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Abstract: Quantum simulation qubit models of electronic Hamiltonians rely on specific transfor-
mations in order to take into account the fermionic permutation properties of electrons. These
transformations (principally the Jordan–Wigner transformation (JWT) and the Bravyi–Kitaev trans-
formation) correspond in a quantum circuit to the introduction of a supplementary circuit level. In
order to include the fermionic properties in a more straightforward way in quantum computations,
we propose to use methods issued from Geometric Algebra (GA), which, due to its commutation
properties, are well adapted for fermionic systems. First, we apply the Witt basis method in GA to
reformulate the JWT in this framework and use this formulation to express various quantum gates.
We then rewrite the general one and two-electron Hamiltonian and use it for building a quantum
simulation circuit for the Hydrogen molecule. Finally, the quantum Ising Hamiltonian, widely used
in quantum simulation, is reformulated in this framework.

Keywords: Geometric algebra; quantum computing; quantum simulation

1. Introduction

Analysis of large molecules is a great challenge in computational chemistry. Studying
the Shrödinger equation in most cases does not lead to analytic solutions, and therefore
requires one to rely on simulations. The major goal in computational chemistry is to find
the state energy spectrum of many body interacting fermionic systems and to investigate
its wavefunctions and structural properties. Classical chemical simulations permit one to
tackle efficiently physical, chemical, and structural properties of molecules. Due to the
increase in computational power over the past decades, direct simulations have been made
possible; for example, Density Functional Theory and Molecular Dynamics methods have
enabled calculations for systems of more than a thousand atoms [1,2], but these methods
suffer from an exponentially growing computational time. Some alternative methods have
been developed in order to ease the computations for complex molecules, such as quantum
Monte Carlo [3], tensor networks [4], post Hartree Fock methods [5], Green’s function
methods [6], many-body perturbation theory [7], etc. However, each method suffers from
its own limitations; for example, up to now, tensor networks have been demonstrated to be
efficient only for low entangled systems [8].

The general difficulty in simulating quantum mechanics with classical computers
is linked to the exponential scaling of the Hilbert space dimension, with respect to the
number of atoms in the molecule. In the 1980s, Richard Feynman [9] made the proposition
to simulate quantum mechanics with a device capable of imitating the quantum rules
rather than simulate it on a classical computer. This idea was taken further by David
Deutsch and led to the concept of quantum computers [10]. Quantum computers and
quantum simulation are today a major research subject, involving private companies such
as IBM [11], Google [12], Quantinuum [13], and Pasqal [14], along with universities all
around the world. The seeked goal is to provide an advantage over classical computers [15]
and to create an efficient tool for simulating quantum physical systems [16].
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In quantum simulation, the molecular Hamiltonian under the Born–Oppenheimer
approximation (BOA), where the atomic nuclei are considered fixed, is represented in the
second-quantized form [17], using fermionic annihilation and creation operators. These op-
erators anticommute for distinct electrons in a molecule; this means that they do not behave
as qubits in a quantum circuit . Quantum circuits use the operations of matrix product to ap-
ply consecutive gates and Kronecker products to compose different qubits. This leads to the
usual quantum circuit diagram where the consecutive boxes (from left to right) represent
the applied quantum gates and the horizontal parallel wires represent the composed qubits
behaving as commuting bosons. This fact makes the translation from the Hamiltonian
form to quantum gates not straightforward. To practically obtain a quantum circuit from a
Hamiltonian, one uses specific transformations such as the Jordan–Wigner transformation
(JWT) [17,18] or the Bravyi–Kitaev transformation [19,20], which reestablishes the correct
commutation properties. Then the Suzuki–Trotter approximation [17] is used to build the
entire equivalent circuit. It is then possible to extract the useful information about the
Hamiltonian, ground energies, for example, using different quantum algorithms.

Although JWT is effective in going from one formalism to another, it is commonly
applied in an heuristic ad-hoc way. One could wonder whether alternative mathematical
formalisms could make the application of this transformation more natural. We will show
here that Geometric Algebra (GA) is an interesting candidate.

GA combines the algebra of quaternions, discovered by W.H. Hamilton, permitting
one to describe geometric operations such as rotations and Grassman algebra based on
the notion of exterior product, used to create objects of higher dimensions such as areas
and volumes. The synthesis and generalization was done by Clifford [21] by combining
quaternions and Grassmann’s algebra into a single mathematical structure. Clifford himself
named this structure “geometric algebra”, although the term Clifford Algebra (CA) is more
often used in the literature.

It must be emphasized that for historical reasons most physicists did not adopt GA for
calculations on vector spaces, preferring Gibbs vector analysis, which almost completely
replaced quaternion algebra by the end of the 19th century. However, in the second half of
the 20th century, some physicists, lead by David Hestenes [22], used GA methods in classical
mechanics, electromagnetism, quantum physics, and special and general relativity [23].

GA now also has many other applications in applied sciences outside physics, such as
robotics [24] and computer graphics [21]. More generally, GA has shown its potential for
optimizing geometry-related problems [24]. Current research has also used GA in quantum
computing [25–28]. Recently, a formalism for quantum computing was proposed built
upon complex Clifford algebras using the Witt Basis (WB) [29].

In this paper, we provide a direct link between geometric algebra and quantum
simulation, using both the WB and JWT. The goal here is to establish the equivalence
between the algebra generated by the WB and the algebra generated by the creation and
annihilation operators in the electronic Hamiltonians used in quantum simulation.

Section 2 recalls the basics of GA and then defines the concept of WB and of complex
CA; it concludes with the spinor representation and the qubit analogy. The JWT is discussed
in Section 3, and then the formulation of JWT in the framework of GA and WB is developed;
the method is then applied to give the expressions of the usual 1-qubit and 2-qubit quantum
gates and discusses the application on qubits in quantum circuits. Quantum simulation
Hamiltonians in the BOA form are then expressed in the GA framework and a concrete
example, the hydrogen molecule, is investigated in Section 4. In Section 5, an example of a
general anisotropic XY Hamiltonian, which can be reduced to a quantum Ising Hamiltonian,
commonly used as an ersatz in quantum simulation, is discussed in our framework.
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2. Geometric Algebra (GA)
2.1. Clifford Algebra (CA)

A CA is defined using a real vector space, V, with a quadratic form, ϕ, over a field [30].
The algebra is produced by the quotient space T(V)/Iϕ(V), where T is the tensor product
of vector spaces and Iϕ = v ⊗ v − ϕ(v) is the ideal subset closed under multiplication.

