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Abstract: One of the most important and unanswered problems in particle physics is the origin of the
three generations of quarks and leptons. The Standard Model does not provide any hint regarding
its sequential charge assignments, which remain a fundamental mystery of Nature. One possible
solution of the puzzle is to look for charge assignments, in a given gauge theory, that are inter-
generational, by employing the cancellation of the gravitational and gauge anomalies horizontally.
The 331 model, based on an SU(3)C × SU(3)L × U(1)X does this in an economical way and defines a
possible extension of the Standard Model, where the number of families has necessarily to be three.
We review the model in Pisano, Pleitez, and Frampton’s formulation, which predicts the existence of
bileptons. Another characteristics of the model is to unify the SU(3)C × SU(2)L × U(1)X into the
331 symmetry at a scale that is in the TeV range. Expressions of the scalar mass eigenstates and of the
renormalization group equations of the model are also presented.

Keywords: particle theory; physics beyond the Standard Model; collider phenomenology

1. Introduction

In the quest to unveil new physics governing fundamental interactions at the Large
Hadron Collider (LHC), resolving several crucial questions remains a challenge within the
Standard Model (SM). These include the gauge hierarchy problem in the Higgs sector and
the origin of light neutrino masses.

Addressing these issues often requires theories involving larger gauge groups and a
broader spectrum of particles. Grand Unified Theories (GUTs) offer promising avenues,
but their high energy scales (around 1012 to 1015 GeV) far exceed the electroweak scale
probed by the LHC.

Bridging the gap between the GUT scale and the TeV scale, where the LHC operates,
to identify signatures of symmetry breaking presents a significant challenge, due to the
increased complexity of these extended theories.

However, specific scenarios exist where evidence for enlarged gauge symmetries
might be discovered or excluded at the LHC scale, suggesting alternative exploration paths.

One such example is the 331 model (SU(3)c × SU(3)L × U(1)X), where the constraint
of real gauge couplings significantly restricts the parameter space for potential signal
searches. This model was proposed as a potential extension to the SM, in order to address
certain theoretical and experimental shortcomings, as well as to provide explanations for
phenomena not accounted for within the SM.

The 331 model introduces a new gauge group, SU(3)L, which is isomorphic to the
color gauge group SU(3)C. This implies that the strong force acting between quarks within
hadrons is now governed by the SU(3)L symmetry, in addition to the color symmetry.

The fermion content of the 331 model differs from the SM, due to an extended gauge
symmetry. Typically, in the 331 model, the quarks and leptons are organized into multiplets
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that transform under the representations of the SU(3)L gauge group. For example, quarks
and leptons may be arranged in triplets or antitriplets of SU(3)L, depending on their
electric charge and other quantum numbers. One notable feature of the 331 model is the
presence of new gauge bosons called “bileptons”. These are bosons carrying both a lepton
number and electric charge, with charges Q = ±2 and L = ±2. Bileptons arise due to the
extended gauge symmetry and can have significant implications for various phenomena,
including neutrino masses and decays of heavy particles.

Similar to the SM, the 331 model also involves spontaneous symmetry breaking, where
the gauge symmetries are broken at a certain energy scale. This results in the generation
of particle masses and the emergence of the familiar gauge bosons, such as the W± and
Z0 bosons.

The 331 model offers potential explanations for various phenomena beyond the scope
of the SM, including neutrino masses and mixing, and the unification of fundamental forces
at high energies.

Overall, the 331 model represents an intriguing extension of the SM, offering new
avenues for exploring fundamental physics beyond the established framework. However,
it remains subject to experimental scrutiny and theoretical refinement to fully ascertain its
validity and implications for our understanding of the fundamental forces and particles
in nature.

In the model, the constraint of real gauge couplings significantly restricts the parameter
space for potential signal searches. This property establishes the vacuum expectation values
(vevs) of the Higgs bosons, responsible for symmetry breaking from the 331 scale to the
electroweak scale, around the TeV region. The model under consideration incorporates
the presence of bileptons, denoted as gauge bosons (Y−−, Y++), possessing a charge
Q = ±2 and lepton number L = ±2. Consequently, we dub this framework the “bilepton
model”. Within the array of 331 models, the existence of bileptons within the spectrum
only arises through specific embeddings of the U(1)X symmetry, as well as the charge (Q)
and hypercharge (Y) generators within the local gauge structure.

An additional noteworthy aspect of this model is its departure from the conventions of
the Standard Model or typical chiral models seen thus far. In contrast to merely extending
the SM spectrum and symmetries, the determination of the (chiral) fermion generations
hinges on the interfamily cancellation of gauge anomalies. Remarkably, gauge anomalies
cancel across distinct fermion families, thereby pinpointing the number of generations as
three. From this vantage point, the model emerges as distinctly singular. Furthermore, in
the framework outlined by Frampton, which we adopt henceforth, the treatment of the
third fermion family is asymmetrical in comparison to the initial two families.

Our work is organized as follows: We will first discuss the general structure of the
model, starting with the anomaly constraints that crucially characterize the charge assign-
ments of the spectrum. We then move on to characterize the gauge boson spectrum, turning
afterwards to the Higgs sector. The structure of the potential is thoroughly examined, both
in its triplet and sextet contributions. We discuss the energy bound present in the model,
induced by the structure of the gauge coupling relation coming from the embedding of
the Standard Model into the 331. This bound on the energy scale at which the model is
characterized by real (as opposed to complex) values of the couplings is one of the salient
features of this theory. A second important feature is the presence of a Landau pole in the
renormalization group equations (RGEs) of the gauge couplings, which we briefly illustrate
numerically. A list of results for the mass eigenstates of the Higgs sector is contained in
Appendix A. Notice that an important feature of the model is the identification of the
electric charge operator in terms of the diagonal generators of the fundamental gauge
symmetry. In general this is given by

Q = T3 + β T8 + X1 (1)

where β is a parameter of the model, with T3 and T8 generators of SU(3)L. Our discussion
will focus on the choice β =

√
3, as in Pisano, Pleitez, and Frampton’s original formulation.
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This choice induces the presence of bileptons, which are doubly charged gauge bosons
carrying lepton number L = ±2. We refer to this version of the model as to the minimal one.

2. The Particle Content of the Minimal 331 Model

One of the most important questions that arise in particle physics is why there are
only three families of quarks and leptons. There are many observables in particle physics
that depend on the family number and they all agree to constrain this number to three. In
the Standard Model, there is no mechanism that prohibits the existence of more families
than those observed. To answer this question P. H. Frampton, F. Pisano, and V. Pleitez [1,2]
proposed a new model that extends the Standard Model and could provide an elegant
answer to this fundamental question. Specifically, this is called the 331 model, and it is
built on the gauge group

SU(3)C × SU(3)L × U(1)X , (2)

which enlarges the SU(2)L symmetry of the Standard Model. Three exotic quarks must be
added to the particle content of the Standard Model to allow for SU(3)L symmetry in the
quark sector. The 331 model democratically treats leptons in each of the three families, in
fact color singlets are SU(3)L anti-triplets e

−νe
ec


L

,

 µ
−νµ

µc


L

,

 τ
−ντ

τc


L

→ (1, 3̄, 0) (3)

each with X = 0. Where with ec , µc, and τc we are denoting the left-handed Weyl spinors of
the relative charge conjugate field. On the contrary, in the quark sector, the three families are
treated differently, the first two generations are in triplets of SU(3)L with the corresponding
left-handed field of exotic quarku

d
D


L

,

c
s
S


L

→
(

3, 3,−1
3

)
, (4)

both with X = − 1
3 . On the other hand, the third generation in the quark sector is embedded

in anti-triplets of SU(3)L  b
−t
T


L

→
(

3, 3̄,
2
3

)
, (5)

with X = 2
3 . To each left-handed field there is a corresponding right-handed field singlet

under SU(3)L
(uc)L
(cc)L
(tc)L

→
(

1, 1,−2
3

)
, (6)

(dc)L
(sc)L
(bc)L

→
(

1, 1,
1
3

)
, (7)

(Dc)L
(Sc)L

→
(

1, 1,
4
3

)
, (8)

(Tc)L →
(

1, 1,−5
3

)
, (9)

The U(1)X charges are respectively − 2
3 , 1

3 and 4
3 for uc, dc, Dc and the corresponding field of

the second generation. The X quantum numbers of the third family instead are respectively
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1
3 , − 2

3 and − 5
3 for bc, tc, Tc. Three scalar triplets under SU(3)L are necessary to ensure the

spontaneous symmetry breaking

ρ =

ρ++

ρ+

ρ0

η =

η+
1

η0

η−
2

χ =

 χ0

χ−

χ−−

 (10)

respectively with X charge X = 1, 0,−1, and a scalar sextet

σ =


σ++

1
σ+

1√
2

σ0
1√
2

σ+
1√
2

σ0
2

σ−
2√
2

σ0
1√
2

σ−
2√
2

σ−−
2

, (11)

in order to generate physical masses for leptons, as we will see in Section 6. All quantum
numbers under SU(3)C × SU(3)L × U(1)X in the 331 model can be found in Table 1. This
unconventional assignment of quantum numbers in the model ensures that gauge anomalies
are not canceled vertically for each family, as in the Standard Model. It is necessary to add
the contribution of each quark in the triangle anomaly to obtain the total cancellation. This
is one of the most important and attractive features of the model, because it provides a
possible explanation for the number of generations. This could provide a first step towards
understanding the flavor puzzle and perhaps serve as a guide for new models inspired by it.

