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Abstract: Lid-driven cavity (LDC) flow is a significant area of study in fluid mechanics due to its
common occurrence in engineering challenges. However, using numerical simulations (ANSYS
Fluent) to accurately predict fluid flow and mixed convective heat transfer features, incorporating
both a moving top wall and a heated hemispherical obstruction at the bottom, has not yet been
attempted. This study aims to numerically demonstrate forced convection in a lid-driven square
cavity (LDSC) with a moving top wall and a heated hemispherical obstacle at the bottom. The cavity
is filled with a Newtonian fluid and subjected to a specific set of velocities (5, 10, 15, and 20 m/s)
at the moving wall. The finite volume method is used to solve the governing equations using the
Boussinesq approximation and the parallel flow assumption. The impact of various cavity geometries,
as well as the influence of the moving top wall on fluid flow and heat transfer within the cavity, are
evaluated. The results of this study indicate that the movement of the wall significantly disrupts the
flow field inside the cavity, promoting excellent mixing between the flow field below the moving wall
and within the cavity. The static pressure exhibits fluctuations, with the highest value observed at the
top of the cavity of 1 m width (adjacent to the moving wall) and the lowest at 0.6 m. Furthermore,
dynamic pressure experiences a linear increase until reaching its peak at 0.7 m, followed by a steady
decrease toward the moving wall. The velocity of the internal surface fluctuates unpredictably along
its length while other parameters remain relatively stable.

Keywords: square cavity; lid-driven cavity (LDC); moving or stationary walls; separation; wall
attachment

1. Introduction

Lid-driven cavity flow is an important field of study in fluid mechanics due to its com-
mon occurrence in engineering challenges, such as short-dwell and flexible blade coaters.
Because of its simple shape and intricate flow patterns, this type of flow configuration
can serve as a preliminary challenge for many numerical algorithms. Several relevant
research studies have focused on this subject and its implications for engineering in recent
years. Fluid flow with solid particles plays a significant role in a wide range of engineering
applications, including coal combustion and particle separation [1,2]. The lid-driven (LD)
flow in a cubical cavity has indeed attracted the attention of researchers because of its
wide range of applications, which include electronic card cooling, food processing, crystal
formation, and multi-screen devices used in nuclear reactors. Various types of restricted
flow settings, including two- and three-dimensional cavity flows, are recognized issues
in fluid dynamics that exhibit the main elements necessary for the transition to periodic
and turbulent flows. Therefore, one of the primary challenges in understanding fluid
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dynamics is the flow structure inside cubical enclosures due to the cylindrical shape at the
center [3,4]. Research in this field has shown significant interest in thoroughly examining
physical perceptions as well as flow behavior in LD enclosures. Enclosures of different
shapes (such as square, circular, and triangular) have been utilized to control or separate
fluid flow [5]. Due to the LD cavity’s capability to evaluate the accuracy and efficiency
of newly developed numerical methods, as well as its intrinsic desirability, numerous
research studies have been reported in the literature. The initial numerical study by Bur-
graff [6] focused on two-dimensional lid-driven cavities. Ghia et al. [7] utilized a stream
function–vorticity method combined with an implicit multigrid method to achieve accurate
calculations in such contexts. Cortes et al. [8] investigated rectangular cavities with variable
aspect ratios, expanding upon previous studies that were limited to square cavities with
uniform aspect ratios. Bhopalam et al. [9] employed the lattice Boltzmann technique to
estimate flows in double-sided cross-shaped LD cavities. This cavity configuration, with
anti-parallel uniform wall motion, denoted as a complex geometry, was determined to be
a symmetrized variation in the staggered LDC. The investigation of Reynolds numbers
(Re) and oscillation frequencies for both uniform and oscillatory wall motions documented
the motion and formation of primary and secondary vortices efficiently. To simulate the
turbulence occurring inside a cubic LDC at Re 10,000, Samantaray et al. [10] combined
large eddy simulation with the dynamic Smagorinsky model. Comparison with the joint
probability distribution function revealed the presence of more consistent structures near
the downstream wall, as indicated by quadrant analysis. Using the lattice Boltzmann
technique, Hu [11] investigated the motion of a neutrally buoyant elliptical particle in a
square cavity driven by the lid. The existence of a limit cycle, caused by the inertia of
the elliptical particle, confines the motion within the boundaries of the square cavity. In
this context, the vortex has been identified as the most prominent aspect of the elliptical
particle’s motion in the square cavity. The boundary confinement tightens with increasing
particle size, bringing the limit cycle closer to the center of the square cavity.