For an orthonormal basis, {e1, . . . , en}, spanning the vector space, V, the algebra is
generated by the basis verifying

eiej + ejei = 2ϕ(ei, ej). (1)

An intuitive definition of a CA can be given using a finite dimensional vector space,
V, equipped with the “geometric product” defined as the sum of an inner product and an
outer product, which both have a geometrical meaning [21,22], as shown below.

2.1.1. Outer Product and Blades

Definition 1. Outer product
The outer product, noted by ∧, is an antisymmetric bilinear form giving the anticommutativity

for the basis vectors:

ei ∧ ej = −ej ∧ ei. (2)

The outer product of two vectors forms a new object, called a bivector.

Definition 2. Blade
The blades are generated by the outer product of vectors of V. The grade of the blade is the

number of vectors composing the blade:

ei1 ∧ · · · ∧ eir

is called an r-blade.

By definition, 0-blades are the scalars.
1-blades correspond to the basis vectors.
2-blades (also called bivectors) can be interpreted as oriented surfaces (as shown on

Figure 1), 3-blades (or trivectors) as oriented volumes, etc...

Figure 1. Representation of a bivector.

2.1.2. Inner Product

Definition 3. Inner product
The inner product is a bilinear symmetric non-degenerate form defined on V.
For an orthonormal basis, {ei}, one has:

ei.ej =


1 if i = j ∈ [[1, p]]
−1 if i = j ∈ [[p + 1, n]]
0 otherwise

, (3)

where p ≤ n. This characterizes the CA, noted Cℓp,q, with p + q = n. For a general signature, p
denotes the numbers of positive norm basis vectors and q the number of negative norm basis vectors.
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The definition of the inner product is extended to all blades by the formulae

(u.(a1 ∧ · · · ∧ ar)) =
p

∑
k=1

(−1)k(u.ck)a1 ∧ · · · ak−1 ∧ ak+1 ∧ · · · ∧ ar (4)

(a1 ∧ · · · ∧ ar).(b1 ∧ · · · ∧ bp) =

(a1 ∧ · · · ∧ ar−1).(ar.(b1 ∧ · · · ∧ bp)), (5)

where a1 ∧ · · · ∧ ar and b1 ∧ · · · ∧ bp are r- and p-blades, and u is a vector. Then, the inner product
lowers the grade of a blade.

The subspace Span{ei|1 ≤ i ≤ p} forms an euclidean space, and Span{ei|p + 1 ≤ i ≤
n} forms an anti-euclidean space with signature −1.

A CA Cℓp,q is thus composed by p + q = dimCℓp,q possible unordered combinations of
orthonormal basis vectors {ei : i = 1, 2, ..., n}, obeying (1).

2.1.3. Geometric Product

Definition 4. Geometric product
The geometric product is the sum of the outer and inner products:

xy = x.y + x ∧ y. (6)

In the case of a vector, the outer product is the antisymmetric part and the inner
product is the symmetric part.

More generally, for an r-blade, Ar, and an p-blade, Bp, we have :

Ar ∧ Bp = (−1)rpBp ∧ Ar (7)

Ar.Bp = (−1)r(p+1)Bp.Ar. (8)

Any combination made of non-linearly independent vectors vanishes because of the
anticommutativity of the outer product. In this way, Cℓp,q can be represented as a direct
sum of i-blade independent sub-spaces:

Cℓp,q = W0 ⊕ W1 ⊕ ... ⊕ Wi ⊕ ... ⊕ Wp+q. (9)

The highest blade element has rank p + q = n and is unique and squares to −1; it is
named the pseudoscalar. The rank n of the pseudo-scalar is interesting as it specifies the
dimension of the vector space over which the algebra is defined.

Moreover, the number of independent blades of rank k ∈ {0, . . . , n} is given by the

binomial coefficient
(

n
k

)
= n!

k!(n−k)! . Meaning that the generic CA Cℓp,q, with p + q = n,

globally contains 2n independent blades.
This last fact shows that one can look for a correspondence between the 2n blades with

a system of n Fermions (each Fermion possessing two degrees of freedom) or n qubits; this
will be the object of the following paragraphs.

2.2. Mother Algebra and Witt Basis (WB)

The mother algebra is defined from the Euclidean vector space, V, and its dual V∗ [31]:

Rn,n = V ⊗ V∗. (10)
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The corresponding CA is noted as Rn,n, called the mother algebra. If wi is a basis of V
and w∗

i is a basis of V∗, then Rn,n is the algebra generated by the blades:

wi1 . . . wik w∗
j1 . . . w∗

jℓ ,

with 1 ≤ k, ℓ ≤ n.
The inner product on Rn,n is defined as follows:

wi.wj = 0 (11)

w∗
i .w∗

j = 0 (12)

wi.w∗
j = w∗

j .wi =
1
2

δi,j. (13)

Therefore, this set of vectors, {wi, w∗
i |1 ≤ i ≤ n}, forms a non-orthonormal basis of

the mother algebra. This basis is called the Witt basis (WB).
We can use the following reversion/conjugation properties to transform a blade into

its dual when using the WB:

Definition 5. Reversion/Hermitian conjugation
On a real Clifford space, the Hermitian conjugation is the anti-automorphism of Cp,q, which

maps vectors to their dual:

• ∀v ∈ V, v† = v∗ and v∗† = v
• ∀x, y ∈ Cp,q, (xy)† = y†x†

• ∀x, y ∈ Cp,q, a, b ∈ R, (ax + by)† = ax† + by†

The WB verifies the relations:

wjw∗
j + w∗

j wj = 1 (14)

wiwj + wjwi = 0 (15)

w∗
i wj + wjw∗

i = 0 (16)

w∗
i w∗

j + w∗
j w∗

i = 0 (17)

(w∗
j )

2 = 0 (18)

(wj)
2 = 0. (19)

An orthonormal basis can be defined from the WB as:

ei = wi + w∗
i (20)

ϕ̄i = wi − w∗
i , (21)

giving e2
i = 1 and ϕ̄2

i = −1.
Therefore, the mother algebra can be decomposed as a tensor product of two CA, one

Euclidean, and the other anti-Euclidean:

Rn,n = Rn ⊗Rn, (22)

where Rn = Cℓ(e1, . . . , en) and Rn = Cℓ(ϕ̄1, . . . , ϕ̄n). Here, the ei are Euclidean and the ϕ̄i
are anti-Euclidean vectors.
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2.3. Witt Basis as a Complex CA

The previous properties can be interpreted as a complex structure of the mother
algebra [28,30]. Indeed, by defining the vectors ϕj = iϕ̄j, where i is the imaginary unit, we
obtain the complex CA:

Rn,n = Rn ⊗ iR′
n, (23)

with R′
n = Cℓ(ϕ1, . . . , ϕn), where now the vectors ϕi are Euclidean.