Table 1. Quantum numbers of the particle spectrum of the minimal 331 model.

SU(3)C SU(3)L U(1)X

uc cc 3̄ 1 − 2
3

tc 3̄ 1 1
3

dc sc 3̄ 1 1
3

bc 3̄ 1 − 2
3

Dc Sc 3̄ 1 4
3

Tc 3̄ 1 − 5
3u

d
D


L

c
s
S


L

3 3 − 1
3

b
t
T


L

3 3̄ 2
3

e−

νe
e+


L

µ−

νµ

µ+


L

τ−

ντ

τ+


L

1 3̄ 0

Xµ 1 1 0

Wa
µ 1 8 0

Gb
µ 8 1 0

σ 1 3 1

η 1 3 0

χ 1 3 −1

σ 1 6 0
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3. Cross-Family Anomaly Cancellation and the Flavor Question

In this section, we analyze the non-trivial cancellation of anomalies in the 331 model
and discuss why this method of eliminating them could represent an initial step towards
addressing the flavor question.

There are six types of anomalies that occur in the 331 model

SU(3)3
C, SU(3)2

CU(1)X , SU(3)3
L,

SU(3)2
LU(1)X , U(1)3

X , grav2 U(1)X , (12)

where grav2 U(1)X is the mixed chiral anomaly with two gravitons and a chiral U(1)X
gauge current; i.e., the gravitational chiral anomaly.

Each vertex collects a factor

2tr(Ta
R{Tb

R, Tc
R}) = A(R) dabc, with A(fund) = 1 (13)

from the gauge current group generators, where A(R) is the representation dependent
anomaly coefficient, with A(fund) in the fundamental representation of SU(3), and dabc is
the totally symmetric invariant SU(3) tensor.

The anomaly involving only gluons is obviously zero, as in the Standard Model.
Another anomaly arises from the mixed SU(3)2

C U(1)X vertex, which imposes the following
constraint on the X charges

SU(3)2
CU(1)X → 3XQi + Xuc

i
+ Xdc

i
+ XJc

i
= 0. (14)

Here, the index i ranges over families, but there is no summation over it, Qi stands for
quark triplets, while Jc

i denotes the complex conjugate of the exotic quark fields. Indeed,
for this reason, the anomaly cancellation in this case occurs vertically between families, as
in the Standard Model.

The same cannot be said for another anomaly, which involves only the gauge group
SU(3)L. In the Standard Model, the SU(2)L group possesses a vanishing anomaly coeffi-
cient, rendering it unnecessary. However, in the case of SU(3) or, in general, SU(N) with
N > 2, it exhibits a non-zero anomaly coefficient. In the 331 model, such SU(3)3

L anomaly
cancels due to the equal number of fermions in the 3 and 3̄ representations of SU(3)L.

In the minimal 331 model, the SU(3)2
LU(1)X anomaly can only be canceled by account-

ing for contributions from all three families. This type of anomaly cancellation is referred
to as a horizontal cancellation. If we consider anomaly cancellation on a generation-by-
generation basis, it does not vanish, and requires summation over different families. The
relative constraint is

SU(3)2
L U(1)X →

3

∑
i=1

XQi = 0. (15)

The same motivations lead to the cancellation of the cubic anomaly

U(1)3
X →

3

∑
i=1

(
3X3

Qi
+ X3

uc
i
+ X3

dc
i
+ X3

Jc
i

)
= 0, (16)

with the relative constraint.
The last anomaly that needs to be checked is the gravitational anomaly, but it is not

difficult to show that it leads to the same constraint as for SU(3)2
C U(1)X

grav2 U(1)X → 3XQi + Xuc
i
+ Xdc

i
+ XJc

i
= 0. (17)

A summary of anomalies and relative constraints can be found in Table 2.
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Table 2. Anomaly cancellation constraints on the fermion charges in the minimal 331 model.

Anomaly

SU(3)2
CU(1)X 3XQ + Xuc

i
+ Xdc

i
+ XJc

i
= 0

SU(3)3
L Equal number of 3L and 3̄L representations

SU(3)2
LU(1)X ∑3

i=1 XQi = 0
U(1)3

X ∑3
i=1

(
3X3

Qi
+ X3

uc
i
+ X3

dc
i
+ X3

Jc
i

)
= 0

grav2U(1)X 3XQi + Xuc
i
+ Xdc

i
+ XJc

i
= 0

The non-trivial cancellation of anomalies in the model is arguably one of its most in-
triguing and distinctive features, which was first discussed in [3]. The horizontal approach,
involving all three generations of quarks and leptons, inherently constrains the number of
families to three. Unlike the Standard Model, which lacks a mechanism to limit the number
of fermion generations, the 331 model provides such a constraint.

Notice that, in the Standard Model, the number of generations is fixed experimen-
tally by the annihilation process e+e− → hadrons, which is sensitive to the number of
families. Experimental constraints based on these observables restrict the number to three;
nevertheless, the model lacks a theoretical guiding principle for predicting such a number.
The horizontal approach to anomaly cancellation of the 331 model, on the other hand, as
already mentioned, can serve as a guiding principle for investigating other UV-completions
beyond the Standard Model (BSM) that aim to address the flavor question.

4. Spontaneous Symmetry Breaking

Below the electroweak scale, in the Standard Model, the gauge symmetry is SU(3)C ×
U(1)em. Therefore, in the 331 model, spontaneous symmetry breaking (SSB) must also occur,
in order to reduce the SU(3)C × SU(3)L × U(1)X gauge symmetry. The breaking can be
divided into two stages. Initially, at energy scales greater than 246 GeV, the gauge symmetry
of the 331 model can be broken down to that of the Standard Model, and subsequently to
SU(3)C × U(1)em. This can be represented as

SU(3)C × SU(3)L × U(1)X → SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em. (18)

Achieving this requires a more intricate Higgs sector comprising three scalar triplets and a
scalar sextet of SU(3)L. In the following two sections, we will analyze the pattern of SSB
and explore how it predicts the existence of bileptons, specifically massive double-charged
gauge bosons that carry lepton number of L = ±2, which can be classified as elementary
bifermions (including also leptoquarks and biquarks) in the framework based on SU(15)
noted recently in [4].

4.1. The Breaking SU(3)C × SU(3)L × U(1)X → SU(3)C × SU(2)L × U(1)Y

Spontaneous symmetry breaking to the Standard Model gauge group can be accom-
plished by means of a vacuum expectation value of a scalar triplet belonging to SU(3)L,
denoted as ρ,

ρ =

ρ++

ρ+

ρ0

 (19)

which carries charge under U(1)X , namely X = 1

⟨ρ⟩ =

 0
0
vρ

. (20)

The SU(3)L × U(1)X covariant derivative can be written as follows:
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Dµ = ∂µ − ig1XXµ − ig2
λa

2
Wa

µ =

=

(
∂µ − i

√
2
3

g1XXµ

)1 0 0
0 1 0
0 0 1

− ig2


W3

µ

2 +
W8

µ

2
√

3

W1
µ

2 − iW2
µ

2
W4

µ

2 − iW5
µ

2
W1

µ

2 +
iW2

µ

2 −W3
µ

2 +
W8

µ

2
√

3

W6
µ

2 − iW7
µ

2
W4

µ

2 +
iW5

µ

2
W6

µ

2 +
iW7

µ

2 −W8
µ√
3

, (21)

where X is the charge under U(1)X of the fermion, Xµ is the corresponding gauge bo-
son, and Wa