Samantaray and Das [12] employed a dynamic Smagorinsky model (DSM) to conduct
intensive eddy simulations of incompressible flow inside a cubic lid-driven cavity (LDC)
across a range of Re (1000, 3200, 5000, 10,000, and 15,000). The researchers found that even
at a low Re of 3200, turbulence manifests as non-homogeneous and asymmetrical, with
non-homogeneity worsening as Re increases. Specifically, turbulence in the core area of
the cavity becomes more isotropic with increasing Re. Roy et al. [13] conducted multiple
simulations and parametric investigations to determine the influence of material properties,
obstacle geometry, and adhesion force on deposition patterns. They concluded that particles
are frequently trapped in biofilm and areas near cavities with low Okubo–Weiss numbers,
where relative vorticity predominates over local strains.

Golkarfard et al. [14] numerically investigated aerosol particle deposition in laminar
mixed-convection flow using a lid-driven (LD) hollow with two heated barriers. It was
also assumed that 2000 particles scattered uniformly in the flow regime and monitored
using Lagrangian particle transport simulations had no effect on the fluid. Numerical
simulations revealed that free convection significantly contributes to deposition. The main
finding was that an increase in the Richardson number (Ri) leads to a decrease in deposition.
Khan et al. [15] investigated the mixed convection flow of a hybrid nanofluid consisting of
Al2O3CuH2O inside a trapezoidal cavity driven by a split lid. Within the cavity, a triangular-
shaped cooling barrier was positioned. The horizontal base of the cavity was cooled, while
the side walls were maintained adiabatic. A numerical solution using the Galerkin finite
element approach coupled with physical boundary constraints was used. The findings
of this investigation provided qualitative insights for enhancing cooling mechanisms for
various thermal and electrical devices.

In another study, Khan et al. [16] presented a comprehensive computational investigation
of Casson fluid hydromagnetic flow and heat transfer in a partially heated enclosed triangular
cavity. Within the cavity, a cylindrical obstruction with various thermal boundary conditions
was introduced. The finite element method (FEM) was utilized to solve the governing
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equations and examine the impact of different physical parameters on streamlines, isotherms,
and local Nusselt numbers (Nu), including the Hartmann number (Hn). It was discovered
that heat transfer inside the cavity is primarily influenced by the length of the heating element.

Khan et al. [17] investigated double-diffusive natural convection in a right-angle trape-
zoidal cavity filled with porous media using numerical simulations. The top and bottom
horizontal boundaries were impermeable, while the inclined sidewall was maintained at a
low concentration and temperature. The vertical left sidewall was kept at a high concentra-
tion and subjected to a fixed heat flux. It was found that lower values of the Lewis number
(Ln) increased heat transfer, whereas larger values decreased it. The buoyancy parameter
was shown to decrease the dimensionless temperature of the cavity while increasing the
dimensionless concentration due to its strong influence on buoyancy. In another study,
Khan et al. [18] explored natural convective heat transfer in various industrial applications,
aiming to optimize performance. They conducted numerical simulations to analyze fluid
flow and heat transfer within the system, as well as to investigate entropy generation,
which is critical according to the thermodynamic Gouy–Stodola theorem. Utilizing non-
dimensional primitive variables, they employed the Oberbeck–Galerkin finite element
method to solve the Boussinesq equations. The researchers observed that the average Nu
and Bejan numbers (Bn), as well as the average entropy generation, increased with the
amplitude of the sinusoidal wall temperature. Additionally, increasing the non-uniform
wall temperature wave number reduced the strength of energy transfer and Bn. An entropy
assessment for triple-diffusive flow was conducted by Khan et al. [19]. They introduced
a detailed model to analyze entropy production resulting from the variable chemical po-
tential in NaCl and sucrose salts, considering heat and mass transfer, fluid friction, and
porous medium effects. Both salt concentrations were found to be higher at the surface.
The Boussinesq approximation and Darcy’s law were utilized to solve the dimensionless
governing equations. Various combinations of variable concentration, velocity, and temper-
ature were employed in the entropy generation model. This research revealed that aiding
flows generate more entropy compared to opposing flows.

