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Abstract: In a dissipative regime, we study the properties of several qubits coupled to a driven
resonator in the framework of a Jaynes–Cummings model. The time evolution and the steady state
of the system are numerically analyzed within the Lindblad master equation, with up to several
million components. Two semi-analytical approaches, at weak and strong (semiclassical) dissipations,
are developed to describe the steady state of this system and determine its validity by comparing
it with the Lindblad equation results. We show that the synchronization of several qubits with the
driving phase can be obtained due to their coupling to the resonator. We establish the existence of
two different qubit synchronization regimes: In the first one, the semiclassical approach describes
well the dynamics of qubits and, thus, their quantum features and entanglement are suppressed
by dissipation and the synchronization is essentially classical. In the second one, the entangled
steady state of a pair of qubits remains synchronized in the presence of dissipation and decoherence,
corresponding to the regime non-existent in classical synchronization.

Keywords: quantum synchronization; qubits; entanglement; quantum dissipation; Lindblad equation;
Jaynes–Cummings model; driven resonator

1. Introduction

The synchronization of two maritime pendulum clocks, discovered by Christian
Huygens in 1665 [1], forms the foundation for synchronization phenomena that appear in
various systems ranging from clocks to fireflies, cardiac pacemakers, lasers, and Josephson
junction (JJ) arrays (see historical survey and overview in [2–4]).

With the modern development of quantum computation and quantum information (see,
e.g., [5]), the exploration of quantum synchronization phenomena in the quantum realm has
become significantly important. The phenomenon of quantum synchronization gains even
more relevance for JJ arrays and superconducting qubits where dissipative and quantum effects
are important (see, e.g., [4,6]). A strong coupling regime involving several superconducting
qubits with a microwave resonator has been experimentally realized [7–11], which requires
investigating the effects of strong interactions in quantum dissipative-driven systems.

The essential element of synchronization in classical mechanics is dissipation, which
leads to the phase synchrony of coupled autonomous systems with energy supply [2].
Thus, the analysis of quantum synchronization requires the use of formalism of dissipative
quantum mechanics. This formalism is known and based on the Lindblad master equation
for the density matrix ρ of the whole system developed in [12,13] and reviewed in [14]. It
has fundamental grounds and allows us to study complex phenomena, such as quantum
strange attractors [15,16]. However, its numerical simulation requires integrating time
propagation of the whole density matrix with a large number of N × N components that
are numerically rather heavy.

Another approach to dissipative quantum evolution is based on the method of quan-
tum trajectories (see, e.g., [17–19]), which stores only a stochastically evolving state vector
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of size N. The averaging over several realizations allows us to characterize the proba-
bilities from the density matrix with statistical fluctuations. The application of quantum
trajectories to the problem of quantum synchronization has been reported in [20], where
it was shown that—at small dimensionless values of the Planck constant h̄—the synchro-
nization remains robust with respect to quantum fluctuations. These model studies of
quantum synchronization [20] were shown to have close similarities with Shapiro’s steps
in the Josephson junction [4]. The quantum trajectory method has also been applied to
investigations of quantum synchronization of one and two qubits coupled to a driven
dissipative resonator [21,22]. It has been shown that the driving phase can impose quantum
synchronization of qubit phases and mutual synchronization and entanglement of two
qubits. Regarding the synchronization of classical systems, this corresponds to the regime
of the phase synchronization of oscillators by external driving [23]. Thus, the phases of
oscillators rigidly follow the phase of driving a monochromatic field. In a similar way, we
define a quantum synchronization of qubits as the regime in which a phase (or orientation
angle) of each qubit follows the phase of an external monochromatic driving field applied
to a resonator (cavity).

The description of quantum trajectories involves significant quantum noise and fluc-
tuations, making it difficult to obtain complete information about the evolution of the
density matrix and its steady state using this approach. Therefore, it is crucial to study the
phenomenon of quantum synchronization of qubits using the Lindblad master equation
for the density matrix. In this work, we describe the results obtained with the Lindblad
description.

In recent years, there has been growing interest in various aspects of the quantum
synchronization of various systems (see, e.g., [24–30]). There are even discussions about
quantum synchronization for satellite networks [31–33]. These developments initiated our
research on the quantum synchronization of several superconducting qubits coupled to
a driven dissipative resonator performed in the frame of the Lindblad master equation.
There are also works on the quantum synchronization of oscillators (see, e.g., [34]), but
here, we only discuss the synchronization of qubits.

They conducted extensive numerical simulations of tens of thousands of Lindblad
equation components, enabling the establishment of various nontrivial regimes of quantum
synchronization and entanglements involving one, two, three, or four qubits strongly
coupled with a driven resonator in the presence of dissipation. It is shown that in regimes
of either weak or strong dissipation, the system behavior can be well described by semi-
analytical methods of weak perturbation theory or semiclassical theory, respectively. How-
ever, certain nontrivial dissipative regimes with preserved entanglement of dissipative
qubits remain inaccessible for such semi-analytical descriptions.

At the time when Christian Huygens discovered clock synchronization in 1665, improv-
ing clock accuracy was a strategic military task for ship navigation, which saw significant
enhancements based on this discovery (see [1–3])). We believe that quantum synchroniza-
tion of qubits will also play a fundamental role in quantum computing. Indeed, with a
decrease in size scales, the quantum and dissipative effects start to play more important
roles (see, e.g., [4,6]). In such a regime, a quantum synchronization of several qubits be-
comes important for qubit control and the operation of quantum gates. At the same time,
it is imperative to understand to what extent the dynamics of dissipative qubits become
classical and, thus, it can be described in the semiclassical approximation, meaning that
dissipation suppresses quantum effects, or that quantum features and entanglement resist
and remain present even for dissipative qubits. Our results are obtained in the frame of
the Lindblad equation for a driven dissipative resonator coupled with dissipative qubits,
establishing the existence of two regimes: one when the synchronization of qubits is well
described by the semiclassical approach so that quantum features are suppressed by dissi-
pation and another when entanglement is preserved for dissipative synchronized qubits,
thus being essentially quantum.
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Our results are based on an extensive numerical and semi-analytical analysis of
the Lindblad equation of the system of driven dissipative resonators coupled to up to
four dissipative qubits. A certain advantage of the Lindblad description is that it allows
obtaining the steady state of the system corresponding to infinite times while the approach
of quantum trajectories always gives characteristics fluctuating with time and very long
times are needed to obtain steady-state properties. This was the case of results presented
in [21,22] with one or two non-dissipative qubits; this is not the case in experiments with
superconducting qubits (see, e.g., [6–11]). Our results clearly show the presence of a
synchronized steady state with up to four qubits. They also show that the entanglement
of qubits can survive in the system’s steady state. We begin this article with the model
description, followed by the introduction of semi-analytical methods, which allow for a
better understanding of the physical effects appearing in the direct numerical simulations
of the Lindblad equation of the system.

This article is organized as follows: Section 2 describes the model, numerical methods,
and semi-analytical approximations. Section 3 presents the obtained numerical results and
RWA validity tests of RWA; the results and validity of the weak damping rate equation
approach are presented in Section 4 and those of the strong damping semiclassical regime
are presented in Section 5. The regimes beyond the validity of semi-analytical approaches
are analyzed in Section 6, the synchronization of several qubits is described in Section 7,
and a discussion is presented in Section 8.

2. Model Description

We consider a model of several qubits (spin half systems) interacting with one har-
monic cavity driven by an external monochromatic field. The Hamiltonian of this system is
as follows:

Ĥ(t) = h̄ω0 â+ â + h̄ ∑
l

λl σ̂x,l(â + â+) + ∑
l

h̄Ωl
2

σ̂z,l + 2F(â + â+) cos ωt (1)

where ω0 is the frequency of the cavity, ω is the frequency of the driving field, and F is the
driving strength. The operators â+ and â are the rising/lowering operators for the cavity
photons. The qubits in this model are indexed by l (we consider various numbers of qubits,
from 1 to 4); their contributions to the Hamiltonian are given by the Pauli matrix operators,
where Ωl is the energy splitting (Zeeman splitting for spin systems) and λl denotes their
coupling strengths with the cavity.

For F = 0 and one qubit, the Hamiltonian (1) is reduced to the Jaynes–Cummings
model [35], appearing in many systems of quantum optics and other physical systems [36,37].
It was experimentally realized with Rydberg atoms in a resonance cavity [38]. The unitary
behavior of the Jaynes–Cummings model with a monochromatic-driven cavity was studied
in [39]. However, here, we consider the model with one or several qubits in the presence of
driving and dissipation, which corresponds to a real situation of superconducting qubits [6].