µ are the generators of SU(3)L. λa are the Gell-Mann matrices normalized as

Tr
(

λaλb
)

= 2δab. Once the Higgs triplet ρ acquires the vacuum expectation value, its
kinetic term givesDµ

 0
0
vρ

†Dµ

 0
0
vρ

 = −1
6

v2
ρ

(
− 4

√
2g1g2XµWµ8 + 4g2

1XµXµ + 3g2
2Y++µY−−

µ

+ 3g2
2Vµ+V−

µ + 2g2
2W8

µWµ8
)

. (22)

From Equation (22), it is easy to observe that the mass terms obtained are expressed in a
basis that is not completely diagonal. This implies that, in order to obtain the mass eigen-
states of the bosons, it is necessary to perform an orthogonal rotation of the corresponding
states. Before doing this, we mention that the W± bosons, given by

W±
µ =

1√
2

(
W1

µ ∓ W2
µ

)
, (23)

remain massless. This is due to the fact that the residual symmetry SU(2)L remains unbro-
ken at this stage. We also recognize two correctly diagonalized kinetic energy contributions,
given in terms of the charge operator eigenstates. As we will see, the charge operator in the
331 model is embedded as Q = 1

2 λ3 +
√

3
2 λ8 + X1. We have

Y±±
µ =

1√
2

(
W4

µ ∓ iW5
µ

)
, (24)

for the bileptons and

V±
µ =

1√
2

(
W6

µ ∓ iW7
µ

)
, (25)

for the exotic charged gauge bosons. The mass matrix that needs to be diagonalized in the
{X, W8} bases is the following: g2

2v2
ρ

3 −
√

2
3 g1g2v2

ρ

−
√

2
3 g1g2v2

ρ
2
3 g2

1v2
ρ

. (26)

The diagonalization can be easily achieved through the orthogonal transformations

Z′
µ =

1√
g2

2 + 2g2
1

(
g2W8

µ +
√

2g1Xµ

)
, (27)

Bµ =
1√

g2
2 + 2g2

1

(√
2g1W8

µ − g2Xµ

)
, (28)
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which can be thought as a rotation from the basis {X, W8} to {B, Z′}, with an angle

sin θ331 =
g2√

g2
2 +

g2
1

2

, (29)

that gives (
0 0
0 1

3 v2
ρ

(
g2

2 + 2g2
1
)). (30)

From the matrix in Equation (30), we can read off the squared masses of the mass eigenstates
{B, Z′}

M2
B = 0 M2

Z′ =
1
3

v2
ρ

(
g2

2 + 2g2
1

)
. (31)

It is clear that we obtain a massless boson related to the U(1)Y symmetry of the Standard
Model. It is not difficult to identify the embedding of the Y charge operator in the 331
model, namely

Y
2
=

√
3T8 + X1, (32)

where T8 is the eighth generator of SU(3). The matching condition between the U(1)X cou-
pling and the Standard Model hypercharge can be easily computed, leading to
the relation

1
g2

Y
=

6
g2

1
+

3
g2

2
. (33)

4.2. The Breaking SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em

Once the gauge symmetry has been decomposed into that of the Standard Model,
another symmetry breaking is necessary to end up with the residual SU(3)C × U(1)em
gauge symmetry. To realize the correct breaking scheme, we require two Higgs triplets, η
and χ, which acquire the vacuum expectation values

⟨η⟩ =

 0
vη√

2
0

 with X = 0, (34)

and

⟨χ⟩ =


vχ√

2
0
0

 with X = −1, (35)

and a sextet of SU(3)L

⟨σ⟩ =

 0 0 vσ
2

0 0 0
vσ
2 0 0

 with X = 0. (36)

After the first symmetry breaking, the covariant derivative can be written in terms of the mass
eigenstate fields, namely in the basis {B, Z′}. Inserting the inverse of the Equations (27) and (28)
into (21) gives

Dµ =


∂µ − ig2

W3
µ

2 + K1 −ig2

(
W1

µ

2 − iW2
µ

2

)
−ig2

(
W4

µ

2 − iW5
µ

2

)
−ig2

(
W1

µ

2 +
iW2

µ

2

)
∂µ − ig2

W3
µ

2 + K1 −ig2

(
W6

µ

2 − iW7
µ

2

)
−ig2

(
W4

µ

2 +
iW5

µ

2

)
−ig2

(
W6

µ

2 +
iW7

µ

2

)
∂µ + K2

 (37)
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where K1 and K2 are given by

K1 =
i
(√

2Bµg2g1(2X − 1)− Z′
µ

(
g2

2 + 4g1
2X
))

2
√

3
, (38)

and

K2 =
i
(√

2Bµg2g1(X + 1) + Z′
µ

(
g2

2 − 2g1
2X
))

√
3

. (39)

Once all the scalar field has acquired a vacuum expectation value, the gauge fields W±

and Z become massive too, while Y±±, V± and Z′ obtain more involved mass terms. The
squared masses of W±, V± and Y±± are given by

M2
W =

g2
2v2

η

4
+

g2
2v2

χ

4
+

g2
2v2

σ

4
, (40)

M2
V =

g2
2v2

ρ

4
+

g2
2v2

η

4
+

g2
2v2

σ

4
, (41)

M2
Y =

g2
2v2

ρ

4
+

g2
2v2

χ

4
+ g2

2v2
σ, (42)

where we recall that

W±
µ =

1√
2

(
W1

µ ∓ iW2
µ

)
, V±

µ =
1√
2

(
W6

µ ∓ iW7
µ

)
, Y±±

µ =
1√
2

(
W4

µ ∓ iW5
µ

)
. (43)

On the other hand, the neutral gauge bosons also gain non-diagonal mass terms, which in
the {W3, W8, X} basis, are given by the following matrix:

g2
1v2

ρ + g2
1v2

χ − g1g2v2
ρ√

3
− g1g2v2

χ

2
√

3
− 1

2 g1g2v2
χ

− g1g2v2
ρ√

3
− g1g2v2

χ

2
√

3

g2
2v2

ρ

3 +
g2

2v2
η

12 +
g2

2v2
χ

12 +
g2

2v2
σ

12 − g2
2v2

η

4
√

3
+

g2
2v2

χ

4
√

3
− g2

2v2
σ

4
√

3

− 1
2 g1g2v2

χ − g2
2v2

η

4
√

3
+

g2
2v2

χ

4
√

3
− g2

2v2
σ

4
√

3

g2
2v2

η

4 +
g2

2v2
χ

4 +
g2

2v2
σ

4

 (44)

In a first step, the two neutral gauge bosons W8 and X mix, giving rise to the two bosons B
and Z. The mixing angle is denoted by θ331 and is given by

sin θ331 =
g2√

g2
2 +

g2
1

2

, (45)

which was the rotation discussed in the previous section. Then, we can proceed in complete
analogy with the Standard Model, where B mixes with W3 through the Weinberg angle θW ,
which in the minimal 331 model takes the form

sin θW =
gY√

g2 + g2
Y

. (46)

Using (46), it is straightforward to show that we can express the θ331 angle in terms of the
Weinberg angle, namely

cos θ331 =
√

3 tan θW , (47)

therefore the photon field A and the two massive neutral gauge bosons Z and Z′ are
identified as

A = sin θWW3 + cos θW

(√
3 tan θWW8 +

√
1 − 3 tan2 θW X

)
, (48)
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Z = cos θWW3 − sin θW

(√
3 tan θWW8 +

√
1 − 3 tan2 θW X

)
, (49)

Z′ = −
√

1 − 3 tan2 θWW8 +
√

3 tan θW X. (50)

The Weinberg angle also relates the coupling of SU(3)L, which through matching is equal
to the SU(2)L of the Standard Model, to the U(1)X coupling, through

g2
1

g2
2
=

6 sin2 θW

1 − 4 sin2 θW
, (51)

which can be obtained from Equations (45) and (46). From Equations (48)–(50), it is evident
that there is a residual mixing between the massive gauge boson, which is given by
the matrix (

CZZ CZZ′

CZZ′ CZ′Z′

)
(52)

with entries
CZZ = g2

2(2θW)
(

v2
ρ + v2

η + v2
σ

)
, (53)

CZ′Z′ =
g2

2 sin2 θW

(
csc2(θW)

(
v2

ρ + v2
η + 4v2

χ + v2
σ

)
+ 9 sec2(θW)

(
v2

ρ + v2
η + v2

σ

)
− 4
(

v2
ρ + 4v2

η + v2
χ + 4v2

σ

))
24 cos(2θW)− 12

, (54)