In this case, the WB can be written as:

wi =
1
2
(ei + iϕi) (24)

w∗
i =

1
2
(ei − iϕi). (25)

As noted in [31], the anticommutation properties (14) to (19) of the WB are analogous
to those of the creation operator, c†, and annihilation operator, c, used in quantum physics
for fermions, used to write Hamiltonians in the second quantization form.

For this reason, it will be more convenient in the following to use the fermion notation:

w∗
i = ci (26)

wi = c†
i . (27)

2.4. Spinors for Quantum Computing

The WB can be used to build spinor spaces and also to represent qubit states.

Definition 6. Spinor space
A spinor space is a minimal left ideal of the CA generated by a hermitian idempotent element.

It can be written using the mother algebra Rn,n of the WB [31]:

Sn = Rn,n I, (28)

where I ∈ Rn,n, such that I† = I and is an idempotent I = I2.

The following commuting self-adjoint idempotent operators [32] are then defined:

Ij = cjc†
j (29)

Kj = c†
j cj (30)

for j ∈ [[1, n]].
The property (14) translates into the closure relation for a single particle:

Ij + Kj = 1j. (31)

Then, the spinor ideals can be expressed:

S{i1,...,it}{k1,...,ks} = Rn,n Ii1 . . . Iit Kk1 . . . Kks , (32)

where {i1, . . . , it} ⊔ {k1, . . . , ks} = [[1, n]] are spinor spaces (the sets are disjoints).
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The resolution of the identity is obtained for the entire vector space by using the
complete set of idempotent operators:

1 =
n

∏
i=1

(Ii + Ki)

= ∑
{i1,...,it}⊔{k1,...,ks}=[[1,n]]

Ii1 . . . Iit Kk1 . . . Kks . (33)

This means that the entire algebra can be decomposed into a direct sum of 2n spinor spaces.
Quantum computations with n qubits can then be described using these complex CA

Rn,n by means of the WB, as outlined in [29]; an n-qubit state vector becomes an element of
a spinor.

As shown above in (34), the spinor space can be represented by one of the 2n projectors
Ii1 . . . Iit Kk1 . . . Kks . In quantum physics, the natural choice is the empty spinor space, where
the projector I = I1 . . . In represents the vacuum state |0 . . . 0⟩.

Using the creation operators, c†
i , and the annihilation operators, ci, we have:

ci I1 . . . In = 0 (34)

c†
i I1 . . . In = I1 . . . Ii−1c†

i Ii+1 . . . In. (35)

In this way, the n-qubit state can be represented in this spinor formulation :

|x1 . . . xn⟩ ↔ (c†
1)

x1(. . . )(c†
n)

xn I. (36)

In a more general formulation [32], one could equivalently consider the projector
Ii1 . . . Iit Kk1 . . . Kks as the original spinor, corresponding now to a qubit state where iℓ qubits
are in state |0⟩ and kℓ qubits are in state |1⟩. In this paper, we will adopt the representation
of (36).

3. Reformulation of the Jordan–Wigner Transformation (JWT)
3.1. Second Quantization

Let us consider a system made of N fermions. The state of the system is described by
the state vector

|ψ⟩ = |x1, . . . , xj, . . . , xn⟩, (37)

where xj counts as the number of particles in the state j. Each xj is either 0 or 1 due to the
Pauli exclusion principle.

The annihilation and creation operators, cj and c†
j , give the following relations when

applied to |ψ⟩:

cj|x1, . . . , xj, . . . , xn⟩ = (−1)∑
j−1
k=1 xk xj|x1, . . . , 1 − xj, . . . , xn⟩ (38)

c†
j |x1, . . . , xj, . . . , xn⟩ = (−1)∑

j−1
k=1 xk (1 − xj)|x1, . . . , 1 − xj, . . . , xn⟩, (39)

and they correspond to removing or adding a particle in the state j. These operators are not
hermitian, so they do not correspond to observable quantities. The number operator

nj = c†
j cj (40)

is hermitian and returns the numbers 0 for no-particle and 1 if the particle is present in the
state j.
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The creation and annihilation operators verify the following properties:

cjcj|ψ⟩ = (−1)∑
j−1
k=1 xk xjcj|ψxj↔1−xj⟩ = xj(1 − xj)|ψ⟩ = 0 (41)

c†
j c†

j |ψ⟩ = (−1)∑
j−1
k=1 xk xjc†

j |ψxj↔1−xj⟩ = xj(1 − xj)|ψ⟩ = 0 (42)

cjc†
j |ψ⟩ = (−1)∑

j−1
k=1 xk 1 − xjcj|ψxj↔1−xj⟩ = (1 − xj)|ψ⟩. (43)

The two first equations give zero because of the Pauli exclusion principle (i.e., xj ∈
{0, 1}). The last equation also signifies the closure that

{cj, c†
j } = cjc†

j + c†
j cj = 1. (44)

Moreover, the annihilation/creation operators acting on different states always anti-
commute ∀i ̸= j,

{ci, cj} = {c†
i , cj} = {c†

i , c†
j } = 0. (45)

It is clear that one again finds the same commutation properties as in the case of the
WB discussed above in the framework of GA, but here we started exclusively from the
quantum theory; this analogy between the two methods justifies our approach.

This representation is called second quantization; it is useful for modeling the Hamilto-
nians of molecules, where the states represent the possible orbital states for electrons and
their spins. This representation can then be used to simulate the molecule by translating
this Hamiltonian into quantum gates and applying a quantum algorithm to extract the
orbital energies.

Creation and annihilation operators act on fermion states, which is why they anticom-
mute (see (45)), while quantum gates act on qubits, which are represented by wires in a
quantum circuit and behave as bosons whose creation and annihilation operators, a†

i and
aj, commute. Therefore, fermion creation and annihilation operators and qubit gates do not
correspond to the same mathematical structure; this is the reason why a transformation is
required to pass from one framework to the other [17].