In the rotating wave approximation (RWA), the Hamiltonian in Equation (1) is as
follows:

Ĥ(t) = h̄ω0 â+ â + h̄ ∑
l

λl(âσ̂+
l + â+σ̂−

l ) + ∑
l

h̄Ωl
2

σ̂z,l + F(âeiωt + â+e−iωt) (2)

where we kept only the resonant terms in both the driving field and spin-cavity interactions.
The Pauli matrices σ̂+

l and σ̂−
l are the rising/lowering spin operators for spin/qubit l.

For F = 0 and one qubit, the Hamiltonian (2) is reduced to the RWA form of the Jaynes–
Cummings model [35].

An advantage of the RWA is that the time-dependent Hamiltonian in Equation (2) can
be made stationary by moving to the rotating frame using the unitary transformation, as
follows: Û(t) = exp

(
iωâ+ ât + iω ∑l σ̂+

l σ̂−
l t

)
which acts on the density matrix ρ̂, moving it
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into the rotating frame through ρ̂R = Û(t)ρ̂Û+(t). This leads to a stationary rotating frame
Hamiltonian [36,37]:

ĤR = h̄(ω0 − ω)â+ â + h̄λ ∑
l
(âσ̂+

l + â+σ̂−
l ) + ∑

l

h̄(Ωl − ω)

2
σ̂l,z + F(â + â+) (3)

for simplicity, we assume that the coupling strength between each qubit and cavity is the
same for all qubits; thus, λl = λ for all l.

We describe the dissipative effects in the framework of the time-dependent Lindblad
equation [14] with zero temperature dissipative terms for both qubits and cavity dynamics,
as follows:

∂tρ̂ = − i
h̄
[Ĥ, ρ̂] + Ld(ρ) (4)

where Ld gives the dissipative part of the Lindblad dynamics:

Ld(ρ̂) = γ

(
âρ̂â+ − 1

2
â+ âρ̂ − 1

2
ρ̂â+ â

)
+ γs ∑

l

(
σ̂−

l ρ̂σ̂+
l − 1

2
σ̂+

l σ̂−
l ρ̂ − 1

2
ρ̂σ̂+

l σ̂−
l

)
(5)

with γ being the dissipation rate of the cavity and all qubits have the same dissipation rate
γs.

In the RWA formulation, Lindblad Equation (4) takes the following form:

∂tρ̂R = − i
h̄
[ĤR, ρ̂R] + Ld(ρR) (6)

Since the Hamiltonian ĤR is stationary, the steady-state value of ρ̂R can be found by setting
the left-hand side of Equation (6) to zero. The advantage is that finding the steady state
does not require numerically integrating the equations of motion Equation (4) and can be
found more directly by solving the matrix equation, as follows:

− i
h̄
[ĤR, ρ̂R] + Ld(ρR) = 0 (7)

The described model is an extension of the Jaynes–Cummings model, which appears
in various fields of physics describing the most natural coupling between the oscillator and
two-level atom (spin-half). The extensions we use include the dissipation of qubits and
cavities and also the monochromatic driving of cavities. Such a situation naturally appears
for superconducting qubits coupled to a driven cavity (see [6–11]) and, thus, we believe
that our model is suited for the study of the synchronization of dissipative qubits coupled
to a driven resonator (cavity).

2.1. Numerical Methods

For convenience, in our study, we use units where h̄ = 1 and use the cavity–qubit
coupling strength λ as the energy scale in dimensionless quantities. This choice of units
is convenient for analyzing RWA validity because only relative energies to the excitation
frequency appear in Equation (3) and, thus, energy differences rather than the absolute
energy become physically relevant.

In general, Equation (7) presents a system of linear equations, with a superoperator act-
ing on the unknown density matrix. If the density matrix has size N × N, the superoperator
will be a matrix of size N2 × N2, and when exploiting its sparse structure of the Hamiltonian
ĤR and of the dissipative Lindblad terms, finding the solution of Equation (7) becomes
numerically prohibitive. Building the sparse superoperator matrix can be numerically
demanding in terms of memory.
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Thus, we used an alternative approach, exploiting as much as possible the similarity
between the Lindblad equation and Sylvester equations, which are matrix equations of the
following form:

ÂX̂ + X̂B̂ = Ĉ (8)

where Â, B̂, Ĉ are known matrices and X̂ is the unknown matrix to be found. For this class
of matrix equations, more efficient solution algorithms are available [40]. In our case, we
use the Bartels–Stewart algorithm [40], which has an N3 computation cost, where N × N is
the size of the density matrix.

The general steady-state Lindblad equation is as follows:

L(ρ̂) = −i[Ĥ, ρ̂] + ∑
k

(
L̂k ρ̂L̂+

k − 1
2

L̂+
k L̂k ρ̂ − 1

2
ρ̂L̂+

k L̂k

)
= 0 (9)

and is not of the Sylvester type (here, Ĥ is the Hamiltonian and L̂k denotes dissipative
operators). So, a direct application of the Bartels–Stewart algorithm is not possible. We,
thus, split the Lindblad superoperator into a first term that resembles a Sylvester equation
and a remainder, as follows:

L(ρ̂) = −L0(ρ̂) + ϵL1(ρ̂) (10)

L0(ρ̂) = iĤρ̂ +
1
2 ∑

k
L̂+

k L̂k ρ̂ − iρ̂Ĥ +
1
2

ρ̂ ∑
k

L̂+
k L̂k (11)

L1(ρ̂) = ∑
k

L̂k ρ̂L̂+
k (12)

The steady-state density matrix L(ρ̂) = 0 will be a fixed point of the following:

ρ̂ = L−1
0 L1ρ̂ (13)

It is, thus, possible to iterate from an initial guess ρ̂m, solving a series of Sylvester equations,
as follows:

L0ρm+1 = L1ρ̂m (14)

We have found that, usually, a few (or at most, tens of) iterations are enough to find the
fixed point with very high accuracy. The initial guess ρ̂0 for the iteration can be chosen
from one of the two approximate methods presented in the following sections; we typically
use ρ̂0, which is obtained from the summation of the rate equation perturbation theory.
Due to the availability of a good initial ρ̂0 in our simulations, the number of Sylvester
equation iterations required for convergence is small. Algorithms for solving generalized
forms of the Sylvester equation have also been reported [41]; they can perhaps offer a faster
converging iterative solution in cases where a good initial guess is not available. We note
that the inverse of L0 always exists in our system and the used approach allows us to
compute it numerically in an efficient way.

For the validity of the Sylvester equations, the main assumption is that the RWA steady
state is a valid description of the time-averaged state of the exact dynamics. The choice of the
initial density matrix is not important for the final result, it only influences the convergence
speed of the iterative method. As for any iterative numerical method, the initial guess for
the interaction influences the number of iterations required for convergence, it will not
influence the result, provided the solution is unique and the iteration converges (which is
the case here). In practice, we use the guess provided by the perturbation theory and/or
guesses by the steady-state density matrix already obtained for some neighboring parameter
values (such guesses are easily available when computing a frequency dependence).
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It is also possible to find the steady state by the numerical integration of time-
dependent Lindblad Equations (4), (5), or (6). We use a standard odeint integration li-
brary [42] for the integration of equations of motion using a sparse matrix representation
for all operators acting on the density matrix, which is represented as a dense matrix. The
main integrator is an adaptive Runge–Kutta–Dorpi fifth-order stepping algorithm, although
other integration schemes are also tested with similar results. In the time-dependent case,
it is possible to check the validity of the RWA approximation since we have access to the
full-time dependent evolution of the density matrix, including its oscillations around the
RWA steady state, while integrating the stationary Equation (6) converges to the solution
of Equation (7).

In principle, the two semi-analytical approaches to the solution of the RWA Lindblad
equation at weak and strong dissipations are well known and have been used for a descrip-
tion of various systems. They are known as the rate equation (weak dissipation) and the
semiclassical (strong dissipation) approach (see, e.g., the refs. in the subsection below). In
this work, we use certain improvements of these approaches for our model system, which
allow us to efficiently obtain the steady state of the Lindblad equation with a rather large
number of components. Also, the comparison with the results obtained for the Lindblad
equation allows us to determine the regions of validity of these approaches. We note that,
in the validity regime of the semiclassical approach, there is no entanglement of qubits,
even if they can be well synchronized.