This study aims to establish a standard for an LD square cavity problem with a
moving top wall and a bottom hemispherical barrier, aiming to characterize the underlying
mechanics of the problem. This research aims to predict fluid flow and mixed convective
heat transfer features while considering both a moving top wall and a heated hemispherical
obstruction at the bottom. Specifically, the impact of various cavity geometries, as well
as the influence of the moving top wall on fluid flow and heat transfer within the cavity,
are addressed. To systematically conduct this aim and predict fluid flow and mixed
convective heat transfer features, the fundamental mass, momentum, and energy equations
presented in the open literature are used to express the steady state, incompressible, and
two-dimensional laminar fluid flow. The finite volume method is then utilized to solve the
governing equations using the Boussinesq approximation.

There are several reasons behind the importance of accurately predicting the fluid flow
and mixed convective heat transfer features, incorporating both a moving top wall and a
heated hemispherical obstruction at the bottom. On top of this, perceiving the complicated
interplay between forced convection due to the moving top wall and natural convection
due to the heated hemispherical obstruction is essential for designing and optimizing the
heat transfer processes in various applications besides achieving the desired performance.
Heat exchangers, electronic cooling systems, and solar collectors are some examples of the
applications. To the authors’ knowledge, this research represents a common problem in the
relevant literature, and further investigation is needed into this topic.

2. Problem Description and Mathematical Modeling

Figure 1 depicts fluid flow within a two-dimensional square cavity with a width of
1 m and a continuously moving top (lid) surface. The lid moves from left to right at a
variable set of velocities: 5, 10, 15, and 20 m/s. The two vertical walls and the bottom of the
cavity are perfectly insulated, maintaining a steady temperature of 25 ◦C for the lid surface.
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Additionally, a hemispherical barrier is fixed to the bottom wall at a steady temperature
of 25 ◦C, with a radius of 0.25 m. The boundary conditions are established based on the
following factors [11,20–22]:

1. The axis of symmetry.
2. The rotating periodicity (usually denoted as the sides of the wedge).
3. Inlet:

u = (U, 0, 0),∇p.n = 0, τ = 0 (1)
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4. Outlet:

∇ui·n = 0, p = 0,∇τij·n = 0 (2)

The fundamental relationships for incompressible, stable, and 2-dimensional flow are
the mass, momentum, and energy as stated below [23–26]:

∂u
∂x

+
∂v
∂y

= 0 (3)

u
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= −1
ρ
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(
∂2u
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(4)
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∂v
∂y

= −1
ρ

∂P
∂y

+
µ

ρ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ gβ(T − TC) (5)

∂(ρuCPT)
∂x

+
∂(ρvCPT)

∂y
= k

(
∂2T
∂x2 +

∂2T
∂y2

)
(6)

β =
1

Tf
(7)

u and v are the x- and y-components of velocity, respectively; P is the pressure; ρ and µ are the
fluid density and dynamic viscosity, respectively; β is the coefficient of the thermal expansion;
Tf and T are the reference fluid temperature and fluid temperature, respectively; and k and g
are the fluid thermal conductivity and the gravitational acceleration vector, respectively.

The assumptions for mixed convection in an LDC with a heated hemispherical cavity
at the bottom are as follows:
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• The flow of air is considered two-dimensional steady, incompressible, and laminar flow.
• Internal heat generation is ignored.
• Radiation of heat transfer is considered negligible.
• The thermo-physical features are fixed. However, the density in the term of the body

force in the momentum equation is treated following the Boussinesq approximation,
giving rise to buoyancy forces.

Referring to the above presentation, it is important to ascertain that this study focuses
on steady-state conditions. This means that the fluid flow and heat transfer features are
assumed to be constant over time. The governing equations are, therefore, time-dependent,
and the initial and boundary conditions are set to specify a steady-state condition. Con-
sidering the impact of forced convection on fluid flow and heat transfer, it is essential to
clarify that the impact will be similar in both steady-state and unsteady-state conditions.
However, the key difference is that in unsteady-state conditions, the flow and temperature
fields will progress over time until they reach a steady state.