3.2. Jordan–Wigner Transformation (JWT)

The Jordan–Wigner transformation (JWT) uses the following operators [17,33]:

Zj = 1 − 2c†
j cj (46)

σ+
j =

j−1

∏
k=1

(1 − 2c†
k ck)cj (47)

σ−
j =

j−1

∏
k=1

(1 − 2c†
k ck)c†

j , (48)

where the σ+
j and σ−

j are spin operators related to the 1-qubit Pauli gates Xj and Yj by

σ±
j =

Xj ± iYj

2
. (49)

The inverse transformation is given by:

c†
j =

(
j−1

∏
k=1

Zk

)
σ−

j (50)

cj =

(
j−1

∏
k=1

Zk

)
σ+

j (51)
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One verifies that for even products of these operators one finds again the usual 1-qubit
projection operators:

c†
j cj =

1 − Zj

2
(52)

cjc†
j =

1 + Zj

2
. (53)

The inverse Jordan–Wigner transformation therefore enables one to translate the
Hamiltonian of the second quantized form, written with the c†

i and ci operators into a
quantum circuit.

3.3. Permutation Properties of the JWT Operators

When using the WB formalism for the elementary 1-qubit operators cj, c†
j , cjc†

j , c†
j cj,

the permutation of the operators and the qubits states is ruled by the following property:

Proposition 1. For λj ∈ {cj, c†
j , cjc†

j , c†
j cj},

λ1|x1⟩ . . . λn|xn⟩ = (−1)∑n
j=1 |λj |∑

j−1
k=1 xk λ1 . . . λn|x1⟩ . . . |xn⟩, (54)

where |λj| is the number of Witt basis vectors contained in λj, (i.e., |cj| = 1, |cjc†
i | = 2, ...).

Proof. The aim here is to exchange the lambdas and the kets thanks to the anticommutation
properties of the WB (44). Then, we only have to prove that

λj−1
∣∣xj−1

〉
λj = (−1)|λj |xj−1 λj−1λj

∣∣xj−1
〉
. (55)

Depending of the values of λj−1 and
∣∣xj−1

〉
, the product λj−1

∣∣xj−1
〉

takes the values
presented in Table 1.

Table 1. Expression of the two-term product λj−1

∣∣∣xj−1

〉
for all possible factors. In the left-most

column are the four possible left factors, λj−1, in the product, and in the upper-most line the two

possible right factors,
∣∣∣xj−1

〉
, in the product.

right factor
left factor

cj−1c†
j−1 c†

j−1

cj−1 0 λj−1c†
j−1

c†
j−1cj−1 0 λj−1c†

j−1
c†

j−1 λj−1 0
cj−1c†

j−1 λj−1 0

The WB vectors with different indices always anticommute; this means that, in the
case of λj ∈ {cj, c†

j }, λj and
∣∣xj−1

〉
anticommute if xj−1 = 1 and commute if xj−1 = 0. In

the case of λj ∈ {c†
j cj, cjc†

j }, λj always commutes with
∣∣xj−1

〉
. This can be written as (55).

The formula (54) can then be found by exchanging the λj successively with all the
previous |xk⟩.

Let us recall that the operator nj given in (40) acts on the qubit state as

nj|x1 . . . xn⟩ = xj|x1 . . . xn⟩,

which gives

(−1)∑n
j=1 |λj |∑

j−1
k=1 nk |x1 . . . xn⟩ = (−1)∑n

j=1 |λj |∑
j−1
k=1 xk |x1 . . . xn⟩.
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The above operator can be written using the property (−1)∑
j−1
k=1 nk = ∏n

j=1(1 − 2c†
j cj).

Then, using (54), we finally get

λ1|x1⟩ . . . λn|xn⟩ =
n

∏
j = 1

λj ∈ {cj , c†
j }

j−1

∏
k=1

(
1 − 2c†

k ck

)
λ1 . . . λn|x1 . . . xn⟩. (56)

3.4. Reformulation of Quantum Gates

This result enables one to directly express quantum gates in the GA formalism using
the JWT. The problem of sign change due to anticommutativity, which was thoroughly
discussed in [29] for the translation of the tensor product of qubits in a GA framework, is
here directly encoded inside the JWT.

The JWT applied to the basis matrices leads to:

|0⟩⟨0|j = cjc†
j (57)

|1⟩⟨1|j = c†
j cj (58)

|0⟩⟨1|j =
(

j−1

∏
k=1

ckc†
k − c†

k ck

)
cj (59)

|1⟩⟨0|j =
(

j−1

∏
k=1

ckc†
k − c†

k ck

)
c†

j , (60)

which can be easily inverted:

cj =

(
j−1

∏
k=1

Zk

)
|0⟩⟨1|j (61)

c†
j =

(
j−1

∏
k=1

Zk

)
|1⟩⟨0|j. (62)

Theorem 1. JWT for 1-qubit gates
The Jordan–Wigner transformation using the Witt basis provides the following expressions for

the Pauli 1-qubit gates:

Xj = |0⟩⟨1|j + |1⟩⟨0|j =
j−1

∏
k=1

(1 − 2c†
j cj)(c†

j + cj) (63)

Yj = −i|0⟩⟨1|j + i|1⟩⟨0|j =
j−1

∏
k=1

(1 − 2c†
j cj)(ic†

j − icj) (64)

Zj = |0⟩⟨0|j − |1⟩⟨1|j = 1 − 2c†
j cj (65)

This means that, if ∀j, Λj ∈ {Xj, Yj, Zj}, then we have

Λ1|x1⟩ . . . Λn|xn⟩ = Λ1 . . . Λn|x1⟩ . . . |xn⟩. (66)

3.5. Two-Qubit Systems

Let us consider the case of a 2-qubit system; this means that we work in the CA R2,2.
The WB elements reduce to (w∗

1 , w1, w∗
2 , w2), here noted as (c1, c†

1, c2, c†
2).