CZZ′ =
g2

2 sec3(θW)
(
− cos(2θW)

(
v2

ρ + 2
(

v2
η + v2

σ

))
+ 2v2

ρ + v2
η + v2

σ

)
4
√

12 − 9 sec2(θW)
. (55)

Therefore, a further rotation is needed(
Z1
Z2

)
=

(
cos θZ − sin θZ
sin θZ cos θZ

)(
Z
Z′

)
(56)

in order to obtain the masses of propagating gauge bosons, namely

M2
Z =

1
6
(3g2

1(v
2
ρ + v2

χ)− (9g4
1(v

2
ρ + v2

χ)
2 + 6g2

1g2
2(v

4
ρ − v2

ρ(v
2
η + v2

σ)

+ v2
χ(−v2

η + v2
χ − v2

σ)) + g4
2(v

4
ρ − v2

ρ(v
2
η + v2

χ + v2
σ) + v4

η + v2
σ(2v2

η − v2
χ)

− v2
ηv2

χ + v4
χ + v4

σ)
1
2 ) + g2

2(v
2
ρ + v2

η + v2
χ + v2

σ)), (57)

and

M2
Z′ =

1
6
(3g2

1(v
2
ρ + v2

χ) + (9g4
1(v

2
ρ + v2

χ)
2 + 6g2

1g2
2(v

4
ρ − v2

ρ(v
2
η + v2

σ)

+ v2
χ(−v2

η + v2
χ − v2

σ)) + g4
2(v

4
ρ − v2

ρ(v
2
η + v2

χ + v2
σ) + v4

η + v2
σ(2v2

η − v2
χ)

− v2
ηv2

χ + v4
χ + v4

σ))
1
2 + g2

2(v
2
ρ + v2

η + v2
χ + v2

σ)). (58)

Once the orthogonal rotations have been performed and the Lagrangian has been
written in terms of the mass eigenstates of bosonic fields, it is possible to extract the values
of the couplings. In particular, it is possible to derive the expression of the electric charge
in terms of the couplings of the minimal 331

e =
g1g2√

g2
2 + 4g2

1

, (59)

with the embedding of the charge operator given by

Q = T3 +
√

3T8 + X1. (60)
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One of the most interesting features of the model is that the embedding of the Standard
Model gauge group into the 331 model gauge group induces a bound on the UV completion
of the model [5]. From (51), it is clear that we need to satisfy the following condition

sin2 θW ≤ 1
4

, (61)

in order to guarantee that the g1 coupling of the minimal 331 model is finite. When
sin2 θW(µ) = 1/4, the coupling constant g1(µ) diverges, indicating a Landau pole in
the renormalization group evolution of the model, which causes the theory to loose its
perturbative character even at energy scales lower than µ. With the particle content of the
Standard Model, the condition sin2 θW(µ) = 1/4 is reached at an energy scale of around
4 TeV, and the presence of an additional particle at the TeV scale can make this behavior
even faster, loosing a perturbative character before 4 TeV. The alternative scenario, where
g2 tends towards zero, is disregarded, as g2 coincides with the Standard Model’s SU(2)L
coupling, g2, due to the full embedding of SU(2)L into SU(3)L. We show the running of
the Standard Model couplings g2 in Figure 1a and gy in Figure 1b, and in Figure 1c we
show how the matching condition of the coupling g1 evolves in terms of the matching scale.
Here, we have defined

g1 =
g2gy√

g2
2 − 3g2

y

, (62)

which expresses the value of the U(1)X coupling in terms of the Standard Model. Finally,
the evolution of g1 in the context of the 331 Model is shown in Figure 1d, where we have
plotted the quantity

α1 =
g2

1
4π

(63)

which makes it clear that when α1 > 1, the theory looses pertubativity. A more recent study
was performed in [6].

The occurrence of a Landau-like pole in the minimal 331 model is not surprising, as
many non -asymptotically free theories exhibit a similar behavior. What distinguishes some
of these models is the possibility of encountering this behavior at energies as low as a few
TeVs. Consequently, the cutoff scale, Λcuto f f , cannot be removed by taking Λcuto f f → ∞, as
in other renormalizable theories.

From a phenomenological perspective, this result is not overly concerning. The neces-
sity of embedding QED within the electroweak theory at energies of a few hundred GeVs,
along with the requirement to account for weak and strong corrections in calculations of
physical observables, has already been acknowledged. Nevertheless, as a mathematical
exercise, studying pure QED at infinitesimal distances proves intriguing. Lattice calcula-
tions suggest that chiral symmetry breaking within QED mitigates the Landau pole issue
by shifting it above the cutoff scale. Interestingly, the potential existence of the Landau pole
or the triviality of the theory arises even at low orders in perturbation theory, suggesting
that this phenomenon is not merely a perturbative artifact.

The renormalization group offers qualitative insights into the asymptotic behavior
of theories at very high energies, even when coupling constants at the relevant scale
prohibit the use of perturbation theory. However, it is essential to remember that both QED
and the Standard Model are effective, not fundamental, theories. Consequently, effective
operators with dimensions higher than d = 4 must be considered for a realistic continuum
limit in lattice calculations. Thus, employing the pure versions of these models remains
inconclusive, and the renormalization group may provide valuable insights into this issue
within the minimal 331 model.
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Figure 1. Behavior of the matching condition between the Standard Model and 331 model, which
makes it clear how the Landau pole at the TeV scale emerges from the matching with the Standard
Model. (a) Running of the coupling g2 in the Standard Model. (b) Running of the coupling gy in the
Standard Model. (c) Evolution of the matching condition of the coupling g1 of the 331 model with the
Standard Model coupling constants. (d) Running of the coupling α1 in the minimal 331 model.

5. Higgs Sector

The inclusion of the sextet representation in the potential enriches the phenomenology
of the model and enlarges the number of physical states in the spectrum. In fact, we
now have, after electroweak symmetry breaking (EWSB) SU(3)L × U(1)X → SU(2)L ×
U(1)Y → U(1)em, five scalar Higgses, three pseudoscalar Higgses, four charged Higgses,
and three doubly-charged Higgses. The (lepton-number conserving) potential of the model
is given by [7]

V =m1ρ†ρ + m2η†η + m3χ†χ + λ1(ρ
†ρ)2 + λ2(η

†η)2 + λ3(χ
†χ)2

+ λ12ρ†ρη†η + λ13ρ†ρχ†χ + λ23χ†χη†η + ζ12ρ†ηη†ρ + ζ13ρ†χχ†ρ + ζ23η†χχ†η

+ m4 Tr
(

σ†σ
)
+ λ4(Tr

(
σ†σ

)
)2 + λ14ρ†ρ Tr

(
σ†σ

)
+ λ24η†η Tr

(
σ†σ

)
+ λ34χ†χ Tr

(
σ†σ

)
+ λ44 Tr

(
σ†σσ†σ

)
+ ζ14ρ†σσ†ρ + ζ24η†σσ†η + ζ34χ†σσ†χ

+ (
√

2 fρηχϵijkρiηjχk +
√

2 fρσχρTσ†χ

+ ξ14ϵijkρ∗lσliρjηk + ξ24ϵijkϵlmnηiηlσjmσkn + ξ34ϵijkχ∗lσliχjηk) + h.c. . (64)

In principle, it is possible to extend the potential with additional lepton number violating
terms that are singlet under 331 gauge group [7], this possibility has been extensively dis-
cussed in [8]. The EWSB mechanism will cause a mixing among the Higgs fields [9]. From
Equation (64), it is possible to obtain the explicit expressions of the mass matrices of the
scalar, pseudoscalar, charged, and doubly-charged Higgses by using standard procedures.
In the broken Higgs phase, the minimization conditions

∂V
∂vϕ

= 0, ⟨ϕ0⟩ = vϕ, ϕ = ρ, η, χ, σ (65)
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will define the tree-level vacuum, one-loop contributions to the vacuum stability were re-
cently analyzed in [10] for a simpler model version, namely the economical 331
model [11,12]. We remind that we are considering massless neutrinos by choosing the vev
of the neutral field σ0

2 as zero. This was the choice in Frampton’s original formulation. This
can be generalized in order to give a small Majorana neutrino mass to the neutrinos [13].