3. Simulation and the Numerical Test

Simulation and numerical testing offer numerous advantages over physical testing.
These include reduced cost and time and increased accuracy, safety, and flexibility. These
advantages make simulation and numerical testing important tools for engineers and
designers, allowing them to test a wider range of design configurations more swiftly and in-
expensively while also refining the safety and accuracy of the testing process [27,28]. Before
conducting the numerical simulation in this study, a series of tasks must be completed and
checked. The following are the two primary components used in the numerical simulation:

1. Developing the grids and examining the density of their constituent pieces are two
steps toward reducing the amount of inaccuracy in the numerical findings.

2. Checking the accuracy of the numerical model that was employed.

The grid of the examined space is made by using Gambit. The grid configuration is
presented in Figure 2. The ratio value was used in each instance to determine the density
of the components. The findings of this examination are shown in Table 1. It can be
concluded that the number of elements in instance 2 is sufficient to deliver the desired level
of satisfaction. This particular stage is referred to as the grid independence test.

Table 1. Grid independence test using a top moving wall velocity of 5 m/s.

Density Case Total Cell Number Velocity (m/s) Difference (%)

0.1

1 43,075 4.87 0.24

2 100,550 4.90 0.09

3 223,300 4.98 0.08

4 321,500 5.00 0.08

0.2

1 42,020 4.76 0.48

2 86,240 4.82 0.025

3 174,660 4.87 0.023

4 271,100 4.99 0.023

0.3

1 33,176 4.91 2.30

2 70,552 4.93 0.22

3 140,315 4.94 0.22

4 221,000 4.92 0.22
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The numerical code in ANSYS Fluent was employed to address the problem posed
by this investigation. The code initializes the initial conditions (Equations (1) and (2))
before transforming the differential equations into a matrix system using the finite volume
approach. A high-resolution technique was applied to solve the convective terms of the
matrix system. The SIMPLEC method was employed to couple pressure and velocity.
Calculated results were considered acceptable, with errors of 10−6 for energy equations
and 10−8 for momentum equations, respectively.

Model Validation

Golkarfard et al. [14] studied aerosol particle deposition in a lid-driven hollow with
two heated barriers. They introduced the LD square cavity with a hemispherical obstacle.
The LD configuration features a top moving wall velocity of 5 m/s. This study addresses
the issue presented by Golkarfard et al. [14] using the numerical method described herein.
Figure 3 presents the velocity distribution findings for a top moving wall velocity of 5 m/s
from both Golkarfard et al. [14] and this study. This comparison clearly demonstrates the
accuracy of the present method.
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Despite the acceptable accuracy of utilizing the finite element approach to solve the
governing equations, which addresses the velocity distribution for 5 m/s of top moving
wall velocity (Figure 3), one can expect that the utilization of fourth-order finite difference
numerical schemes for the incompressible fluid with Boussinesq approximation would be
of higher accuracy to precisely represent the velocity distribution besides demonstrating
actual fluid flow and temperature fields for the case of the forced convection in the lid-
driven square cavity (LDSC) with a heated hemispherical obstacle.

4. Results and Discussion

4.1. Velocity, Pressure, and Temperature Distributions at Power Densities of 100 and 200 W/m3

This section presents the influences of the moving wall on pressure, velocity, and tem-
perature distribution contours in the square cavity while utilizing different power densities
of 100 and 200 W/m3 of the heated hemispherical obstacle at the bottom (demonstrated as
a heat source). It is evident that the movement of the wall significantly disrupts the flow
field inside the cavity, leading to excellent mixing between the flow field below the moving
wall and within the cavity. Physically, forced convection arises from two mechanisms:
airflow entering the cavity and the additional shear force caused by the movement of the
wall. Additionally, it is observed that the streamlines are highly influenced by the direction
of the wall movement, clustering near the moving wall due to the shear force generated.
The movement of the wall also eliminates the stationary region at the lower corners of the
side wall of the cavity, facilitating the extension of vortices further inside the cavity.

Static pressure refers to the pressure on the surface of a uniformly moving wall, while
dynamic pressure is experienced when a surface moves in the fluid’s direction. Figures 4 and 5
illustrate four contours of pressure distribution for different moving wall velocities (5, 10, 15,
and 20 m/s) at power densities of 100 and 200 W/m3, respectively. The figures show that an
increase in the moving wall velocity leads to noticeable differences in the flow and thermal
fields inside the LD square cavity. The increase in power density enhances natural convection
generated from the heated obstacle, increasing the mixing between hot air surrounding the
hemispherical obstacle and cold air entering the square cavity under the action of the moving
top wall, consequently increasing the pressure inside the cavity.