2.2. Rate Equation Perturbation Theory

The above approach for steady-state computation can be numerically costly if an
important number of Sylvester equation inversions is required. It is, thus, important to
have a good initial guess for the density matrix to start the iteration. In the limit where the
damping terms in the Lindblad dynamics are weak compared to characteristic frequencies
of the Hamiltonian dynamics, it is also natural to use an approximate solution based on a
formal expansion of the density matrix in powers of the dissipation operators. In such an
approach, the dominant terms of the density matrix correspond to weighted eigenstates
of the Hamiltonian dynamics and it can be convenient to think of this expansion as a
series of rate equations describing the population of the RWA Hamiltonian eigenstates.
We use this approach to obtain good initial guesses for the density matrix; it also allows
us to investigate if the steady state of model Equation (6) can indeed be described by a
perturbative approach based on Hamiltonian eigenstates. Heuristically, this is justified
only when there is a clear separation of time scales between the Hamiltonian dynamics
and the slower dissipative processes. The crossover from quantum master equations to
incoherent rate dynamics is a fundamental problem that has been studied previously in
different contexts [43–46]. In the following treatment, we adapt and optimize the rate
equation approach for the quantum synchronization of a driven cavity coupled to qubits,
thereby increasing the convergence radius of the dissipative series.

We describe this approach by starting from the general steady-state Lindblad equation
and introducing a formal expansion parameter ϵ to keep track of the order of the dissipative
parameters in the expansion:

L(ρ̂) = −i[Ĥ, ρ̂] + ϵ ∑
k

(
L̂k ρ̂L̂+

k − 1
2

L̂+
k L̂k ρ̂ − 1

2
ρ̂L̂+

k L̂k

)
(15)

= LH(ρ̂) + ϵLγ(ρ̂) (16)

LH(ρ̂) = −i[Ĥ, ρ̂] (17)

Lγ(ρ̂) = ∑
k

(
L̂k ρ̂L̂+

k − 1
2

L̂+
k L̂k ρ̂ − 1

2
ρ̂L̂+

k L̂k

)
(18)

here, L̂k—as previously—denotes the relaxation operators, and Ĥ is a steady-state Hamilto-
nian, which in our case is given by RWA Equation (3).
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To find the steady state, we need to solve L(ρ̂) = 0, and we proceed to make a formal
expansion in ϵ:

(LH + ϵLγ)(ρ̂0 + ϵρ̂1 + ... + ϵjρ̂j + ...) = 0 (19)

The equations for the lowest-order approximation ρ̂0 are as follows:

LH ρ̂0 = 0 , PDLγρ̂0 = 0 , Tr ρ̂0 = 1 (20)

where the operator PD acts on a density matrix defined in the eigenbasis of Ĥ by keeping
only its diagonal part. The first equation LH ρ̂0 = 0 imposes that ρ̂0 is diagonal in the
eigenbasis |n⟩ of the Hamiltonian Ĥ = ∑n ϵn|n⟩⟨n|. Thus, ρ̂0 has the form ρ̂0 = ∑n Pn|n⟩⟨n|
where Pn can be interpreted as the probability of eigenstate |n⟩. The last two equations are,
thus, the rate equation determining Pn and the normalization condition ∑n Pn = 1.

The solution to this equation involves building the matrix, as follows:

Knm = ⟨m|Lγ(|n⟩⟨n|)|m⟩. (21)

We then find non-zero solutions K|ψ⟩ = 0, such solutions always exist since ⟨1, 1, ..., 1|K = 0.
The recurrence equations for the next orders are as follows:

LH(1 −PD)ρ̂j+1 + Lγρ̂j = 0 (22)

which defines the off-diagonal components of ρ̂j+1 (in the eigenbasis of Ĥ) but leaves its
diagonal part undefined.

The diagonal part of ρ̂n+1 can be found, requiring the following:

PDLγρ̂j+1 = 0 (23)

this can be viewed as higher-order corrections to the rate equations changing the occupation
state probabilities, Pn.

Finally, the matrix ρ̂j+1 is then made traceless by the transformation

ρ̂j+1 → ρ̂j+1 − ρ̂0Tr ρ̂j+1 , (24)

this transformation is allowed because the induced error is of a higher order:

L(ρ̂0Tr ρ̂j+1) ∼ ϵj+2 (25)

This can also be viewed as an order-by-order normalization of the density matrix Trρ = 1.
We denote as (R) the numerical result of the summation of these series. The conver-

gence of this expansion can be checked by evaluating the residual error in Equation (19)
at each step of the summation, checking that the error decreases as the number of terms
grows. If the series is convergent, we continue summation until close to machine precision
in the residual error, which is typically reached from the first ten terms. If the series is
divergent, we stop summation when the residual error starts to increase.

We find that the direct summation of (R) seems to have a rather small convergence radius
requiring the amplitude of the dissipation to be small compared to energy level splittings:

γ, γs ≪ min
i,j

|ϵi − ϵj| (26)

In practice, some of these transitions are almost forbidden by selection rules involving
several spin flips and transitions between several oscillator quanta. We thus attempt to
improve the radius of convergence of the rate equation series by incorporating dissipative
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terms into LH. This is done by observing that LH acts on the density matrix |n⟩⟨m| as
follows:

LH(|n⟩⟨m|) = i(ϵm − ϵn)|n⟩⟨m| (27)

We can, thus, formally include in LH all the dissipative terms, which are diagonal
on the same basis. This is done by introducing a new superoperator LγK, which in the
eigenbasis of H is defined as follows:

LγK(ρ̂)nm =

{
[⟨n|Lγ(|n⟩⟨m|)|m⟩]ρ̂nm (m ̸= n)

0 m = n
(28)

The expansion (R) is then performed with the updated operators L̃γ and L̃H given by
the following:

L̃γ = Lγ −LγK (29)

L̃H = LH + LγK (30)

This approach has some similarities with a Jacobi preconditioning step (see, e.g., [47]),
which can be used to improve the radius of convergence of iterative algorithms to solve
linear equations. More physically, it corresponds to absorbing some terms of the Lindblad
equation into a non-self-adjoint dissipate Hamiltonian.

We will show that this updated approach, (R)∗, improves the radius of convergence
of the perturbation series, and for low-friction divergence, seems to occur only close to
the exact resonance ω = ω0, when the RWA Hamiltonian Equation (3) becomes extremely
degenerate. In this case, dissipative dynamics can no longer be described satisfactorily
based only on populations of the eigenstates of the Hamiltonian. Another point of view
on the finite convergence radius of the rate equation series is that, formally, the series can
also be summed for negative values of the dissipation rates, which then correspond to gain.
The series on the dissipative and gain sides have the same radius of convergence, but if
the gain is larger than some threshold, the oscillator energy will diverge. This argument
provides a more physical explanation for finite convergence radius near resonance.

2.3. Semiclassical Approximation

While the perturbative rate equation approach works at weak dissipation, its con-
vergence fails in the opposite limit of strong damping. In this regime, an approximate
description of the system’s steady state can be obtained from a semiclassical trial density
matrix. In this work, we adopt a variation of the usual semiclassical approach, where some
quantum mechanical operators are replaced by their average values (for a recent example of
this approach, see [48]). Instead, we apply the Lindblad superoperator to a semiclassical ten-
sor product ansatz and minimize the residual over variational parameters, characterizing
the state of the cavity and qubit polarizations. This approach provides variational approxi-
mations to the kernel of the Lindblad superoperator. The functional to be minimized can be
computed analytically, and its value offers an estimation of the accuracy of the semiclassical
ansatz. The possibility of checking the accuracy of the semiclassical approximation without
comparing it to quantum results was one of our motivations for the variational strategy;
another advantage is that since we compute the exact action of the Lindblad superoperator
on the trial density matrix, some information on quantum fluctuations is preserved, which
is not the case when operators are replaced by their average value.

We start by presenting this approach in the simple model case of a driven cavity, for
which the RWA steady state is a pure coherent state and, thus, its minimization gives the
steady state exactly and then generalizes this approach to a cavity coupled to qubits.
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Our approach is to minimize the (square) matrix norm S of the Lindblad superoperator
applied to some trial form of the density matrix, as follows:

S = Tr [L(ρ̂)]+L(ρ) (31)

We first consider the simple model of a driven dissipative cavity in the RWA, as
follows:

Ĥ = ωr â+ â + F(â + â+) (32)

L(ρ̂) = [L(ρ̂)]+ = −i[Ĥ, ρ̂] + γ

(
âρ̂â+ − 1

2
â+ âρ̂ − 1

2
ρ̂â+ â

)
(33)

where ωr = ω0 − ω is the detuning between the cavity frequency and the driving field, F,
at frequency ω.