The explicit expressions of the minimization conditions are then given by

m1vρ + λ1v3
ρ +

1
2

λ12vρv2
η − fρηχvηvχ +

1
2

λ13vρv2
χ − 1√

2
ξ14vρvηvσ + fρσχvχvσ (66)

+
1
2

λ14vρv2
σ +

1
4

ζ14vρv2
σ = 0

m2vη +
1
2

λ12v2
ρvη + λ2v3

η − fρηχvρvχ +
1
2

λ23vηv2
χ − 1

2
√

2
ξ14v2

ρvσ +
1

2
√

2
v2

χvσ (67)

+
1
2

λ24vηv2
σ − ξ24vηv2

σ = 0

m3vχ + λ3v3
χ +

1
2

λ13v2
ρvχ − fρηχvρvη +

1
2

λ23v2
ηvχ +

1√
2

ξ34vηvχvσ + fρσχvρvσ (68)

+
1
2

λ34vχv2
σ +

1
4

ζ34vχv2
σ = 0

m4vσ +
1
2

λ14v2
ρvσ + λ44v3

σ +
1
2

λ4v3
σ + fρσχvρvχ − 1

2
√

2
ξ14v2

ρvη +
1

2
√

2
ξ34vηv2

χ (69)

+
1
2

λ14v2
ρvσ +

1
4

ζ14v2
ρvσ +

1
2

λ24v2
ηvσ − ξ24v2

ηvσ +
1
2

λ34v2
χvσ +

1
4

ζ34v2
χvσ = 0

These conditions are inserted into the tree-level mass matrices of the CP-even and CP-
odd Higgs sectors, derived from Mij = ∂2V/∂ϕi∂ϕj

∣∣
vev, where V is the potential in

Equation (64). The mass eigenstates are defined as follows:

h = RS


Re ρ0

Re η0

Re χ0

Re σ0
1

σ0
2

Ah = RP


Im ρ0

Im η0

Im χ0

Im σ0
1

H+ = RC



ρ+

χ+

η+
1

η+
2

σ+
1

σ+
2

H++ = R2C


ρ++

χ++

σ++
1

σ++
2

 (70)

where the explicit expressions of the mass matrices are too cumbersome to be presented
here, and are given in Appendix A.

In this case, we have five scalar Higgs bosons, and one of them will be the SM Higgs
of mass about 125 GeV, along with four neutral pseudoscalar Higgs bosons, out of which,
two are the Goldstones of the Z and the Z′ massive vector bosons. In addition, there are six
charged Higgses, two of which are the charged Goldstones, and three are doubly-charged
Higgses, one of which is a Goldstone boson.

Hereafter, we shall give the schematic expression of the physical Higgs states, after
EWSB, in terms of the gauge eigenstates, whose expressions contain only the vev of the
various fields. In the following equations, RK

ij ≡ RK
ij (m1, m2, m3, λ1, λ2, . . .) refers to the

rotation matrix of each Higgs sector that depends on all the parameters of the potential in
Equation (64). Starting from the scalar (CP-even) Higgs bosons, we have

Hi = RS
i1Re ρ0 + RS

i2Re η0 + RS
i3Re χ0 + RS

i4Re σ0
1 + RS

i5Re σ0
2 , (71)

expressed in terms of the rotation matrix of the scalar components RS. There are similar
expressions for the pseudoscalars

Ahi = RP
i1Im ρ0 + RP

i2Im η0 + RP
i3Im χ0 + RP

i4Im σ0
1 + RP

i5Im σ0
2 (72)
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in terms of the rotation matrix of the pseudoscalar components RP. Here, however, we
have two Goldstone bosons responsible for the generation of the masses of the neutral
gauge bosons Z and Z′ given by

A1
0 =

1
N1

(
vρIm ρ0 − vηIm η0 + vσIm σ0

1

)
, N1 =

√
v2

ρ + v2
η + v2

σ ; (73)

A2
0 =

1
N2

(
−vρIm ρ0 + vχIm χ0

)
, N2 =

√
v2

ρ + v2
χ. (74)

For the charged Higgs bosons, the interaction eigenstates are

H+
i = RC

i1ρ+ + RC
i2(η

−)∗ + RC
i3η+ + RC

i4(χ
−)∗ + RC

i5σ+
1 + RC

i6(σ
−
2 )∗, (75)

with RC being a rotation matrix of the charged sector. We recall that, even in this case, two
H+

i are massless Goldstones bosons, because in the minimal 331 model there are W± and
the V± gauge bosons that both become massive after EWSB. The explicit expressions of the
Goldstones are

H+
W =

1
NW

(
−vηη+ + vχ(χ

−)∗ + vσ(σ
−
2 )∗

)
, NW =

√
v2

η + v2
χ + v2

σ; (76)

H+
V =

1
NV

(
vρρ+ − vη(η

−)∗ + vσσ+
1
)
, NV =

√
v2

ρ + v2
η + v2

σ. (77)

In particular, we are interested in the doubly-charged Higgses, where the number of
physical states, after EWSB, is three, whereas we would have had only one physical doubly-
charged Higgs if we had not included the sextet. The physical doubly-charged Higgs states
are expressed in terms of the gauge eigenstates and the elements of the rotation matrix
RC as

H++
i = R2C

i1 ρ++ + R2C
i2 (χ−−)∗ + R2C

i3 σ++
1 + R2C

i4 (σ−−
2 )∗. (78)

In particular, the structure of the corresponding Goldstone boson is

H++
0 =

1
N

(
−vρρ++ + vχ(χ

−−)∗ −
√

2vσσ++
1 +

√
2vσ(σ

−−
2 )∗

)
(79)

where N =
√

v2
ρ + v2

χ + 4v2
σ is a normalization factor.

6. The Yukawa Sector

The model presented in the previous section exhibits the interesting feature of having
both scalar and vector doubly-charged bosons, which is a peculiarity of the minimal
version of the 331 model. In fact, it is possible to consider various versions of the SU(3)c ×
SU(3)L × U(1)X gauge symmetry, usually parametrized by β [14,15]. We discuss the case
of β =

√
3, corresponding to the minimal version presented here [1,2], leading to vector

bosons with an electric charge equal to ±2.
Doubly-charged states hold particular interest, due to their potential for unique charac-

teristics in terms of permissible decay channels, such as the production of same-sign lepton
pairs [16–20]. Within the framework of the minimal 331 model, an even more intriguing
prospect arises. It becomes possible to discern whether a same-sign lepton pair originates
from either a scalar or a vector boson. As we will elaborate, this distinction also offers
insights into the existence of a higher representation within the SU(3)c × SU(3)L × U(1)X
gauge group, notably the sextet.
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6.1. The Triplet Sector

In the previous section, we saw that the EWSB mechanism is realized in the 331 model
by giving a vev to the neutral component of the triplets ρ, η and χ. The Yukawa interactions
for SM and exotic quarks are obtained by means of these scalar fields and are given by

LY
q, triplet = − Qm

(
Yd

mαη∗dαR + Yu
mαχ∗umα

)
− Q3(Y

d
3αχdαR + Yu

3αηumα)+

− Qm(Y
J
mnχJnR)− Q3Y J

3 χJ3R + h.c. (80)

where yi
d, yi

u and yi
E are the Yukawa couplings for down-, up-type, and exotic quarks,

respectively. The masses of the exotic quarks are related to the vev of the neutral component
of ρ = (0, 0, vρ) via the invariants

Q1 ρ∗D∗
R, Q1 ρ∗S∗

R ∼ (3, 3,−1/3)× (1, 3̄,−1)× (3̄, 1, 4/3)

Q3 ρT∗
R ∼ (3, 3̄, 2/3)× (1, 3, 1)× (3̄, 1,−5/3), (81)

responsible of the breaking SU(3)c × SU(3)L × U(1)X → SU(3)c × SU(2)L × U(1)Y. It
is clear that, being vρ ≫ vη,χ, the masses of the exotic quarks are O(TeV) whenever the
relation Y J ∼ 1 is satisfied. As we will see, the model also needs a sextet.

6.2. The Sextet Yukawa Coupling

The need for introducing a sextet sector can be summarized as follows. A typical Dirac
mass term for the leptons in the SM is associated with the operator l̄L HeR, with lL = (veL, eL)
being the SU(2)L doublet, with the representation content (2̄, 1/2)× (2, 1/2)× (1,−1) (for
l, H and eR, respectively) in SU(2)L × U(1)Y. In the 331 model, the L and R components of
the lepton (e) belong to the same multiplet. Consequently, identifying an SO(1, 3)× SU(3)L
singlet requires two leptons in the same representation. This can be achieved (at least
partially) with the operator

LYuk
l, triplet = Gη

ab(l
i
aαϵαβl j

bβ)η
∗kϵijk + h.c.