Figure 6 illustrates the distribution of static pressure along the positions of the moving
wall, bottom wall, left wall, right wall, and interior surface at a power density of 100 W/m3.
It is evident that there is fluctuation in the static pressure values for different moving wall
velocities of 5, 10, 15, and 20 m/s, starting from zero at the bottom of the cavity, with the
lowest value occurring between 0.7 and 0.75 m and the highest value at 1 m, which is in
contact with the moving wall. At point 1 (top wall location), the static pressure starts at
a negative (vacuum) value and maximizes at 2.5 Pa due to the effect of the top moving
wall on the air near the right wall, forcing it to escape from the cavity. The interior surface
exhibits random static pressure variations along its position due to the recirculation of air
entering and exiting the cavity.

With a power density of 200 W/m3, Figure 7 depicts the static pressure distribution
for the moving wall, bottom wall, left wall, right wall, and inner surface positions. The
heated hemispherical obstacle located at the center-bottom of the cavity produces more
natural convection as its power density increases, enhancing the mixing of hot air rising
from the heated obstacle with cold air influenced by the moving top wall, thus increasing
the static pressure inside the cavity.
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Figure 8 illustrates the distribution of static pressure along the positions of the moving
wall, bottom wall, left wall, right wall, and interior surface at a power density of 100 W/m3.
It can be observed that the dynamic pressure for the moving wall is at its lowest value
at the bottom of the cavity, increases to 1.9 Pa (maximum) at 0.7 m, and then increases to
9 Pa at the top of the zone (at 1 m) using 15 m/s of moving wall velocity. At point 1 (top
wall location), the dynamic pressure starts at zero and hits 10 Pa due to the effect of the
top moving wall on the air near the right wall, forcing it to escape from the cavity. The
interior surface exhibits random dynamic pressure variations along its position due to the
fluctuation of the air stream entering and leaving the cavity under the influence of the top
moving wall.

Entropy 2024, 26, x FOR PEER REVIEW 11 of 26 
 

 

 

Figure 8. Dynamic pressure distribution versus position at a power density of 100 W/m3 for different 

moving wall velocities. 

With a power density of 200 W/m³, Figure 9 shows that an increase in the power 

density of the heated hemispherical obstacle leads to an increase in natural convection due 

to the heating effect. Consequently, the increased mixing between hot air rising from the 

obstacle and cold air entering the cavity results in an increase in dynamic pressure inside 

the cavity. 

Figure 8. Dynamic pressure distribution versus position at a power density of 100 W/m3 for different
moving wall velocities.

With a power density of 200 W/m3, Figure 9 shows that an increase in the power density
of the heated hemispherical obstacle leads to an increase in natural convection due to the
heating effect. Consequently, the increased mixing between hot air rising from the obstacle
and cold air entering the cavity results in an increase in dynamic pressure inside the cavity.

Figures 10 and 11 depict the pressure distribution across six points located vertically
in the cavity for different moving wall velocities with power densities of 100 W/m3 and
200 W/m3, respectively.

A symmetric pressure distribution can be observed along the square cavity, with the
highest value at point 1 and the lowest value at point 4 (vacuum). Point 6 exhibits lower
pressure than point 1, as the movement of the wall influences the air near the right wall,
causing it to escape from the cavity and reducing the pressure at point 6. Additionally, an
increase in moving wall velocity results in a decrease in pressure (vacuum) distribution
throughout the cavity (Figure 10). However, Figure 11 indicates that an increase in power
density has no effect on the pressure distribution across the six points.
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Figure 10. Pressure distribution versus position at a power density of 100 W/m3 for different moving
wall velocities.

Figures 12 and 13 illustrate the influence of a moving wall on the velocity distribution
patterns in the square hollow for power densities of 100 and 200 W/m3, respectively. These
figures show four velocity distribution patterns with different moving wall velocities of
5, 10, 15, and 20 m/s. The flow field within the cavity is noticeably disrupted by the
movement of the wall. Moreover, these findings suggest that a moving wall promotes
effective blending between the cavity and the underlying flow field. Additionally, Figure 13
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shows that an increase in power density has a minimal effect on the velocity distribution
within the square cavity.
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Figure 13. Contours of velocity distribution for different moving wall velocities at a power density of
200 W/m3.