According to the preceding spinor formulation, the qubit states are represented by the
following multivectors:
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|0⟩ ⊗ |0⟩ = |00⟩ ↔ I1 I2 = c1c†
1c2c†

2 (67)

|0⟩ ⊗ |1⟩ = |00⟩ ↔ c†
2 I1 I2 = c1c†

1c†
2 (68)

|1⟩ ⊗ |0⟩ = |10⟩ ↔ c†
1 I1 I2 = c†

1c2c†
2 (69)

|1⟩ ⊗ |1⟩ = |11⟩ ↔ c†
1c†

2 I1 I2 = c†
1c†

2 (70)

This shows that for 2-qubit states, the Kronecker product is equivalent to the geometric
product in R2,2. In order to introduce the 1-qubit gates in a 2-qubit circuit, we use the JWT
in R2,2. For the gates acting on the first qubit, the JWT simply returns:

X ⊗ 1 = c†
1 + c1 (71)

Y ⊗ 1 = ic†
1 − ic1 (72)

Z ⊗ 1 = c1c†
1 − c†

1c1 (73)

For the gates acting on the second qubit, however, the JWT adds a correction factor,
c1c†

1 − c†
1c1, to the X and Y gates:

1 ⊗ X = (c1c†
1 − c†

1c1)(c†
2 + c2) (74)

1 ⊗ Y = (c1c†
1 − c†

1c1)(ic†
2 − ic2) (75)

1 ⊗ Z = (c1c†
1 − c†

1c1)(c2c†
2 − c†

2c2). (76)

General 2-qubit gates can be written using the sums and products of the above 1-
qubit gates. For instance, for the controlled-NOT, controlled-Z, and SWAP gates, we have,
respectively:

CNOT =
1
2
(1 ⊗ 1 + 1 ⊗ X + Z ⊗ 1 − Z ⊗ X) (77)

CZ =
1
2
(1 ⊗ 1 + 1 ⊗ Z + Z ⊗ 1 − Z ⊗ Z) (78)

SWAP =
1
2
(1 ⊗ 1 + X ⊗ X + Y ⊗ Y + Z ⊗ Z), (79)

giving in our formulation in R2,2:

CNOT = c1c†
1 − c†

1c1(c†
2 + c2)

CZ = c1c†
1 + c†

1c1(c2c†
2 − c†

2c2)

SWAP = c1c†
1c2c†

2 + c†
1c1c†

2c2 + c†
1c2 − c1c†

2.

3.6. Controlled Gates

In particular, one can derive the expression of controlled gates in Rn,n. Let Ak be an
arbitrary 1-qubit quantum gate acting on the qubit k. The controlled gate C(Ak)j (where j
is the control qubit and k the target) is given by:

C(Ak)j = |0⟩⟨0|j + |1⟩⟨1|j Ak (80)

= cjc†
j + c†

j cj Ak (81)

4. Application to Quantum Simulation
4.1. Electronic Hamiltonians for Quantum Simulation

The aim of quantum simulation is to analyze the electronic structure and the associated
energies of a molecule. The Born–Oppenheimer approximation (BOA) is commonly used
where all nuclei of the molecule are assumed to stay at fixed positions since nuclei have a
mass larger than electrons by a factor of 103. Therefore, the dynamics of the molecule is
described by the electronic Hamiltonian, H, which is the sum of a single electron Hamil-
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tonian, H(1), and a two-electron Hamiltonian, H(2). The wave function corresponding to
the different energy levels, E (eigenvalues), of the molecule is an eigenfunction |ψ⟩ of the
operator H given by the Shrödinger equation:

H|ψ⟩ = E|ψ⟩ (82)

The ground state,
∣∣ψg
〉
, corresponds to the lowest energy, Eg . To describe electrons in the

second quantization, we use a basis of N orbital states, noted as
∣∣χj
〉
. Each wave function,

χj, is a single electron wave function and is the tensor product of a spatial component, |ϕ⟩,
and a spin component, |↑⟩ or |↓⟩.

In the second quantization formalism, the single-electron and two-electron parts of the
BOA Hamiltonians are based only on the relative electron dynamics and are expressed as:

H(1) = ∑
i,j

hijc†
i cj (83)

H(2) = ∑
i,j,k,ℓ

hijkℓc†
i c†

j ckcℓ. (84)

The first coefficient, hij, is the single-electron overlap integral; it consists of the kinetic
energy and the potential energy for the one electron interaction from state i to state j. The
coefficients hii correspond to the unperturbed self-energy of the state, |χi⟩.

The second coefficient hijkl is the two-electron overlap integral which corresponds to
the different interaction energies of a system of 2 electrons initially in states i and j ending
up in states k and ℓ. The two-electron interaction comprises : the Coulomb (i = ℓ, j = k) and
exchange (i = k, j = ℓ) interactions which represent respectively the interactions between
electrons and between electrons and nuclei, the double excitation operator (i ̸= j ̸= k ̸= ℓ)
corresponds to the excitation of both electrons in all four orbital exchanges.

hij = ⟨χi|H(1)∣∣χj
〉

(85)

=
∫

R
χ∗

i (x)

(
− h̄2

2me
∇2 −

A

∑
α=1

Zαe2

4πϵ0∥x − xα∥

)
χj(x)dx (86)

hijkℓ =
〈
χiχj

∣∣H(2)|χkχℓ⟩ (87)

=
∫
R

χ∗
i (x1)χ

∗
j (x2)χk(x2)χℓ(x1)e2

4πϵ0∥x1 − x2∥
dx1dx2 (88)

The coefficients hij and hijkℓ for a given set of orbitals, {
∣∣χj
〉
}, can be computed

classically by solving the Hartree–Fock equations [17].

4.2. Hamiltonian Operators in the WB

In order to simulate quantum systems using the WB, we express the different contri-
butions to the molecular Hamiltonians; these are shown in Table 2 [20].

Table 2. Usual operators of a molecular Hamiltonian

Operator Second Quantized Form

Energy number operator Hni = hiic†
i ci

Coulomb/exchange operator Hcij = hijjic†
i c†

j cjci

Excitation operator Hexij = hij(c†
i cj + c†

j ci)

Number-excitation operator Hnexijk = hijjk(c†
i c†

j cjck + c†
k c†

j cjci)

Double excitation operator Hdexijkℓ
= hijkℓ(c†

i c†
j ckcℓ + c†

ℓ c†
k cjci)
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In quantum simulations, we are also interested in the exponential of these operators.
We will compute them in the following sections. The decomposition of an exponential form
is based on the following quantum gates:

Tj(θ) =

(
1 0
0 e−iθ

)
= |0⟩⟨0|+ e−iθ |1⟩⟨1| = cjc†

j + e−iθc†
j cj (89)

and

Rj(θ) =

(
eiθ 0
0 e−iθ

)
= eiθ |0⟩⟨0|+ e−iθ |1⟩⟨1| = eiθcjc†

j + e−iθc†
j cj. (90)

The index corresponds to the position of the qubit affected by the operator.

4.2.1. Energy Number Operator

The energy number operator, Hni , gives the electron energy of the i-th state. It is the
product of the number operator c†

i cj by hii, which is the mean value of H with respect to
|χi⟩, as defined in Section 4.1.

