probability Density Function

Regardless of having independent or dependent sources of information, we can
compute the posterior probability distribution calculated from the sources of information
for all data values using Bayes’theorem [13], taking the Riemannian volume of the metric
as a prior. This measure is Jeffrey’s prior distribution on the parameter, and it can be
considered in some way an objective , or at least a reference choice for a prior distribution [14].

Considering Equation (49), the Riemannian volume
√

det(G) is constant in Θ. Then,
taking into account the likelihood probability distribution (51), the posterior probability
distribution fm,n(µ; x1, . . . , xn) based on Jeffrey’s prior is equal to

fm,n(µ; x1, . . . , xn) ∝ fm,n(x1, . . . , xn; µ)
√

g , (78a)

∝ exp
(
−1

2
n d2

M(x̄, µ)

)
, (78b)

=
( n

2π

)m
2
(det(Σ0))

− 1
2 exp

(
−n

2
d2

M(x̄, µ)
)

, (78c)

=
( n

2π

)m
2
(det(Σ0))

− 1
2 exp

(
−n

2
(x̄ − µ)TΣ−1

0 (x̄ − µ)
)

(78d)

This posterior probability density function coincides with the global probability density
function at the ground state (75). Precisely, the probability density function of m quantum
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harmonic oscillators at the ground state given by the square of the wave function coincides
with the Bayesian posterior obtained from m sources of information for all data values
using the improper Jeffrey’s prior. This unexpected and exciting result reveals a plausible
relationship between energy and Bayes’ theorem.

3. Discussion

This paper aimed to expand and refine the mathematical framework initially presented
in [1]. We made specific adjustments to the approach, enabling us to consider real-world
scenarios more thoroughly. As we continued with our work, we came to appreciate the
“intrinsic” nature of the modeling, which we believe is a crucial aspect of our study. Our
ultimate objective was to improve upon the foundation established in the previous paper
and create an even more robust and accurate framework.

First, we extended the approach by modeling a single source of information with a
univariate normal probability distribution N (µ, σ0), as before, but with a constant σ0 not
necessarily equal to 1. We calculated the stationary states in the Riemannian manifold by
invoking Schrödinger’s equation to discover that the information could be broken into
quantum harmonic oscillators as before but with the energy levels being independent of σ0,
an unexpected but relevant result that motivated us to continue exploring this field.

This primitive result led us to title the work “Intrinsic information-theoretic models”,
which asserts that the critical features of our modeling process, such as the energy levels,
remain independent of the parametrization used and invariant under coordinate changes.
This notion of invariance is significant because it implies that the same model can be applied
across different parameterizations, allowing for greater consistency and generalizability.
Furthermore, this approach can lead to a more robust and reliable modeling process, as it
reduces the impact of specific parameter choices on the final model output. As such, the
notion of “intrinsic” information-theoretic models has the potential to improve modeling
accuracy and reliability significantly.

Similar to our previous study [1], we evaluated the performance of the estimation of
the parameter µ. Instead of calculating the estimator’s variance, we used the expectation of
the quadratic Mahalanobis distance to the sample mean to discover that equals the energy
levels of the quantum harmonic oscillator, being the minimum quadratic Mahalanobis
distance at the minimum energy level of the oscillator. Interestingly, we demonstrated
that quantum harmonic oscillators reach the “intrinsic” Cramér–Rao lower bound on the
quadratic Mahalanobis distance at the lowest energy level.

Then, we modeled m independent sources of information and computed the global
density function at the ground state as an example. Essentially, we modeled sources with a
multivariate normal probability distribution Nm(µ, Σ0), with a variance–covariance matrix
Σ0 different than the identity matrix of m-dimension, Im, but being diagonal initially to
describe the independence of the sources of information.

We advanced the mathematical approach by modeling m dependent sources of infor-
mation with a variance–covariance matrix Σ0 not necessarily diagonal, depicting dependent
sources. This resulted in Schrödinger’s equation of m-coupled quantum harmonic oscilla-
tors. We could effectively decouple the oscillators through a coordinated transformation,
thereby partitioning the information into independent modes. This enabled us to obtain
the same energy levels, albeit now with respect to the modes, which further proves the
“intrinsic” property of the mathematical framework.

Finally, as in our previous study, we showed that the global probability density
function of a set of m quantum harmonic oscillators at the lowest energy level, calculated
as the square modulus of the global wave function at the ground state, equals the posterior
probability distribution calculated using Bayes’ theorem from the m sources of information
for all data values, taking as a prior the Riemannian volume of the informative metric. This
is true regardless of whether the sources are independent or dependent.

Apart from the mathematical discoveries detailed in this paper, this framework offers mul-
tiple alternatives that we are currently exploring. For example, the informational representation
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of statistical manifolds with Σ0 is unknown. Also, this approach can be generalized by exploring
other statistical manifolds and depicting how physical observables such as space and time may
emerge from linear and nonlinear transformations of a set of parameters of a specific statistical
manifold. This way, the laws of physics, including time’s arrow, will appear afterward.

Moreover, several fascinating inquiries warrant further investigation. These involve
delving into the relationship between energy and information already highlighted in our
initial work. In addition, the very plausible connection between energy and Bayes’ theorem
also deserves further exploration. By delving deeper into these topics, we may unlock even
more insights into the universe’s fundamental nature and mathematical laws.

The updated framework presented in this study offers a more realistic approach by al-
lowing the modeling of m-dependent sources. In real-world scenarios, information is often
distributed over multiple sources that may not be entirely independent. By formulating the
problem in terms of modes, we can obtain a solution or set of solutions for the proposed
framework. This approach provides a valuable tool for solving complex problems that
require a deeper understanding of the underlying dynamics.
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