At power densities of 100 and 200 W/m3, respectively, Figures 14 and 15 depict the
velocity distribution along the locations of the moving top wall, bottom wall, interior
surface, left wall, and right wall. These figures specifically show the velocity distribution
for power densities of 100 and 200 W/m3, with the moving walls set at specific velocities of
5, 10, 15, and 20 m/s. Figure 14 illustrates that the velocity of the interior surface fluctuates
significantly along its position while remaining static for the other surfaces. Additionally,
Figure 15 clearly demonstrates that increasing power density has no discernible impact on
the velocity distribution inside the square cavity.

Figures 16 and 17 depict the velocity distribution across six selected points along the
square cavity for different moving wall velocities of 5, 10, 15, and 20 m/s, with power
densities of 100 W/m3 and 200 W/m3, respectively. It can be observed that the velocity
increases to reach its highest value at point 1, then decreases to the lowest value at point 2,
and remains constant for the other points. Additionally, an increase in moving wall velocity
results in a higher velocity distribution throughout the cavity. However, Figure 17 confirms
that the increase in power density has a negligible influence on the velocity distribution
across the points when using a power density of 200 W/m3.
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Figure 15. Velocity distribution versus position for different moving wall velocities at a power density
of 200 W/m3.
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Figure 16. Airflow velocity distribution versus position for different moving wall velocities at a
power density of 100 W/m3.
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Figure 17. Airflow velocity distribution versus position for different moving wall velocities at a
power density of 200 W/m3.

Figures 18 and 19 illustrate four contours of temperature distribution for different mov-
ing wall velocities of 5, 10, 15, and 20 m/s at two power densities of 100 and 200 W/m3,
respectively. These figures demonstrate clear differences in the flow and thermal fields inside
the LD square cavity as the moving wall velocity increases. Forced convection arises from
two factors: the airflow into the cavity and the additional shear stress caused by the moving
wall. Moreover, the heated obstruction induces more natural convection due to the higher
power density, leading to increased mixing of hot air rising from the heated obstacle and cold
air entering the cavity, resulting in higher temperature distribution within the cavity.
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Figure 18. Contours of temperature distribution at a power density of 100 W/m3 for different moving
wall velocities.
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Figures 20 and 21 display the static temperature distribution along the positions of the
moving wall, bottom wall, interior surface, left wall, and right wall at power densities of
100 and 200 W/m3, respectively. These figures specifically illustrate the static temperature
distribution for different moving wall velocities of 5, 10, 15, and 20 m/s. It is evident that the
static temperature of the interior surface varies insignificantly along its position (Figure 20),
while the temperatures of the other surfaces remain constant. Notably, Figure 21 demonstrates
that an increase in power density of the heated hemispherical obstacle has a significant effect
on the static temperature distribution inside the square cavity, with a clear increment.
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Figure 20. Static temperature distribution versus position for different moving wall velocities at a
power density of 100 W/m3.

Figures 22 and 23 exhibit the temperature distribution across six points within the
square cavity for power densities of 100 and 200 W/m3, respectively. Figure 22 illustrates
that the temperature remains approximately constant along the points. These figures
specifically display the temperature distribution for different moving wall velocities of 5,
10, 15, and 20 m/s. The increase in moving wall velocity enhances the mixing between
the hot air rising from the heated hemispherical obstacle and the cold air coming from the
moving top wall. Consequently, this increase in mixing results in an increased temperature
distribution when the moving wall velocity varies from 5 to 10 m/s. However, moving
wall velocities > 10 m/s led to a reduction in temperature, as the higher velocities cause
more cold air to enter the cavity, thereby reducing the temperature. Moreover, the increase
in power density amplifies the natural convection generated from the heated obstacle,
leading to increased mixing between hot and cold air. Consequently, this action results in
an increased temperature distribution inside the cavity, as seen in Figure 23.
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Figure 21. Static temperature distribution versus position for different moving wall velocities at a
power density of 200 W/m3.
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Figure 22. Temperature distribution versus position for different moving wall velocities at a power
density of 100 W/m3.