We consider a trial density matrix given by a pure coherent state, parameterized by a
complex α = αx + iαy, where (αx and αy are the real and imaginary parts of α):

ρ̂α = |α⟩⟨α| (34)

where â|α⟩ = α|α⟩.
The functional Equation (31) can then be evaluated as follows:

S0(α) = S(|α⟩⟨α|) = 2
[

F2 + 2Fαxωr + (α2
x + α2

y)ω
2
r

]
+ 2Fαyγ + γ2 α2

x + α2
y

2
(35)

The first bracketed term comes from the Hamiltonian dynamics while the other terms
include damping effects.

We can check that the minimum S0 = 0 is achieved at the following:

αx = − 4Fωr

γ2 + 4ω2
r

, αy = − 2Fγ

γ2 + 4ω2
r

(36)

which is the classical response function of an oscillator at frequency ω0 excited at frequency
ω with a detuning of ωr = ω0 − ω and a relaxation time of τ = 2γ−1. Since S0 = 0, this
solution is exact.

We now generalize this approach to the case of a cavity coupled to one and then more
qubits. In the case of one-qubit with the RWA Hamiltonian Equation (3), we generalize the
trial form of the density matrix to a product state:

ρ̂ =
1
2
|α⟩⟨α|

(
1 + bxσ̂x + byσ̂y + bzσ̂z

)
(37)

which is now parameterized by three real numbers, bx,y,z, given the Bloch sphere coordi-
nates of the spin density matrix, in addition to the complex number α parameterizing the
cavity coherent state.

Evaluating Equation (31), we find the following:

S =
1 + b2

x + b2
y + b2

z

2
S0(αx, αy) +

Ω2
r (b2

x + b2
y)

2
+ Sλ + Sγs (38)

where the first term corresponds to the single cavity described previously. In the second
term, the frequency Ωr = Ω − ω gives the detuning between the qubit level spacing Ω and
the driving frequency. Here, we omit the qubit index, where Ω = Ωl , and λ denotes the
qubit–cavity interaction strength. This term just describes the qubit eigenstates without
qubit–cavity coupling corresponding to bx,y = 0.
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The third term, Sλ, describes the Hamiltonian part of the qubit–cavity coupling and
all terms are proportional to λ:

Sλ = 2λ
[
Fbx + (αxbx − αyby)(ωr − bzΩr)

]
+ γλ(αybx + αxby) (39)

+
λ2

2

[
4b2

z

(
α2

x + α2
y

)
+

(
4α2

x + 1
)

b2
y + 8αxαybxby +

(
4α2

y + 1
)

b2
x + (bz + 1)2

]
The final term Sγs contains all terms, which are induced by the qubit damping, as

follows:

Sγs = γ2
s

b2
x + b2

y + 4(1 + bz)2

8
− γsλ(αybx + αxby)(2 + bz) (40)

where the first term is minimized by the qubit ground states bx, by = 0 and bz = −1, while
the second term mixes qubit–cavity coupling and qubit relaxation.

The cavity–qubit steady state is then obtained by minimizing S as a function of five
parameters αx,y, bx,y,z. For the case of two qubits, we generalize the trial form of the density
matrix to the following:

ρ̂ =
1
4
|α⟩⟨α|

(
1 + b1xσ̂1x + b1yσ̂1y + bzσ̂1z

)(
1 + b2xσ̂2x + b2yσ̂2y + bzσ̂2z

)
(41)

the expression for S for this trial function is given in the Appendix A.
Our trial form for the density matrix does not include any entanglement between

qubits and cavities since the trial density matrix is taken as a tensor product. The cavity’s
steady state is given by a coherent state and the qubits by their Bloch sphere components.
We, thus, call this the semiclassical approximation to the cavity–qubit steady state. While
the minimization of the semiclassical function can no longer be performed analytically
in general cases, this minimization is computationally less demanding compared to full
quantum calculations. It is, thus, important to identify the regimes of the Lindblad equation,
where the above semi-analytical approaches can correctly reproduce its full quantum
dissipative solution.

Above, we describe the main elements of semiclassical approximation. Its applica-
tions to our model are described in the following sections. The important feature of this
approximation is that it allows us to understand if the steady state of the system is close
to classical behavior or not. In this way, we can see how quantum is the synchronization
of qubits with the driven cavity. This semi-analytical method provides a better vision of
system properties in the steady state.

3. Numerical and Semi-Analytical Results

In the previous section, we described how the time-dependent dissipative quantum
problem of a driven cavity coupled to qubits can be transformed into a stationary problem
by moving to the rotating frame. Finding the steady-state density matrix of the system is
then reduced to finding the kernel of the RWA Lindblad operator L(ρ̂). We then presented
several approaches to finding this steady state. An exact numerical approach is based
on iterating solutions to Sylvester equations, a weak damping perturbation theory series,
which can be interpreted as population dynamics of the quantum eigenstates of the system,
and a semiclassical approximation which we expect to be valid at stronger damping where
quantum coherence is quickly destroyed.

Here, we first present some numerical results that confirm the convergence of the
system to its RWA steady state and then investigate the different regimes of this model,
where our two semi-analytical approximations apply. For most parameters, we find that
either one of these approximations can be used but we also identify a regime where they
are not able to describe the entangled dissipative state of the system.
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RWA Validity Analysis

To probe the validity of the RWA steady state, we consider an example of Lindblad
dynamics for a single non-dissipative qubit coupled to a dissipative cavity. This model was
analyzed previously in [21] using the quantum trajectory method. This method showed
the bistability of the quantum trajectory wave function corresponding to two-qubit orien-
tations even for relatively large detuning between the qubit and cavity eigenfrequencies
compared to their coupling strength λ. This nontrivial regime seems to be a good test case
to investigate RWA validity.

The bistability discussed in [21] manifests as two branches of the mean cavity oc-
cupation ⟨a+a⟩ for the two possible qubit eigenstates. This can be seen as two distinct
peaks in the probability distribution of the cavity occupation number for spin-down,
P−(n) = ⟨n,−|ρ̂|n,−⟩, and spin up, respectively P+(n) = ⟨n,+|ρ̂|n,+⟩, where n is the
cavity eigenstate index. This bistability is reproduced by integrating the time-dependent
Lindblad evolution in Figure 1, in the top two panels, showing P−(n) and P+(n) as func-
tions of the detuning ωr = ω0 − ω between the cavity and the driving field. Other
parameters are fixed to ∆ = 2λ, where we introduce ∆ = Ω − ω0 as the detuning between
the qubit and the cavity frequencies, F = λ and γ = 0.3λ. The cavity frequency is fixed to
ω0/λ = 10. The bottom panels in Figure 1 show the same quantities for the RWA steady
state with good agreement between both methods.

↑ ↑↓ ↓time integration

↓ ↓ ↑ ↑

time integration

RWA RWA

( ()/λ

( ( )/λ

)/λ

)/λ

Figure 1. Distribution of the oscillator occupation number, n, as a function of the detuning from
the cavity resonance (ω − ω0)/λ and z-axis spin projection. The color scale shows the amplitude
|ρ(n, s; n, s)| where s =↑, ↓ is the spin up/down state. We remind readers that λ is the strength of
the spin cavity interaction; we use it as the energy scale to facilitate the comparison between direct
time integration and RWA, which depends only on the difference ∆ = Ω − ω0 between the Zeeman
splitting Ω and the cavity frequency ω0, which is set to ∆ = 2λ in this figure. Here, the driving
strength is set to F = λ, cavity dissipation is γ = 0.3λ, and qubit is dissipationless γs = 0. The top
rows in the figures are obtained by direct time integration for ω0/λ = 10, while the bottom rows
present the results from RWA. For the Lindblad time integration, numerical data show the density
matrices after τp = 2 × 104 excitation periods, starting from the system’s ground state for F = 0
at t = 0 (we use the same τp for the results presentations from other cases of the time-dependent
Lindblad equation). The oscillator phase spaces in the simulations were truncated to the first 100
oscillator levels (usually used for other cases).
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While RWA qualitatively reproduces the bistability behavior, some deviations are
also visible. To be more quantitative about the agreement between RWA and the exact
dynamics, we consider how the mean qubit/cavity quantity dependencies on ωr = ω0 − ω
are changed with the increasing RWA parameter, ω0/λ, which is expected to determine the
RWA validity.