Hni = hiic†
i ci (91)

The number operator is idempotent:

(c†
i ci)

2 = c†
i ci. (92)

Therefore, we have the exponential:

e−iHni t = 1 + (e−ihiit − 1)c†
i ci

= c†
i ci + cic†

i + (e−ihiit − 1)c†
i ci

= cic†
i + e−ihiitc†

i ci

= |0⟩⟨0|+ e−ihiit|1⟩⟨1|
= Ti(hiit).

The corresponding circuit is given in Figure 2.

T(hiit)

Figure 2. Quantum circuit for exponential of the number operator.

4.2.2. Coulomb Operator

The Coulomb operators describe Coulomb interactions between two electrons in states
i and j. They are written as:

Hcij = hijjic†
i c†

j cjci. (93)

The product of the two number operators c†
i ci and c†

j cj is still idempotent:

(c†
i c†

j cjci)
2 = c†

i c†
j cjci. (94)

It is then possible to decompose the operator into the sum of involutive operators
to obtain

c†
i c†

j cjci = c†
i cic†

j cj

=
1
4
(1 − Zi)(1 − Zj),
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where Zj = cjc†
j − c†

j cj. Then, we have the exponential:

e−iHcij t

= e−ihijji
1
4 (1−Zi)(1−Zj)t

= e−
hijji t

4

(
cos(

hijji

4
) + i sin(

hijji

4
)Zi

)(
cos(

hijji

4
) + i sin(

hijji

4
)Zj

)(
cos(

hijji

4
)− i sin(

hijji

4
)ZiZj

)
besides, we have

cos(
hijjit

4
) + i sin(

hijjit
4

)Zj = cos(
hijjit

4
)(cjc†

j + c†
j cj) + i sin(

hijjit
4

)(cjc†
j − c†

j cj)

= e
ihijji t

4 cjc†
j + e−

ihijji t
4 c†

j cj

= Rj(
hijjit

4
)

and

cos(
hijjit

4
)− i sin(

hijjit
4

)ZiZj

= cos(
hijjit

4
)(cjc†

j + c†
j cj)(cic†

i + c†
i ci) + i sin(

hijjit
4

)(cjc†
j − c†

j cj)(cic†
i − c†

i ci)

= e
ihijji t

4 (cjc†
j cic†

i + c†
j cjc†

i ci)− e−
ihijji t

4 (c†
j cjcic†

i + cjc†
j c†

i ci)

=
(

cic†
i − c†

i ci(c†
j + cj)

)(
e

ihijji t
4 cjc†

j + e−
ihijji t

4 c†
j cj

)(
cic†

i − c†
i ci(c†

j + cj)
)

= (CNOTij)(Rj(
hijjit

4
))(CNOTij)

Thus, the exponential of the Coulomb operator is

e−iHcij t
= Ri(

hijjit
4

)Rj(
hijjit

4
)(CNOTij)(Rj(

hijjit
4

))(CNOTij). (95)

The corresponding circuit is given in Figure 3

i

j

R(
hijjit

4 )

R(
hijjit

4 ) R(
hijjit

4 )

Figure 3. Quantum circuit for exponential of the Coulomb operator.

4.2.3. Excitation Operator

The excitation operator has the form:

Hexij = hij(c†
i cj + c†

j ci). (96)

Then, knowing that

(c†
i cj + c†

j ci)
2 = c†

i cicjc†
j + cic†

i c†
j cj (97)

(c†
i cj + c†

j ci)
3 = c†

i cj + c†
j ci, (98)
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its exponential becomes

e−iHexij t
= 1 +

(
cos(hijt)− 1

)(
c†

i cicjc†
j + cic†

i c†
j cj

)
− i sin(hijt)

(
c†

i cj + c†
j ci

)
.

In order to express the Hamiltonians using known gates, we will use the JWT. For the
sin part, assuming i < j, we obtain

c†
i cj + c†

j ci =

(
i−1

∏
k=0

Zk

)
(|1⟩⟨0|i)

(
j−1

∏
k=0

Zk

)
(|0⟩⟨1|j)−

(
i−1

∏
k=0

Zk

)
(|0⟩⟨1|i)

(
j−1

∏
k=0

Zk

)
(|1⟩⟨0|j)

=

(
j−1

∏
k=i+1

Zk

)
(|10⟩⟨01|ij + |01⟩⟨10|ij),

since |1⟩⟨0|iZi = |1⟩⟨0|i and |0⟩⟨1|iZi = −|0⟩⟨1|i.
For the cos part, we have

c†
i cicjc†

j + cic†
i c†

j cj = |10⟩⟨10|ij + |01⟩⟨01|ij,

which leads to the final form

e−iHexij t
=1 + (cos(hijt)− 1)(|10⟩⟨10|ij + |01⟩⟨01|ij)

− i sin(hijt)

(
j−1

∏
k=i+1

Zk

)
(|10⟩⟨01|ij + |01⟩⟨10|ij). (99)

If j = i + 1 and hijt = π
2 , this operator is the swap gate applied to the qubits i and j,

and a phase factor on two states. More generally, it is related to the exponential of the swap
gate, as shown on Figure 4. If j > i + 1, the phase inside the exponential can be transformed
into its opposite depending on the state of the intermediate qubits due to the Z gates in the
sin term of (99).

e−iHexij t
= 1 + (cos(hijt)− 1)(|10⟩⟨10|ij + |01⟩⟨01|ij)− i sin(hijt)(|10⟩⟨01|ij + |01⟩⟨10|ij)

=
[
e−ihijtSWAPij

][
C(Tj(−hijt))i

][
XiXjC(Tj(−hijt))iXiXj

]
, (100)

where the controlled T gates come from the phase factor on the states |10⟩⟨01|ij and
|01⟩⟨10|ij.

i

j
e−ihijtSWAPij

X X

T(−hijt) X T(−hijt) X

Figure 4. Quantum circuit for exponential of the Excitation operator assuming j = i + 1.