Figures 24 and 25 present the stream function distribution for the moving wall, bottom
wall, interior surface, left wall, and right wall across the six points in the cavity for power
densities of 100 and 200 W/m3, respectively. These figures specifically display the stream
function distribution for different moving wall velocities of 5, 10, 15, and 20 m/s. It can
be observed that the stream function of the interior surface follows a sinusoidal pattern
and varies along the position. The lowest value occurs at 0.43 m (Figure 24), while the
values for the other surfaces remain constant along the positions. Additionally, Figure 25
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demonstrates that the increase in power density has no effect on the stream function
distribution throughout the square cavity.
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Figure 23. Temperature distribution versus position for different moving wall velocities at a power
density of 200 W/m3.
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4.2. Comparison of Variable Moving Wall Velocities

This section compares the velocity, pressure, and temperature profiles considering
variable top moving wall velocities (only 5 and 20 m/s) and power densities (100 and
200 W/m3). Figures 26–28 present the numerical results of velocity, pressure, and temper-
ature distribution, respectively, in response to the variations in top moving wall velocity
and power densities. Figure 26 illustrates the distribution of air velocity along the position
(the six points). It shows that the velocity peaks at point 1 and then decreases to its lowest
value at point 2, remaining constant at the other points. The results indicate that increasing
the moving wall velocity enhances airflow velocity while increasing power density has
no influence on velocity distribution. Figure 27 displays the pressure distribution along
the position (the six points). It demonstrates a symmetrical distribution along the two
halves of the cavity, with the highest value at point 1, slightly lower at point 6, and the
lowest at point 4. Increasing the moving wall velocity increases pressure distribution while
increasing power density has no effect on pressure distribution.

Figure 28 shows the temperature distribution along the six points in the square cavity.
It indicates that the temperature remains approximately constant across the points. Notably,
increasing moving wall velocity reduces temperature distribution, while increasing power
density increases it.
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Figure 26. Comparison of velocity distribution versus point number for different moving wall
velocities and power densities.
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Figure 27. Comparison of pressure distribution versus point number for different moving wall
velocities and power densities.
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5. Conclusions

Fluid flow in an LDC is a classic benchmarking concern extensively explored by
various researchers due to its simple geometric form and wide range of flow properties,
including corner eddies, bifurcation, and transition to turbulence. This study aimed to
replicate the mechanics underlying an LD square cavity using ANSYS Fluent to predict
fluid flow and mixed convective heat transfer features involving both a moving top wall
and a hemispherical heated barrier at the bottom. This work presented the outcomes of
various combinations within the cavity with specific geometries, as well as an examination
of the influence of the top moving wall on fluid flow and heat transfer in the cavity. The
following conclusions were drawn:

1. The movement of the wall significantly disturbs the flow field inside the cavity, facilitat-
ing excellent mixing between the flow field below the moving wall and the cavity.

2. There is a fluctuation in static pressure, with the lowest value occurring between
0.7 and 0.75 m and the highest at the contact with the moving wall (1 m).

3. Dynamic pressure linearly increases until it reaches its peak at 0.7 m, then decreases
linearly until point 1 (moving wall location).

4. Pressure is lowest at the bottom of the cavity, peaks at 0.7 m (1.9 Pa), and increases to
9 Pa at the top of the zone.

5. The velocity of the interior surface varies randomly along the position, while the
velocities of the other surfaces remain constant.

6. Velocity peaks at point 1, decreases to its lowest at point 2, and remains constant
through the other points.

7. Pressure is distributed symmetrically along the two halves of the cavity, with the highest
value occurring at point 1, slightly less at point 6, and the lowest at point 4 (vacuum).

This study was conducted based on the assumption of a two-dimensional analysis
of the fluid flow and heat transfer in the LDSC at steady-state conditions. Indeed, the
unsteady state equations and time evolution would be interesting to investigate in future
research to capture the transient behavior of the fluid flow and heat transfer. This case is
quite necessary if the initial conditions or boundary conditions are time-dependent or if the
fluid flow is turbulent. Furthermore, the investigation with a three-dimensional analysis is
important to rectify if the fluid flow will be influenced by forces or boundary conditions
that are not aligned with the plane of the cavity.
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Abbreviations

Symbol Definition
Bn Bejan number (-)
DSM Dynamic Smagorinsky model
FEM Finite element method
Hn Hartmann number (-)
LD Lid-driven
LDC Lid-driven cavity
LDSC Lid-driven square cavity
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Ln Lewis number (-)
Nu Nusselt number (-)
Re Reynolds number (-)
Ri Richardson number (-)
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