The results are shown in Figure 2 for similar parameters as in Figure 1. While some
deviations between the integration of the time-dependent Equation (1) and RWA are visible
for ω/λ = 10, the deviation rapidly drops as ω/λ increases. For ⟨Ŝx⟩, ⟨Ŝz⟩, and ⟨â+ â⟩,
the convergence is rapid with identical results for ω/∆ = 10, while the qubit projection
Ŝy converges more slowly. In the numerical simulations, we use 100 cavity levels, which
were found to be sufficient as they are twice the size of the maximum excitation number
shown in Figure 1. Slow relaxation of one of the spin components in this model is shown
in Figure A1 of Appendix A. RWA directly computes the steady state of the system and,
thus, does not require the integration of many oscillation periods before reaching a steady
state. The deviations between the RWA steady state and fully relaxed time integration
are small in limit ω/λ ≫ 1 and, thus, the RWA can be a more reliable way to explore the
steady-state properties of this regime. Part of the deviations between RWA and the full-time
dependent dynamics can be attributed to the slow relaxation of the spin degrees of freedom
in this model; thus, integration over a long time is needed to reach the system’s steady
state. Thus, overall, we find that the RWA reproduces the bistability effect quite accurately.
In the quantum trajectory description, this bistability becomes visible as long-time jumps
between quantum states; these jumps, on average, should reproduce the populations of
each bistable state.
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Figure 2. Mean spin projections ⟨Sx,y,z⟩ and oscillator quantum number ⟨n⟩ = ⟨a+a⟩ as functions of
the detuning (ω −ω0)/λ for Ω−ω0 = 2λ, F = λ, γ = 0.3λ (the same values as in Figure 1). Different
traces correspond to quantum dynamics to increase the RWA parameter ω0/λ = 10, 30, 50, 100 (for
case 50, we show a green curve on a shorter range since—outside of it all—color curves overlap,
making them hardly distinguishable). The agreement with RWA improves as ω0/λ increases but
worsens a bit for the largest value. This behavior is explained as a transient effect in Figure A1 of
Appendix A, where we show that relaxation to the steady state is not complete, even after τp = 2× 104

microwave periods. Indeed, since the qubit is not dissipative in this simulation (γs = 0), the relaxation
time scale can be much longer than γ−1.

We highlight the very early results of the bistability of the qubit coupled to a driven
resonator, as shown in [49] in the RWA approximation. However, only a specific regime,
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where all three frequencies of the qubit, resonator, and monochromatic drive were equal,
was considered there. Also, the synchronization phenomenon was not discussed.

4. Weak Damping Rate Equation Approach

We then present a typical example of the comparison between the RWA steady state
and the summation of the rate equation series. We show the comparison between a single
qubit interacting with a cavity in the case where both the spin and cavity are dissipative.
Figure 3 shows the mean qubit spin-projection ⟨Sx⟩ in the steady state as a function of the
detuning ωr. Similar results are obtained for other spin components ⟨Sy,z⟩. The RWA steady
state found using a Sylvester equation iteration shows a series of oscillations, where ωr is in
the interval [0, ∆]. These oscillations correspond to multiphoton resonances in the rotating
frame kωr = ∆ (where k is a positive integer). In the laboratory frame, these resonances
correspond to transitions (k + 1)ω = kω0 + Ω, where k + 1 photons are absorbed to excite
k cavity levels and the qubit at energy Ω. The direct rate equation series (R) converge only
far from the resonance and fail to reproduce the multiphoton transitions but the corrected
series (R)∗ reproduce this behavior correctly and fail to converge only in close vicinity to
the cavity-driving field resonance when ωr ∼ γ.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-4 -2  0  2  4

〈 
S

x
 〉

(ω−ω0)/λ

RWA
(R)

(R)*

Figure 3. Comparison between the RWA simulation and the summation of the rate equation series
for F = λ, Ω − ω0 = 2λ, and γ = γs = 0.3λ. The trace (R) corresponds to the summation of the
series from the direct rate expansion in Equation (19), while (R)∗, which exhibits a larger radius of
convergence, corresponds to Equation (30). The series (R) qualitatively reproduces the position of
the multiphoton resonances, but with excessive amplitude, and it fails to converge. The series (R)∗

reproduces multiphoton resonance accurately but still fails to converge close to the cavity resonance
(ω − ω0)/λ ∼ 1 (further studies are needed to know if divergence occurs on energy scale λ or γ

around the resonance).

The comparison in Figure 3 is performed at relatively high frictions from the point of
view of the rate equation perturbation theory and we see that the multi-photon resonances
make the direct rate equation series (R) unstable in a wide range of ωr, highlighting the
requirement γ ≪ mini,j |ϵi − ϵj|. For weaker damping, the rate equation series converge in
a much wider range of detuning ωr, as shown in Figure 4. In this case, even (R) converges
almost everywhere except at very narrow resonances, where some deviation from the exact
steady state is still visible.
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Figure 4. Comparison between RWA and rate equation series for weak damping γ = γs = 0.005λ.
As expected in this regime, the rate equation series (R), from Equation (19), converges. Excitation
was reduced to avoid overheating at resonance with F = 0.1λ and 0.2λ. As in the previous figures
Ω − ω0 = 2λ.

5. Strong Damping Semiclassical Regime

We find that in the opposite limit of strong damping, the semiclassical approximation
is quite successful. To illustrate this, we consider a cavity coupled to two qubits with all
dissipation terms in Equations (4) and (5), both for cavities and qubits with equal dissipation
γ = γs. In this case, the dissipation is chosen to be of the same order of magnitude as
the detuning between qubits and cavities. This is, thus, a regime where we expect the
semiclassical theory to give a very good description of the steady state. This is confirmed
by numerical simulations presented in Figure 5, which shows that both the mean spin
orientation and the mean cavity susceptibility variables, αx = Re⟨â⟩ and αy = Im⟨â⟩, are
reproduced almost perfectly by the minimization of the semiclassical functional S. We see
that in addition to the main resonance at ωr = 0, the cavity susceptibility shows features at
resonance with the qubits ω = Ω1,2, in agreement with the exact RWA solution. For these
strong values of damping, the rate equation series are no longer converging for the range
of detuning explored here.
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〈 S2x 〉 (F/λ = 5)
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(ω−ω0)/λ

αy (F/λ = 1)
αx  (F/λ = 1)

αy/5 (F/λ = 5)
αx/5 (F/λ = 5)

Figure 5. Spin projections of the two spins as functions of the detuning (ω − ω0)/λ for excitation
strength F = λ and F = 5λ. Dashed lines show the spin projection predicted by the semiclassical
functional Equation (38), and dotted lines show the RWA steady state. The qubit–cavity detunings
are as follows: ∆1 = Ω1 − ω0 = 2λ, ∆2 = Ω2 − ω0 = −λ. The dissipation is fixed to γ = γs = 2λ,
and the relatively large values of the dissipation rates ensure good agreement with the semiclassical
predictions.

At weaker frictions, the semiclassical results become less accurate but can still re-
produce the qualitative trends of the qubit response to cavity excitation. To illustrate
this, we show the semiclassical results for the case from Figure 6 for one qubit. We see
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that—although this method fails to capture the multiphoton resonance—the broad shape
of the response is reproduced correctly.
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 〉
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γ/λ = 0.3, γS = 0
γ/λ = 0.3, γS/λ = 0.3

γ/λ = 2, γS/λ = 2

Figure 6. This figure compares the spin polarization ⟨Sx⟩ for one qubit coupled to a cavity for
increasing dissipation rates. The polarization is shown as a function of (ω − ω0)/λ for F = λ,
Ω − ω0 = 2λ. Smooth thin curves show the RWA steady state while dashed curves show the
semiclassical theory. For the lowest dissipation, γs = 0, γ = 0.3λ, the semiclassical theory predicts a
reversal of ⟨Sx⟩ in the range of (ω − ω0)/λ ∈ (0, 2), which is not present in RWA, which gives the
exact quantum result. But the agreement is good outside of this range. Adding some dissipation
to the spin γs = γ = 0.3λ is enough to observe the polarization reversal in RWA. The agreement
becomes very good for γs = γ = 2λ. As expected, at a higher friction, the system behaves in a more
semiclassical way.

6. Beyond Semiclassical Analysis and Rate Equations, Entangled Synchronization

We found that the rate equation and semiclassical approaches capture complementary
regimes of the dissipative quantum dynamics with, respectively, low and high damping
regimes. It is, thus, interesting if we can find a regime that is not accessible to these
approaches, where an exact solution of dissipative quantum dynamics is required. This
regime would have to be at a weak damping near resonance drive since this is the only
regime that is outside the range of validity of both approaches. However, a strong cavity
excitation at resonance can lead to an effectively semiclassical overheated regime, without
special quantum coherence properties.