= Gη
ab li

a · l j
b η∗kϵijk + h.c. (82)

where the indices a and b run over the three generations of flavor, α and β are Weyl indices
contracted in order to generate an SO(1, 3) invariant (li

a · l j
b ≡ li

aαϵαβl j
bβ) from two Weyl

fermions, and i, j, k = 1, 2, 3, are SU(3)L indices.
The use of η as a Higgs field is mandatory, since the components of the multiplet l j

are U(1)X singlets. The representation content of the operator li
al j

b according to SU(3)L is
given by 3 × 3 = 6 + 3̄, with the 3̄ extracted by an anti-symmetrization over i and j via ϵijk.
This allows identifying li

al j
bη∗kϵijk as an SU(3)L singlet. Considering that the two leptons

are anticommuting Weyl spinors, and that the ϵαβ (Lorentz) and ϵijk (SU(3)L) contractions
introduce two sign flips under the a ↔ b exchange, the combination

Mab = (li
a · l j

b)η
∗kϵijk (83)

is therefore antisymmetric under the exchange of the two flavors, implying that even Gab
has to be antisymmetric. However, an antisymmetric Gη

ab is not sufficient to provide mass
to all the leptons.

In fact, the diagonalization of Gη by means of a unitary matrix U, namely Gη = UΛU†,
with Gη antisymmetric in flavor space, implies that its three eigenvalues are given by
Λ = (0, λ22, λ33), with λ22 = −λ33; i.e., one eigenvalue is null and the other two are equal
in magnitude. At the minimum of η, i.e., η = (0, vη , 0), one has

Gη
ab Mab = −Tr(Λ UMU†) = 2vηλ22 U2a l1

a · l3
b U∗

2b + 2vηλ33 U3a l1
a · l3

b U∗
3b, (84)
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with l1
a = eaL and l3

b = ec
bR. Introducing the linear combinations

E2L ≡ U2a l1
a = U2a

′ eaL U∗
2b l3

b = U∗
2b ec

bR = iσ2(U2b ebR)
∗ ≡ Ec

2R, (85)

then the antisymmetric contribution in flavor space becomes

LYuk
l, triplet = 2vηλ22(E2LEc

2R − E3LEc
3R), (86)

which is clearly insufficient to generate the lepton masses of three non-degenerate lepton
families. We shall solve this problem by introducing a second invariant operator, with the
inclusion of a sextet σ

σ =


σ++

1 σ+
1 /

√
2 σ0/

√
2

σ+
1 /

√
2 σ0

1 σ−
2 /

√
2

σ0/
√

2 σ−
2 /

√
2 σ−−

2

 ∈ (1, 6, 0), (87)

leading to the Yukawa term
LYuk.

l,sextet = Gσ
abli

a · l j
bσ∗

i,j, (88)

which allows building a singlet out of the representation 6 of SU(3)L, contained in li
a · l j

b,
by combining it with the flavor-symmetric σ∗, i.e., 6̄. Notice that Gσ

ab is symmetric in
flavor space.

It is interesting to note that without considering the sextet, a doubly-charged scalar
would not be able to decay into same-sign leptons. This is because, without the sextet, the
interaction responsible for the leptons only involves the scalar triplet, denoted as η, which
does not contain a doubly-charged state.

6.3. Lepton Mass Matrices

Let us now come to discuss the lepton mass matrices in the model. They are related to
the Yukawa interactions by the Lagrangian

LYuk.
l = LYuk.

l,sextet + LYuk.
l,triplet + h.c. (89)

and are combinations of triplet and sextet contributions. The structure of the mass matrix
that emerges from the vevs of the neutral components of η and σ is thus given by

LYuk.
l =

(√
2σ0Gσ

a,b + 2vηGη
ab

)
(eaL · ec

bR) + σ0
1 Gσ

ab

(
νT

L iσ2νL

)
+ h.c., (90)

which generates a Dirac mass matrix for the charged leptons Ml
ab and a Majorana mass

matrix for neutrinos Mνl
ab

Ml
ab =

√
2⟨σ0⟩ Gσ

a,b + 2vη Gη
ab , Mνl

ab = ⟨σ0
1 ⟩ Gσ

ab. (91)

In the expression above, ⟨σ0⟩ and ⟨σ0
1 ⟩ are the vacuum expectation values of the neutral

components of σ. For a vanishing Gσ, as we have already discussed, we will not be able to
generate the lepton masses consistently, nor any mass for the neutrinos, i.e.,

Ml
ab = 2vη Gη

ab , Mνl = 0. (92)

On the contrary, in the limit Gη → 0, Equation (91) becomes

Ml
ab =

√
2⟨σ0⟩ Gσ

ab , Mνl
a,b =

⟨σ0
1 ⟩√
2

Gσ
ab, (93)
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which has some interesting consequences. Since the Yukawa couplings are the same for both
leptons and neutrinos, we have to require ⟨σ0

1 ⟩ ≪ ⟨σ0⟩, in order to obtain small neutrino
masses. For the goal of our analysis, we will assume that the vev of σ0

1 vanishes; i.e.,
⟨σ0

1 ⟩ ≡ 0. Clearly, if the matrix Gσ is diagonal in flavor space, from Equation (93), we will
immediately conclude that the Yukawa coupling Gσ has to be chosen to be proportional
to the masses of the SM leptons. An interesting consequence of this is that the decay
H±± → l±l±, which is also proportional to Gσ, and therefore to the lepton masses, will
be enhanced for the heavier leptons, in particular for the τ, as thoroughly discussed
in [21]. This is an almost unique situation that is not encountered in other models with
doubly-charged scalars decaying into same-sign leptons [22].

7. Flavor Physics in the Minimal 331 Model

One of the features of the minimal 331 model lies in its arrangement of fermions within
triplets of SU(3)L. However, to maintain anomaly cancellation, it becomes necessary to
assign one of the quark families to a different representation than the other two, ensuring
an equal number of triplets and anti-triplets in the fermion sector.

This introduces several complexities, particularly concerning the flavor physics within
the model. First, to achieve the spontaneous symmetry breaking of the 331 gauge sym-
metry to the SU(3)C × U(1)em symmetry, at least three scalar triplets of SU(3)L must be
introduced. While these are sufficient to impart masses to quarks in the quark sector, the
flavor structure becomes intricate due to the differing group representations of the three
quark families.

Conversely, in the lepton sector, a fundamentally different situation arises. Realistic
masses cannot be obtained using only three triplets. As previously argued, the introduction
of a scalar sextet belonging to (1, 6, 0) becomes necessary to generate appropriate masses
for charged leptons.

A general feature of models of this kind, where mass terms arise from different
scalar fields, is the introduction of flavor-changing neutral currents mediated by neutral
scalars [23].

7.1. Quark Sector

Let us revisit the presence of three scalar triplets within the model. The first triplet,

ρ =

ρ++

ρ+

ρ0

 ∈ (1, 3, 1), (94)

acquires a vacuum expectation value (vev) on the order of the spontaneous symmetry
breaking of the 331 symmetry. The other two triplets,

η =

η+
1

η0

η−
2

 ∈ (1, 3, 0), (95)

χ =

 χ0

χ−

χ−−

 ∈ (1, 3,−1), (96)

acquire non-zero vevs at the electroweak scale. In the quark sector, the Yukawa interactions
are described by

LY
q, triplet = − Qm

(
Yd

mαη∗dαR + Yu
mαχ∗umα

)
− Q3(Y

d
3αχdαR + Yu

3αηumα)+

− Qm(Y
J
mnχJnR)− Q3Y J

3 χJ3R + h.c. . (97)

The mass matrices for the up-type and down-type quarks arise when all scalar triplets
acquire real vevs: ρ → vρ/

√
2, η → vη/

√
2, and χ → vχ/

√
2. Both matrices involve
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contributions from the triplets η and χ. Exotic quark mass terms emerge following the
initial spontaneous symmetry breaking.