4.2.4. Number-Excitation Operators

The number-excitation operators are:

Hnexijk = hijjk(c†
i c†

j cjck + c†
k c†

j cjci). (101)

They obey the same kind of relations as the excitation operator:

(c†
i c†

j cjck + c†
k c†

j cjci)
2 = c†

i cic†
j cjckc†

k + cic†
i c†

j cjc†
k ck (102)

(c†
i c†

j cjck + c†
k c†

j cjci)
3 = c†

i c†
j cjck + c†

k c†
j cjci. (103)

Similarly, the exponential gives:
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e−iHnexijk t
= 1 +

(
cos(hijt)− 1

)(
c†

i cic†
j cjckc†

k + cic†
i c†

j cjc†
k ck

)
− i sin(hijt)

(
c†

i c†
j cjck + c†

k c†
j cjci

)
= 1 + c†

j cj

((
cos(hijt)− 1

)(
c†

i cickc†
k + cic†

i c†
k ck

)
− i sin(hijt)

(
c†

i ck + c†
k ci

))
= cjc†

j + c†
j cj

(
1 +

(
cos(hijt)− 1

)(
c†

i cickc†
k + cic†

i c†
k ck

)
− i sin(hijt)

(
c†

i ck + c†
k ci

))
In this way, we obtain the gate of the excitation operator controlled by j:

e−ihijjk(c†
i c†

j cjck+c†
k c†

j cjci)t = C(e−iHexik t)j. (104)

This last result is quite natural, since the number-excitation operator results from the
combination of the number operator on qubit j and the excitation operator between qubits
i and k. The number operator returns the number of qubits in the state j, which is either 0
or 1, so it is the same as controlling the excitation operator by qubit j. Figure 5 represents
the corresponding circuit in the case where j = i + 1.

j

i

k
e−ihijtSWAPij

X X

T(−hijt) X T(−hijt) X

Figure 5. Quantum circuit for exponential of the excitation-number operator.

4.2.5. Double Excitation Operators

The double excitation operators are:

Hdexijkℓ
= hijkℓ(c†

i c†
j ckcℓ + c†

ℓc†
k cjci). (105)

They obey the same kind of relations as the excitation operator:

(c†
i c†

j ckcℓ + c†
ℓc†

k cjci)
2 = c†

i cic†
j cjckc†

k cℓc†
ℓ + cic†

i c†
j cjc†

k ckc†
ℓcℓ (106)

(c†
i c†

j ckcℓ + c†
ℓc†

k cjci)
3 = c†

i c†
j ckcℓ + c†

ℓc†
k cjci. (107)

Similarly, assuming i < j < k < ℓ, the exponential gives:

e−iHdexijkℓ
t
= 1 +

(
cos(hijkℓt)− 1

)(
c†

i cic†
j cjckc†

k cℓc†
ℓ + cic†

i c†
j cjc†

k ckc†
ℓ cℓ
)

− i sin(hijkℓt)
(

c†
i c†

j ckcℓ + c†
ℓ c†

k cjci

)
= 1 +

(
cos(hijkℓt)− 1

)(
|1100⟩⟨1100|ijkℓ + |0011⟩⟨0011|ijkℓ

)
− i sin(hijkℓt)

 j−1

∏
p=i+1

Zp

 ℓ−1

∏
p=k+1

Zp

(|0011⟩⟨1100|ijkℓ + |1100⟩⟨0011|ijkℓ
)

. (108)

If the condition i < j < k < ℓ is not verified, the Z gates do not simplify in the
same way, but the global form of the operator remains the same; if hijkℓt = π

2 , similarly
to the case of the simple excitation operator, we obtain a kind of 16 × 16 swap gate. Here
again, it is possible to write the general form of (108) as a power of that matrix, with phase
corrections applied to some states (either the 2 exchanged states or the 14 others). This
matrix exchanges two composite sates (not two qubits).
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4.3. Hydrogen Molecule

All the preceding results can be used to express the Hamiltonian of a hydrogen
molecule, H2. In the BOA, the dynamics of the nuclei can be separated from the dynamics
of the electrons. In this case, the wave function for each electron can be deduced from the
system’s symmetries. If ϕ1 and ϕ2 are the spatial wave functions of one single hydrogen,
then the system can be described through the symmetric and antisymmetric spatial wave
functions ϕ+ = ϕ1 + ϕ2 and ϕ− = ϕ1 − ϕ2 [17]. Taking spin into account, the four basis
states are then:

|ξ1⟩ = |ϕ+⟩|↑⟩; |ξ2⟩ = |ϕ+⟩|↓⟩; |ξ2⟩ = |ϕ−⟩|↑⟩; |ξ4⟩ = |ϕ−⟩|↓⟩, (109)

The BOA Hamiltonian of the hydrogen molecule in the second quantization given in
(83) and (84) can thus be written directly in the WB:

H = H(1) + H(2), (110)

where

H(1) = h11c†
1c1 + h22c†

2c2 + h33c†
3c3 + h44c†

4c4 (111)

H(2) = h1221c†
1c†

2c2c1 + h3443c†
3c†

4c4c3 + h1441c†
1c†

4c4c1 + h2332c†
2c†

3c3c2

+ (h1331 − h1313)c†
1c†

3c3c1 + (h2442 − h2424)c†
2c†

4c4c2

+ℜ(h1423)(c†
1c†

4c2c3 + c†
3c†

2c4c1) +ℜ(h1243)(c†
1c†

2c4c3 + c†
3c†

4c2c1) (112)

+ℑ(h1423)(c†
1c†

4c2c3 + c†
3c†

2c4c1) +ℑ(h1243)(c†
1c†

2c4c3 + c†
3c†

4c2c1).

H(1) is the Hamiltonian for isolated electrons (kinetic energy and electron–proton
interaction) and therefore only contains number operators. H(2) is the Hamiltonian for
electron–electron interactions, so it uses the Coulomb and double excitation operators in
H(2). Using the Trotter–Suzuki approximation, the results from Section 4.2 lead to the
unitary:

e−iHt ≃
[(

4

∏
j=1

Tj(hjj∆t)

)(
∏

1≤j<k≤4
Rj(

θjk∆t
4

)Rk(
θjk∆t

4
)(CNOTjk)(Rk(

θjk∆t
4

))(CNOTjk)

)

(D1423(ℜ(h1423)t)D1243(ℜ(h1243)t)D1423(ℑ(h1423)t)D1243(ℑ(h1243)t))]
t

∆t , (113)

where θjk =

{
hjkkj if j + k odd
hjkkj − hjkjk if j + k even

and Dijkℓ is the exponential of the double excita-

tion operator, given by (108). The expression in (113) represents the global operator in the
form of a product of different quantum gates. The first part of the product in this expression
is similar to the one obtained in [17]. The last part in the product is itself a product of the
following gates:

D1243(ht) = 1 + (cos(ht)− 1)(|1100⟩⟨1100|+ |0011⟩⟨0011|)
− i sin(ht)(|0011⟩⟨1100|+ |1100⟩⟨0011|) (114)

D1423(ht) = 1 + (cos(ht)− 1)(|1001⟩⟨1001|+ |0110⟩⟨0110|)
− i sin(ht)(|1001⟩⟨0110|+ |0110⟩⟨1001|) (115)

The corresponding matrices of these two last unitaries are sparse matrices with four
non-zero elements and can be easily implemented in practical quantum circuits. We want
to emphasize that our method is direct because the Hamiltonians given in (111) and (112)
as well as their exponential in (113) can be directly translated into quantum circuits without
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necessitating the intermediate stage employing the JWT (or the BKT). In our method, the
fermionization obtained by the JWT is built in in the GA formalism.