We, thus, consider the following setting, where two qubits are coupled to the cavity
with opposite detunings from the cavity frequency ∆1 = −∆2 (where ∆1 = Ω1 − ω0 and
∆2 = Ω2 − ω0 are the qubit–cavity detunings). The cavity excitation at frequency ω = ω0
does not break the symmetry between the qubits in RWA, and this seems to be a good
regime to induce the entanglements between qubits even in the presence of damping. In
the following, we analyze this model in detail with the RWA approach (6) and the exact
time-dependent Lindblad dynamics (4) and (5). We also consider the validity of our two
approximate approaches in this regime.

To monitor the entangled state of the two detuned qubits, we consider their mean
total spin operator Ŝ2 Ŝ2, whose expectation value is S(S + 1) = 2 for the triplet S = 1
state of the two qubits and zero for the singlet configuration. The dependence of ⟨Ŝ2⟩ on
ω − ω0 is shown in Figure 7 for two cases of qubit-detuning from the cavity, comparing the
antisymmetric detuning introduced above and more generic values with (Ω1 − ω0)/λ =
2, (Ω2 − ω0)/λ = 3. For antisymmetric detuning, a strong reduction of ⟨Ŝ2⟩ is observed
when the cavity is excited at resonance; this corresponds to the dynamics of the two qubits
where they rotate together, synchronizing in opposite directions and canceling (at least
partially) their total spin. This reduction is not observed for the generic detuning values for
which ⟨Ŝ2⟩ stays close to 2, which is its equilibrium value.
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Figure 7. RWA calculation of the total spin of the qubit pair as a function of (ω − ω0)/λ for two
values of the qubit–cavity detuning ∆1,2 = Ω1,2 − ω0. The top curve corresponds to ∆1/λ = 2 and
∆2/λ = 3 with only a weak deviation from the equilibrium total spin triplet ⟨S2⟩ = S(S + 1) = 2.
When the two Zeeman splittings are antisymmetric with respect to the cavity ∆1 = −∆2 = 2λ, a
significantly stronger reduction of ⟨S2⟩ is observed. Dissipative rates are set to γ = γs = 0.2λ and
excitation is F = 1.5λ. As previously 100 oscillator levels are used in the simulation.

Figure 7, corresponds to equal damping rates for cavities and qubits, which are below
(but comparable to) the coupling strength γ/λ = 0.2. The entanglement between the two
qubits in the asymmetric detuning case can be enhanced when the damping rate of the
qubits is reduced. Such a situation is shown in Figure 8 for γ/λ = 0.3 and γs/λ = 3× 10−3.
The total spin ⟨Ŝ2⟩ then reduces to ≃0.5 at resonance, indicating a higher degree of anti-
locking and compensation between the two qubits.

To confirm that this quantum synchronization and the entanglement of the two qubits
is not an artifact of the RWA, we performed direct simulations of the time-dependent
Lindblad dynamics of Equations (4) and (5). Figure 8 presents a comparison between RWA
and dynamical Equations (4) and (5), showing almost perfect agreement for ω/∆1 = 30.
Interestingly, even if larger deviations from RWA appear when ω/∆1 = 30 is lowered,
the minimum ⟨Ŝ2⟩ remains constant, indicating that the anti-locking of the qubits are
robust to non-RWA effects, which break the (anti)symmetry between the qubits, shifting the
frequency at which the minimum ⟨Ŝ2⟩ is achieved from exact resonance. Even if the degree
of cancellation between the qubit spins is not perfect, it is sufficient to generate steady
states violating Bell inequalities [5]; this is shown in Figure 9. In the calculation of the
Bell inequality, the spin projection has to be measured in two directions by two observers,
giving the freedom to choose four possible spin projection measurement directions for
the computation of the correlators. Since the entangled steady state is not a pure singlet
state, we find that the violation of the Bell inequality is maximized with a ∼20◦ rotation of
the projection directions compared to the rotation of 45◦, which is used for Bell inequality
tests on pure Bell (EPR) states. To avoid any dependence on the projection angles, we
also show the quantum negativity (see, e.g., [50]) of the reduced qubit pair density matrix
(obtained from the total density matrix by tracing over the cavity). The negativity at
resonance in Figure 9 is 0.36, which indicates a substantial degree of entanglement between
the two-qubit pair. We emphasize that, as opposed to entangled states generated by pulse
sequences, which have finite lifetimes, this stationary entangled state is preserved in time
in the presence of dissipation and decoherence within our model. The preservation of the
entangled state of two qubits is also seen in numerical studies with quantum trajectory
descriptions, but in those studies, the dissipation was present only for the cavity and not
for qubits [22].
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Figure 8. When dissipative rates are reduced compared to Figure 7, the reduction of ⟨S2⟩ for
antisymmetric qubit–cavity detunings ∆1 = −∆2 = λ becomes stronger and the singlet state
of the qubit pair becomes the most probable state (75% singlet probability at the minimum of
⟨S2⟩). Here, the driving strength is set to F/λ = 0.25, the dissipative rates are γ = 0.3λ with a
weak qubit dissipation γs = 10−3γ (for these parameters, at resonance, ⟨n⟩ ≃ 4F2/γ2 ≃ 3). To
confirm that the singlet formation is not an artifact of the RWA (black curve), we performed direct
integration of the time-dependent Lindblad dynamics up to the total simulation time 3γ−1

s for
increasing RWA parameter ω0/λ (color curves with symbols). The singlet formation is robust to
non-RWA effects with the minimum ⟨S2⟩ remaining unchanged as ω0/λ is varied by an order of
magnitude. Only weak non-RWA effects are visible as a small shift of the minimum from ω = ω0

and an asymmetric ⟨S2⟩ dependence since non-RWA effects break the symmetry between two anti-
symmetrically detuned qubits.
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Figure 9. Bell inequality violation and negativity of the steady-state RWA qubit pair with the reduced
density matrix (trace done over the cavity) for the parameters of Figure 8. Since the qubit pair is in a
mixture of singlet and triplet states, the polarization choice for the Bell inequality has to be adjusted
to observe a Bell inequality violation (see Appendix A and Figure A2). Maximal negativity for two
qubits is 1/2 [50] and, thus, this steady state shows a high degree of stationary entanglement despite
the dissipative decoherence of both qubits and cavities.

To conclude this part, we investigate if this anti-locked entangled state of the qubits
could be reproduced in terms of the approximate rate equation or semiclassical method. The
rate equation series for ∆1 = −∆2 fails to converge in a rather wide range ωr/∆1 ∈ (−1, 1),
probably due to resonant energy levels, which are detrimental to convergence. Treating rate
equations as an asymptotic series and summing only the first terms, improving convergence,
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allow us to qualitatively reproduce ⟨Sx⟩ in the range of ωr. However, the prediction for the
total spin ⟨Ŝ2⟩ is then misleading at resonance, suggesting a maximum ⟨Ŝ2⟩ in contradiction
with the exact results, as illustrated in Figure 10. Not surprisingly, the semiclassical
approximation only succeeds in reproducing qualitative features but completely misses the
singlet formation.
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Figure 10. We test here if our two semi-analytic approaches can reproduce singlet formation for
antisymmetric detuning presented in Figures 8 and 9. The left panel shows the RWA spin projection
⟨S1x⟩ for the first qubit compared with the rate equation series and the variational approximation, and
the right panel shows the mean total spin ⟨S2⟩. While both approaches reproduce some qualitative
features, they both fail to describe the singlet formation at ω − ω0 = 0.

In fact, the obtained singlet state represents a nontrivial example of quantum-entangled
synchronization of dissipative qubits. Indeed, usually, it is expected that entanglement will
disappear in a system with all elements being dissipative. However, we demonstrate that
even if cavities and qubits are dissipative, we obtain the steady state where the phases of
qubits are strongly correlated with each other and the phase of monochromatic driving. We
discuss quantum synchronization in the following sections.

7. Synchronization of Several Qubits

In [21], using the method of quantum trajectories, it was shown that the phase of
rotating qubits can be synchronized with the phase of microwave driving. We confirmed
this by integrating the quantum Lindblad evolution Equations (4) and (5) (see Figure A3
of Appendix A). In fact, the quantum trajectories always produce the results with noise
and it is difficult to directly see the properties of the system’s steady state. In contrast
with the Lindblad description, we directly obtain the system’s steady state. The results
of Figure A3 in the Appendix A directly show that in the steady state, the phase of the
qubit is synchronized with the phase of monochromatic driving that corresponds to the
synchronization phenomenon [2].