Since there are two quarks, namely D and S with electric charge Q = −4/3 e, they
undergo mixing via a Cabibbo-like 2 × 2 matrix(

D′
R

S′
R

)
= Ṽ−1

R

(
DR
SR

)
,

(
D′

L
S′

L

)
= Ṽ−1

L

(
DL
SL

)
. (98)

Notably, only the quark T remains unmixed, being the sole quark with Q = 5/3 e.
The resulting mass matrices for ordinary quarks from the Lagrangian in Equation (97) are
as follows:

Mu =

vχYu
11 vχYu

12 vχYu
13

vχYu
21 vχYu

22 vχYu
23

vηYu
31 vηYu

32 vηYu
33

, (99)

Md =

vηYd
11 vηYd

12 vηYd
13

vηYd
21 vηYd

22 vηYd
23

vχYd
31 vχYd

32 vχYd
33

. (100)

In the minimal version, there is typically no reason to initially place one type of quark
in the diagonal basis, unless some specific additional symmetry is introduced. Therefore,
similar to the Standard Model, we proceed by independently rotating down-type and
up-type quarks into their mass eigenstatesd′L

s′L
b′L

 = V−1
L

dL
sL
bL

 d′R
s′R
b′R

 = V−1
R

dR
sR
bR

 (101)

u′
L

c′L
t′L

 = U−1
L

uL
cL
tL

 u′
R

c′R
t′R

 = U−1
R

uR
cR
tR

 (102)

Here, the primed fields represent flavor eigenstates, while unprimed fields denote mass
eigenstates. Matrices UL, UR, VL, and VR are unitary matrices satisfying

V†
L VL = V†

RVR = U†
LUL = U†

RUR = 1, (103)

which diagonalize Mu and Md respectively via bi-unitary transformations

U†
L MuUR = M̂u V†

L MdVR = M̂d, (104)

where M̂u and M̂d are diagonal 3 × 3 matrices containing quark masses.
In the Standard Model, all three families are placed within the same group representation of
the gauge symmetry, and this results in no family distinction in the Lagrangian apart from
the Yukawa sector. Here, non-diagonal terms between quark masses arise if the couplings
are non-diagonal. The same field rotation procedure is implemented in the Standard Model
to diagonalize Yukawa interactions, while leaving the Lagrangian mostly unchanged, and
the only part sensitive to flavor rotation is the W boson interactions, where the CKM matrix
arises as

VCKM = U†
LVL. (105)

Every other sector in the Lagrangian remains unaffected. Consequently, the GIM mecha-
nism is naturally implemented, since there are no flavor-changing neutral currents (FCNCs)
at tree-level, resulting in a natural suppression of these processes, which can only occur
at loop-level. Up-type quark masses can be assumed as diagonal from the outset, while
down-type quark flavor and mass eigenstates can be related through the CKM matrices, as
any other rotation effects cancel out in the Lagrangian.
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However, in the context of the minimal 331 model, the situation is fundamentally
different. As previously emphasized, the appealing feature of constraining the number
of families is that it causes every sector of the Lagrangian to be sensitive to flavor, owing
to the different group representations to which the quarks are assigned. Consequently,
flavor rotation matrices persist in various combinations in fermion interactions, either with
scalars or gauge bosons. From the Yukawa Lagrangian in Equation (97), we can derive the
fermion-scalar interactions after the field rotations discussed previously

Lcc
scalar = −dLVLScc

duU†
RuR − uLULScc

udV†
RdR + h.c., (106)

where d and u represent the down-type and up-type flavor vectors in the mass basis, and

Scc
du =

χ−Yu
11 χ−Yu

12 χ−Yu
13

χ−Yu
21 χ−Yu

22 χ−Yu
23

η−
1 Yu

31 η−
1 Yu

32 η−
1 Yu

33

, (107)

Scc
ud =

η+
1 Yd

11 η+
1 Yd

12 η+
1 Yd

13
η+

1 Yd
21 η+

1 Yd
22 η+

1 Yd
23

χ+Yd
31 χ+Yd

32 χ+Yd
33

. (108)

In the expression above, all the charged scalars are interaction eigenstates, and we need
to perform a rotation in (111) and (110) in order to extract the corresponding mass eigen-
states. It is evident that, in general, the combination of flavor rotation matrices cannot
be further reduced, and they persist in a combination distinct from the CKM matrix.
This behavior also manifests in the neutral currents mediated by scalar fields, where the
Lagrangian becomes

Lnc
scalar = −uLULSnc

u U†
RuR − dLVLSnc

d V†
RdR + h.c., (109)

with

Snc
u =

χ0Yu
11 χ0Yu

12 χ0Yu
13

χ0Yu
21 χ0Yu

22 χ0Yu
23

η0Yu
31 η0Yu

32 η0Yu
33

 (110)

and

Snc
d =

η0Yd
11 η0Yd

12 η0Yd
13

η0Yd
21 η0Yd

22 η0Yd
23

χ0Yd
31 χ0Yd

32 χ0Yd
33

 (111)

where, as in the case of charged scalars, here we also need a further rotation in order to
extract the mass eigenstates of this sector.

Although the matrix combinations ULSnc
u U†

R and VLSnc
d V†

R resemble those in
Equations (101) and (102), they are insufficient to diagonalize the interaction. Hence,
flavor-changing neutral currents in the scalar sector are a prediction of the minimal 331
model. They can be controlled, but not entirely avoided.

In the minimal 331 model, eight bosons are present, including the neutral ones: the
photon Aµ, with straightforward interactions, Zµ and Z′µ, and the charged ones, W±, V±,
and the doubly charged bileptons Y±±. However, rotations in flavor space do not leave the
interactions unaffected. The d-type and u-type quarks interact with the W± boson as in the
Standard Model

LduW =
g2√

2
dLγµVCKMuLW−

µ + h.c. (112)

Here, the CKM matrix appears as expected. Further interactions are possible between
exotic quarks and ordinary quarks mediated by exotic gauge bosons. The interactions of
u-type and d-type quarks with the exotic T quark are given by

LuTV =
g2√

2
TLγµ(UL)3jujLV+

µ + h.c. (113)
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LdTY =
g2√

2
TLγµ(VL)3jdjLY++

µ + h.c. (114)

Here, only the third column of the rotation matrix appears due to the difference
between the third quark generation and the other two. Similar interactions occur between
up-type and down-type quarks with the other two exotic quarks D and S

LdjY =
g2√

2
jLγµ(O†VL)mjdjLV−

µ + h.c. with jL = (DL, SL) (115)

LujY =
g2√

2
jLγµ(O†UL)mjdjLY++

µ + h.c. with jL = (DL, SL) (116)

where the O matrix in Equations (115) and (116) is a 2× 2 Cabibbo-like matrix, which mixes
the exotic quarks D and S.

Finally, the interaction of ordinary quarks with the Z′ boson can be schematized as
follows—omitting an overall coefficient-

LqqZ′ =

(
uLU†

LγµΥu
LULuL + dLV†

L γµΥd
LVLdL

+ uRU†
RγµΥu

RURuR + dRV†
RγµΥd

RVRdR

)
Z′

µ (117)

where we have defined the couplings with Υu
L and Υd

L, which are proportional to the
following matrix

Υu
L = Υd

L ∝

1 − 2 sin2(θW) 0 0
0 1 − 2 sin2(θW) 0
0 0 −1

 (118)

In this interaction, there are flavor-changing neutral currents (FCNCs) in the left-handed
interactions, but the right-handed neutral currents mediated by the gauge boson Z′ are
diagonal in flavor space, as Υu

R ∝ 1 and Υd
R ∝ 1 [24].

It is noteworthy that in the quark sector, the rotation matrices of the right-handed
quarks cancel out from the Lagrangian, similarly to the case of the Standard Model. Con-
versely, the left-handed UL, VL matrices not only survive in a combination analogous to
the CKM matrix of the Standard Model, but also independently. From a practical stand-
point, it is possible to redefine the fields in the interactions—using the unitary condition
U†

LUL = 1—to construct a Lagrangian for the quark sector in which only two matrices
appear: the CKM matrix and VL.

To obtain an appropriate parameterization for the matrix VL, it is necessary to initially
enumerate the additional parameters present within this matrix. Upon examining all
conceivable interaction terms, it becomes apparent that, subsequently to employing phase
transformations of the up and down-type quarks to simplify the CKM matrix, three more
potential phases emerge from transformations in the D, S, and T quarks. This results in a
total of six supplementary parameters, encompassing three mixing angles and three phases.
However, it is evident that only the Ṽ3j elements are essential when computing FCNCs,
thus allowing for a parameterization that effectively diminishes the number of parameters
involved. We obtain [25]

VL =

 c12c13 s12c23eiδ3 − c12s13s23ei(δ1−δ2) c12c23s13eiδ1 + s12s23ei(δ2+δ3)

−c13s12e−iδ3 c12c23 + s12s13s23ei(δ1−δ2−δ3) −s12c23s13ei(δ1−δ3) − c12s23eiδ2

−s13e−iδ1 −c13s23e−iδ2 c13c23

. (119)

where only two additional CP violating quantities δ1 and δ2 appear, which are responsible
for the additional CP violating effects.
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7.2. Lepton Sector

In the minimal 331 model, similarly to quarks, the leptonic sector exhibits a multitude
of parameters. Despite the Z and Z′ interactions being diagonal in flavor space (owing to the
consistent transformation behavior of the three lepton generations under the electroweak
symmetries SU(3)L ×U(1)X), flavor-changing neutral currents (FCNCs) occur in the scalar
sector [26]. These parameters result from the diverse contributions to the mass matrices of
charged leptons, mirroring the scenario observed in quarks.