5. GA Representation of the Quantum Ising and XY Hamiltonians

The quantum Ising Hamiltonian serves as a versatile and widely studied model in
quantum simulation, providing valuable insights into the behavior of complex quantum
systems and serving as a test bed for developing new simulation techniques and exploring
emergent phenomena. While it may not capture all the complexities of real-world quantum
systems, its simplicity, universality, and experimental feasibility make it an interesting tool
for quantum simulation research [13,34,35].

Here we adopt a general approach, inspired from [34,35], considering a general
anisotropic transverse Z field XY Hamiltonian, where the quantum Ising Hamiltonian with
transverse Z field is a particular case (see hereafter). Both Hamiltonians include a term
known as the transverse field, which introduces quantum mechanical effects. The general
anisotropic transverse field XY Hamiltonian is given by:

H =
1
2

n−1

∑
i=1

((1 + γ)XiXi+1 + (1 − γ)YiYi+1) + λ
n

∑
i=1

Zi. (116)

The first sum accounts for the degree of anisotropy interaction energy, and the second
one for the transverse Z field. γ is the anisotropic coefficient, and taking γ = ±1 leads
to the transverse Z field Ising Hamiltonian, while taking γ = 0 leads to the isotropic XX
model. The λ factor is the strength of the transverse Z field. Using the reverse JWT, we can
write this Hamiltonian in the GA formalism as:

H =
1
2

n−1

∑
i=1

(
(1 + γ)(c†

i + ci)(cic†
i − c†

i ci)(c†
i+1 + ci+1)− (1 − γ)(c†

i − ci)(cic†
i − c†

i ci)(c†
i+1 − ci+1)

)
+ λ

n

∑
i=1

(cic†
i − c†

i ci)

=
1
2

n−1

∑
i=1

(
(1 + γ)(c†

i − ci)(c†
i+1 + ci+1)− (1 − γ)(c†

i + ci)(c†
i+1 − ci+1)

)
+ λ

n

∑
i=1

(cic†
i − c†

i ci)

=
n−1

∑
i=1

(
(c†

i ci+1 + c†
i+1ci) + γ(c†

i c†
i+1 − cici+1)

)
+ λ

n

∑
i=1

(1 − 2c†
i ci)

=
n−1

∑
i=1

(c†
i ci+1 + c†

i+1ci) + γ
n−1

∑
i=1

(c†
i c†

i+1 − cici+1) + nλ − 2λ
n

∑
i=1

c†
i ci. (117)

Then, by taking e−iHt, the first sum gives the excitation operators. The nλ term reduces
to a global phase shift, which is meaningless. The last sum gives the number operators.

In the second sum (including the γ factor), we recognize an excitation operator that
undergoes the transformation U 7→ XiUXi. Indeed, we have:

Xi(c†
i c†

i+1 − cici+1)Xi =
i−1

∏
j=0

Zj(c†
i + ci)(c†

i c†
i+1 − cici+1)

i−1

∏
j=0

Zj(c†
i + ci)

= (c†
i + ci)(c†

i c†
i+1 − cici+1)(c†

i + ci)

= (cic†
i c†

i+1 − c†
i cici+1)(c†

i + ci)

= c†
i+1ci + c†

i ci+1.
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Then, the quantum circuit can be written by using:

e−iHt ≃
(

einλ
n−1

∏
i=1

e−iHexi,i+1 ∆t
n−1

∏
i=1

Xie
−iHexi,i+1 ∆tXi

n

∏
i=1

Ti(−2λ)

) t
∆t

. (118)

where the e−iHexi,i+1 ∆t has been calculated in (99).
The corresponding circuit diagram is given in Figure 6.
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Figure 6. Quantum circuit for the quantum anisotropic Ising model simulation given in (117).
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6. Conclusions

In this article, we have shown that Geometric Algebra (GA) using the Witt basis
(WB) approach is equivalent to the Jordan–Wigner Transformation (JWT) commonly used
in quantum simulation. This shows that the formalism of GA can be used to perform
operations on Hamiltonians expressed in the second quantized form and to translate them
into quantum circuits.

The important issue of our method is to propose a direct computational method in
quantum simulation using GA compared to other methods where the direct representa-
tions of the excitation operators using quantum circuits cannot be systematically derived,
requiring work on each particular case.

GA provides a clear and intuitive framework for representing quantum states and
operations and allows a geometric interpretation of quantum operations. This geometric
perspective can provide deeper insights into the behavior of quantum systems and facilitate
the design and analysis of quantum algorithms and circuits. Dirac notation is translated
to GA in a natural way: all expressions are represented in a particular algebra and thus
may be manipulated and implemented as algebra elements directly, without any need for
matrix representation as is sometimes necessary within the Dirac notation formalism.

Further directions could be explored to improve the method, for example, by further
investigating the relation between the geometric product of GA and the tensor product
between quantum states in the context of quantum computing. Concerning the Witt Basis
(WB) approach, the question rises: is there a more general physical meaning and why does
the WB structure describe the fermion second quantization representation so well?

The advantages of GA in scaling compared to qubit methods may vary depending
on the specific application and context. GA can lead to more efficient representations
of quantum states and operations compared to traditional approaches, such as matrix
representations. This reduced complexity can help mitigate the challenges associated with
scaling quantum algorithms to larger systems, including computational overhead and
resource constraints. Research in this area is ongoing, and further developments may
uncover additional advantages of GA in quantum computing scalability.

While JWT has been widely used in quantum computing qubit gate models for simulating
fermionic systems, it can introduce stability challenges due to its complexity and error-prone
nature. Our approach naturally accommodates the representation of fermionic states and
operators and thus offers a more direct, natural, and potentially more stable alternative for
representing fermionic systems in quantum computing applications. Also, our method could
be applied for a GA representation of the Bravyi–Kitaev transformation, which is also widely
used in quantum simulation because it seems less consuming in quantum gate resources.

We plan in the future to investigate some algorithmic implementation of the method
presented here, for example, for the determination of molecule ground states.
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