We study this synchronization effect for up to four qubits. Our results are shown in
Figures 11 and 12, where the RWA steady state is compared with semiclassical (Figure 11)
and rate equation theories (Figure 12). All the qubits in this simulation are detuned from
each other, and without external driving, their in-plane magnetization will process at
different frequencies, leading to an average cancellation of the total in-plane magnetization.
When the cavity is driven, two synchronization peaks appear, where the total spin projection
in the rotating frame ⟨Sx⟩ grows linearly with the number of detuned qubits. The first
peak is when the cavity is excited near resonance, the resonant cavity vibrations excite
the qubits, which then all press at the same phase and frequency. Surprisingly, a second
synchronization peak appears at a higher frequency detuned from both cavity and qubit
resonances. The semiclassical approximation correctly reproduces the two synchronization
peaks; however, the agreement with RWA results is only qualitative. This is because this
is a weak dissipation regime with strong cavity–qubit coupling ∆1 = λ and γ/λ = 0.2.
In Figure A4 of Appendix A, we show that the agreement becomes almost perfect for
the simpler weak coupling strong dissipation limit. We note that, in this simple regime,
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the linear growth of ⟨Sx⟩ with the number of qubits is observed only at cavity resonance.
Figure 11 suggests that the agreement between RWA and semiclassical approximation tends
to improve with the number of qubits; this may be due to the fact that our semiclassical
approximation can also be viewed as a mean-field theory whose accuracy improves with
more interacting qubits. The improvement in the accuracy of the semiclassical theory with
a larger number of qubits (at resonance) can also be seen from the decreasing values of the
semiclassical functional at its minimum (see Figure A5 of Appendix A). With this method,
it is, thus, possible to obtain controlled semiclassical results for a larger number of qubits
for which the exact quantum computation is no longer possible.

The summation of the rate equation series reproduces the RWA results exactly away
from the cavity resonance in Figure 12; however, it seems that the diverging region around
resonance grows slowly with the number of qubits.

To summarize, we find that this regime of quantum synchronization, where the
total rotating in-plane spin grows with the number of qubits, is well described by both
semiclassical and rate equation approaches. As discussed in the previous section, it is also
possible to synchronize entangled qubits for antisymmetric qubit–cavity detunings in the
vicinity of resonance between microwave driving and cavity frequency.
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 〉

(ω−ω0)/λ
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Figure 11. RWA calculation of total spin projection ⟨Sx⟩ of an increasing number of qubits coupled
to one cavity (full curves) as a function of cavity-excitation detuning and a comparison to the
semiclassical theory (dashed curves). The qubit cavity detunings are set to ∆1 = λ, ∆2 = 1.5λ,
∆3 = 2λ, ∆4 = 2.5λ (only the first qubits are kept when the number of qubits is smaller than four).
Dissipative rates are γ = γs = 0.2λ and excitation is F = 0.77λ. Even if relaxation rates are all small,
the semiclassical theory still captures many properties of ⟨Sx⟩, reproducing the increase of ⟨Sx⟩ with
the number of qubits, which corresponds to the synchronization of qubit rotation by the external
drive. In both RWA and semiclassical data, synchronization occurs at resonance ω = ω0 but perhaps
less expected at a higher frequency detuned from both cavities and qubits ((ω − ω0)/λ, increasing
from 2 to 3 with the number of qubits). Interestingly, the accuracy of the semiclassical approximation
seems to improve with the number of qubits, which may be due to its mean-field character.
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Figure 12. The RWA calculation of the total spin projection ⟨Sx⟩ from Figure 11 is compared to the
result of the summation of the rate equation series (R)∗ (dotted curves). The rate equation series yield
results that are nearly exact away from resonance, but they suffer from instabilities near ω = ω0.
It seems that the convergence range decreases with the number of qubits with various multi-qubit
resonances making the series unstable even at ω − ω0 = 1.5λ for four qubits.

8. Discussion

In this work, we used the Lindblad equation density matrix formalism for a descrip-
tion of a dissipative monochromatically driven resonator (oscillator cavity) interacting with
one or several qubits with a very long or moderate dissipative lifetime. This system extends
the seminal Jaynes–Cummings model [35] to a dissipative regime, which is typical for su-
perconducting qubits coupled to a driven cavity [6]. The performed numerical simulations
show that the results for the full-time-dependent Lindblad equations, Equations (4) and (5),
are well reproduced by the solution of the stationary RWA Lindblad equation, Equation (6).
Efficient and exact methods have been developed to numerically determine the steady state
under the RWA with several qubits and a driven frequency close to cavity resonance, where
many cavity eigenstates are excited. For the single qubit case, a regime of qubit bistability
has been established, confirming previous results obtained using the method of quantum
trajectories [21].

We also developed and tested two semi-analytical approaches, which enabled us to
obtain approximately accurate solutions for the exact RWA steady-state density matrix
in regimes of relatively weak and strong dissipation. These correspond, respectively, to
the rate equation and semiclassical approximations for the steady-state density matrix.
The analytical steps of these two approaches significantly simplify the equations for the
density matrix and facilitate consecutive numerical solutions, allowing us to investigate the
system behavior in the vicinity of cavity resonance with many excited states. The numerical
verification of these semi-analytical approaches is achieved by comparing them with the
exact RWA solution, confirming their validity across a broad range of system parameters.
We argue that the state of each spin is a combination of a semiclassical density matrix and
quantum fluctuations. When considering the interaction of a cavity with many spins, the
forces due to spin quantum fluctuations average out, and the semiclassical contribution
becomes dominant. This resembles a mean-field description.

At the same time, we demonstrate the existence of system behavior that cannot be
described by these semi-analytical approaches. Thus, we find that for two dissipative
qubits and a dissipative driven cavity, there exists a regime when qubits remain entangled,
forming a singlet, in the steady-state density matrix. The existence of such a stationary
regime of entangled synchronized qubits, created by a monochromatically driven cavity, is
really surprising since both qubits and cavity are dissipative. Indeed, naively one could
expect that the dissipation of cavities and qubits would kill the entanglement but our results
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show that the entanglement may be robust and survive even in the presence of dissipation.
Due to the preservation of entanglement of qubits, such a regime can be considered as a
real entangled quantum synchronization.

We also identify regimes (see Figure 11) where up to four qubits are synchronized
with the phase of monochromatic cavity driving, such that the total spin of the system
increases proportionally to the number of qubits (spin halves) in the system. At the same
time, we demonstrate that this synchronized regime is well described by the semiclassical
approach. This allows us to question whether such a synchronized regime of several qubits
can be considered purely quantum or rather a regime of semiclassical synchronization in
the presence of strong dissipation and noise induced by quantum fluctuations. Indeed, it is
known that classical synchronization is preserved in the presence of moderate noise [2].
Even if this synchronization of several qubits can be described in the frame of a semi-
classical approach, and there is no entanglement, one can also argue that spin halves are
purely quantum two-level systems and, hence, their synchronization is also quantum. The
entangled quantum synchronization of qubits is purely quantum and cannot be obtained
in the frame of the semiclassical description.

The obtained results provide a better understanding of nontrivial behavior regimes
of several dissipative qubits interacting with dissipative-driven cavities. We hope that the
developed methods can be useful in other contexts.

Note: After this work was finalized, we became aware of experiments creating two
entangled qubits coupled to two resonators [51] that differed from this study, where qubits
were coupled to the same resonator.
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Appendix A

Appendix A.1. Semiclassical Theory for a Cavity Coupled to Several Qubits

We start by reminding readers about the RWA Hamiltonian of a qubit coupled with
two cavities:

Ĥ = ωr â+ â + F(â + â+) + λ1(âσ̂+
1 + â+σ̂−

1 ) +
Ωr1

2
σ̂1z + λ2(âσ̂+

2 + â+σ̂−
2 ) +

Ωr2

2
σ̂2z (A1)

where ωr = ω0 − ω and Ωr1 = Ω1 − ω, Ωr2 = Ω2 − ω.
We analytically compute and then minimize the following:

S2 = Tr [L(ρ̂)]+L(ρ) (A2)

over trial density matrices, which are given by the semiclassical ansatz:

ρ̂ =
1
4
|α⟩⟨α|

(
1 + ρ1xσ̂1x + ρ1yσ̂1y + ρzσ̂1z

)(
1 + ρ2xσ̂2x + ρ2yσ̂2y + ρzσ̂2z

)
(A3)

For the Hamiltonian part of the functional, we find the following:
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u1 = (1 + ρ2
1x + ρ2

1y + ρ2
1z)/2 (A4)

u2 = (1 + ρ2
2x + ρ2

2y + ρ2
2z)/2 (A5)

S0H = 2(F2 + 2Fαxωr + (α2
x + α2

y)ω
2
r (A6)

SλH(ρx, ρy, ρz, Ωr) = 2λ
[
Fρx + (αxρx − αyρy)(ωr − ρzΩr)

]
+

λ2

2

[
4ρ2

z

(
α2

x + α2
y

)
+

(
4α2

x + 1
)

ρ2
y + 8αxαyρxρy +

(
4α2

y + 1
)

ρ2
x + (ρz + 1)2

]
(A7)

S2H = S0Hu1u2 +
Ω2

r1(ρ
2
1x + ρ2

1y)

2
u2 +

Ω2
r2(ρ

2
2x + ρ2

2y)

2
u1

+ u2Sλ1H(ρ1x, ρ1y, ρ1z, Ωr1) + u1Sλ2H(ρ2x, ρ2y, ρ2z, Ωr2) + λ1λ2(ρ1xρ2x + ρ1yρ2y) (A8)

To write the full functional, we need to introduce the following:

S0 = 2[F2 + 2Fαxωr + (α2
x + α2

y)ω
2
r ] + 2Fαyγ + γ2 α2

x + α2
y

2
(A9)

Sγ1S = −γ1Sλ1(αyρ1x + αxρ1y)(2 + ρ1z) + γ2
1S

ρ2
1x + ρ2

1y + 4(1 + ρ1z)
2

8
(A10)

Sγ2S = −γ2Sλ2(αyρ2x + αxρ2y)(2 + ρ2z) + γ2
2S

ρ2
2x + ρ2

2y + 4(1 + ρ2z)
2

8
(A11)

The full semiclassical functional of a cavity coupled to two qubits is then given by the
following:

S2 = S0u1u2 +
Ω2

r1(ρ
2
1x + ρ2

1y)

2
u2 +

Ω2
r2(ρ

2
2x + ρ2

2y)

2
u1

+ u2Sλ1H + u1Sλ2H + λ1λ2(ρ1xρ2x + ρ1yρ2y) + γu2λ1(αyρ1x + αxρ1y) + γu1λ2(αyρ2x + αxρ2y)

+ u2Sγ1S + u1Sγ2S +
γ1Sγ2S

[
ρ2

1x + ρ2
1y + 2ρz1(1 + ρ1z)

][
ρ2

2x + ρ2
2y + 2ρz2(1 + ρ2z)

]
8

(A12)

The functional is then minimized over cavity parameters, αx, αy, and spin projections,
ρ1x, ρ1y, ρ1z, ρ2x, ρ2y, ρ2z, using the NLopt optimization library.

The generalization of this functional to more qubits is a direct generalization of the
two-qubit functional, keeping track of all the terms that are generated by the possible
qubit combinations; for example, the term S0u1u2 becomes S0u1u2u3u4 for four qubits,
λ1λ2(ρ1xρ2x + ρ1yρ2y) becomes λ1λ2u3u4(ρ1xρ2x + ρ1yρ2y), and so forth (the variables u3,4
are defined in analogy with Equations (A4) and (A5).

Appendix A.2. Semiclassical Theory for a Cavity Coupled to Several Qubits

Here, we provide some additional numerical data supporting the findings presented
in the main text. In Figure A1, we show the slow relaxation for some values of the detuning
ω − ω0 in the model where the qubit is not dissipative γs = 0. In Figure A2, we investigate
how the maximal violation of Bell inequalities for antisymmetric qubit–cavity detuning
depends on cavity driving strength. Figure A3 shows synchronized cavity–qubit behavior
and oscillations around the RWA steady state due to finite values of the RWA parameter
ω0/λ. Figure A4 compares the RWA steady state with the semiclassical theory for several
qubits in the regime of weak qubit–cavity interaction.
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Figure A1. Mean oscillator quantum number ⟨n⟩ = ⟨a+a⟩ as a function of the number of driving
field oscillation periods ωt/(2π) obtained by integrating the time-dependent Lindblad equation
for the data in Figure 2 (we remind readers that Ω − ω0 = 2λ, F = λ, γ = 0.03λ). The different
curves correspond to different values of δω = ω − ω0. The left panel shows ω0/λ = 50 and the
right one 100. Relaxation is slower for positive values of δω near resonance compared to negative
δω. The comparison with RWA allowed us to notice the incomplete relaxation in the simulations for
ω0/λ = 100, which is easy to miss because it occurs in a narrow range of δω.
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Figure A2. Violation of the Bell inequality for the RWA steady state for antisymmetric cavity–qubit
detunings ∆1/λ = −∆2/λ = 0.5 (see also Figure 9). Different curves correspond to increasing
driving fields, expressed as the mean cavity occupation number at resonance ⟨n⟩ = 4F2/γ2, which
is shown in the legend. Dissipative rates are γ/λ = 0.025 and γs/γ = 0.02. Maximal violation of
Bell inequality is observed for ⟨n⟩ = 3 (at resonance). Further increase of the driving field leads to
a reduction of the Bell inequality violation, highlighting the delicate quantum nature of the singlet
state. To determine the violation of Bell inequalities, a maximum was taken over randomly chosen
sets of four spin projection directions for the correlation measurement.
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Figure A3. Synchronization between a driven cavity and a qubit in the system’s steady state for
∆1 = Ω1 − ω0 = λ, (ω − ω0)/λ = −0.3, F = λ, γ = λ/3 and RWA parameter ω0/λ = 10. The
qubit is non-dissipative γs = 0 and data are obtained by integrating Lindblad dynamics. Due to
the moderate value of the RWA parameter, vibrations around the mean RWA values of the spin
projections are clearly visible in the left panel. The right-hand panel shows the synchronization
between the angle θ = arg⟨Sx + iSy⟩, which represents the in-plane spin projection of the qubit, and
the phase of the cavity driving field.
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Figure A4. RWA calculation of the total spin projection ⟨Sx⟩ as a function of the excitation frequency-
cavity detuning for an increasing number of qubits coupled to the cavity (full lines). The cavity–qubit
interaction is weak λ = γ/2. The qubit–cavity detunings are set to ∆1 = 10γ, ∆2 = 15γ, ∆3 = 12.5γ,
∆4 = 17.5γ (only the first qubits are kept when the number of qubits is smaller than four). The
qubit dissipation rate is γs = γ and excitation is F/γ = 2.2. In this weak interaction regime, the
semiclassical calculation (shown as dashed lines for 2 and 4 spins) coincides almost exactly with RWA.

Appendix A.3. Estimation of the Semiclassical Error from the Minimum of the Semiclassical
Functional

The minimal value of the functional S allows us to estimate the accuracy of the
semiclassical ansatz ρs with respect to the exact steady state for which L(ρ) = 0. Let ρs
be the semiclassical density matrix, realizing the minimum of ϵ2 = S(ρs)2 = |L(ρs)|2,
where |.| denotes the matrix norm |M|2 = Tr M+M for a matrix M. We have the following
inequality, ϵ ≥ |λ1||ρs,⊥|, where |λ1| is the smallest (in modulus) non-zero eigenvalue of
the superoperator L and ρs,⊥ is the projection of ρs on the subspace orthogonal to the exact
solution ρ. We, thus, find the following inequality, |ρs,⊥| ≤ ϵ/|λ1|, which binds the error of
the semiclassical estimate, ρs. In our case, all dissipative rates are equal, γ = γs, and we can
expect |λ1| ∼ γ−1, in which case, the ratio ϵ/γ gives an upper bound on the error |ρs,⊥|
(we need to keep in mind that since the density matrix is normalized to Tr ρs = 1, |ρs| can
be larger than 1). The numerical values of ϵ/γ for the semiclassical simulations in Figure 11
are shown in Figure A5. Comparing the two figures, we see that there is good agreement
between semiclassical and quantum results when ϵ/γ ≥ 1. At resonance ω = ω0, the value
of ϵ/γ decreases with the number of qubits (spins), which is consistent with the improving
accuracy of the semiclassical spin projections shown in Figure 11. On the other hand, in
regions of semiclassical bistability (corresponding to two almost degenerate semiclassical
minima), the parameter ϵ/γ grows beyond unity, coinciding with the regions where the
strongest discrepancies between semiclassical and quantum results occur.
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for the semiclassical data from Figure 11. Good agreement between quantum and semiclassical values
for the mean spin projection is observed when ϵ/γ ≤ 1 while strong deviations are observed at peaks
of ϵ/γ.
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