The Yukawa interactions in the lepton sector must incorporate the triplet η and the
sextet, whose components are detailed as follows:

σ =


σ++

1
σ+

1√
2

σ0
1√
2

σ+
1√
2

σ0
2

σ−
2√
2

σ0
1√
2

σ−
2√
2

σ−−
2

. (120)

In the minimal 331 model, including the sextet in the scalar sector is necessary to assign
physical masses to charged leptons. This necessity arises from how the Yukawa interaction
is constructed from group theory. When combining three triplets according to 3⊗ 3⊗ 3, the
resulting invariant structure demands antisymmetry among the triplets. As a consequence,
the Yukawa matrix must exhibit antisymmetry in flavor indices to allow for vanishing
interactions. However, this interaction pattern leads to eigenvalues of (0, m,−m) of this
matrix, which is evidently an unphysical solution.

Once spontaneous symmetry breaking occurs, the scalars acquire vacuum expectation
values as follows:

η =
1√
2

 η+
1

1√
2

vη +
1√
2

Ση +
i√
2

ζη

η−
2

 (121)

σ =
1√
2


σ++

1
σ+

1√
2

vσ+Σσ+iζσ
2

σ+
1√
2

σ0
2

σ−
2√
2

vσ+Σσ+iζσ
2

σ−
2√
2

σ−−
2

. (122)

In the context of the minimal 331 model, as originally proposed, neutrinos are massless
at the tree level. However, a mechanism to generate massive neutrinos can be obtained
through the scalar sextet. Indeed, the component σ0

2 can also acquire a vev, which can be
used in the Yukawa interactions to construct a Majorana mass term for the neutrinos

LY
ν = −νc

LGσνLσ + h.c. . (123)

This interaction is not invariant under flavor rotation, therefore an additional rotation
matrix appears in this sector, in order to diagonalize the neutrino mass terms

VT
ν MνVν = M̂ν, (124)

where M̂ν is a diagonal matrix containing physical neutrino masses.
The inclusion of this additional vev carries further implications, such as the mixing

between the singly charged gauge bosons W± and V±, which can be predicted to be a
small value of vσ2 chosen to yield small neutrino masses. The interactions between charged
leptons, neutrinos, and W± remain the same as in the Standard Model

LlνW =
ig2

2
√

2

(
νLV†

PMNSγµlL + (lc)RVPMNSγµ(νc)R

)
W+

µ + h.c. (125)

where VPMNS is the Pontecorvo–Maki–Nakagawa–Sakata matrix given by
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VPMNS = V†
l Vν. (126)

The model also predicts that the interaction between charged leptons and neutrinos must
include additional contributions from V±

LlνV =
ig2

2
√

2

(
lc
LV∗

lνγµνL + νc
RVlνγµ(l)R

)
V+

µ + h.c. (127)

where the definition
Vlν = (Vν

L )
†(V l

R)
∗. (128)

In this model, there are also interactions between charged leptons and doubly charged
vector bosons given by the Lagrangian

LllY =
ig2

2
√

2

(
lcγµ

(
Ṽlν − ṼT

lν

)
− γ5γµ

(
Ṽlν + ṼT

lν

))
Y++ (129)

with
Ṽlν = (V l

R)
TV l

L. (130)

Finally, leptons couple universally to neutral vector bosons, since no distinction has been
made between generations of leptons, where the Z′ boson also has the property of being
Leptophobic [27].

Therefore, in the minimal 331 model, Vν is always not equal to VPMNS, and V l
L and V l

R
both appear separately in the combination shown in Equations (128) and (130). Because the
charged lepton mass matrix includes an anti-symmetric contribution, we cannot assume
it is diagonal from the beginning. This means we cannot simply set V l

R as equal to 1 in
the interactions in Equation (127). However, if interactions between leptons and the scalar
triplet η are forbidden by some discrete symmetry, then this simplification becomes possible.

In this scenario, the charged lepton mass matrix is diagonalized using the same unitary
matrix as the neutrino mass matrix, making the PMNS matrix straightforward. Similarly,
just like in the quark sector, determining the values of the entries in the matrices Vν, V l

L,
and V l

R is crucial for understanding the realistic behavior of this model.

8. Conclusions

The 331 model stands as a remarkable embodiment of the anomaly cancellation
mechanism, encompassing all fermion generations. It represents a compelling avenue for
extending the fermion sector of the Standard Model in an alternative direction. Within
the framework of the 331 model, the significance of anomaly constraints cannot be over-
stated. They serve as pivotal guiding principles, steering us away from the conventional
sequential structure of the Standard Model’s fermion families. Unlike the traditional model,
which lacks a clear rationale regarding the number of fermion families, the 331 model
offers a fresh perspective, inviting exploration and deeper understanding of fundamental
particle interactions.
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Appendix A. Rotations for the Determination of the Mass Eigenstates

In this appendix, we summarize some results concerning the scalar/psesudoscalar
sectors of the model [28,29].

• Mass matrix of the scalar sector, Basis:
(
ρ1, ρ2, ρ3, ρ4, σ2

0), (ρ1, ρ2, ρ3, ρ4, σ2
0,∗)

m2
h =


mρ1ρ1 mρ2ρ1 mρ3ρ1 mρ4ρ1 0
mρ1ρ2 mρ2ρ2 mρ3ρ2 mρ4ρ2 0
mρ1ρ3 mρ2ρ3 mρ3ρ3 mρ4ρ3 0
mρ1ρ4 mρ2ρ4 mρ3ρ4 mρ4ρ4 0

0 0 0 0 mσ2
0σ2

0,∗

 (A1)

mρ1ρ1 =
1
4

(
12λ1v2

ρ + 2
(

λ12v2
η + λ13v2

χ

)
− 2

√
2vηvσξ14 + v2

σ

(
2λ14 + ζ14

))
+ µ1 (A2)

mρ1ρ2 = f vχ + vρ

(
− 1√

2
vσξ14 + λ12vη

)
(A3)

mρ2ρ2 =
1
2

(
6λ2v2

η + λ12v2
ρ + λ23v2

χ + v2
σ

(
− 2ξ24 + λ24

))
+ µ2 (A4)

mρ1ρ3 =
1√
2

fσvσ + f vη + λ13vρvχ (A5)

mρ2ρ3 = f vρ + vχ

( 1√
2

vσξ34 + λ23vη

)
(A6)

mρ3ρ3 =
1
4

(
12λ3v2

χ + 2
(

λ13v2
ρ + λ23v2

η +
√

2vηvσξ34

)
+ v2

σ

(
2λ34 + ζ34

))
+ µ3 (A7)

mρ1ρ4 =
1
2

(√
2 fσvχ + vρ

(
−
√

2vηξ14 + vσ

(
2λ14 + ζ14

)))
(A8)

mρ2ρ4 =
1
2

1√
2

(
v2

χξ34 − v2
ρξ14

)
+ vηvσ

(
− 2ξ24 + λ24

)
(A9)

mρ3ρ4 =
1
2

(√
2 fσvρ + vχ

(√
2vηξ34 + vσ

(
2λ34 + ζ34

)))
(A10)

mρ4ρ4 =
1
4

(
2v2

η

(
− 2ξ24 + λ24

)
+ 6
(

2λ4 + λ44

)
v2

σ + v2
χ

(
2λ34 + ζ34

)
+ v2

ρ

(
2λ14 + ζ14

))
+ µ4 (A11)

mσ2
0σ2

0,∗ =
1
2

(
2λ4v2

σ + λ14v2
ρ + λ34v2

χ + v2
η

(
λ24 + ζ24

))
+ µ4 (A12)

This matrix is diagonalized by RS

RSm2
hRS,† = mdia

2,h (A13)

with

ρ1 = ∑
j

RS,∗
j1 hj , ρ2 = ∑

j
RS,∗

j2 hj , ρ3 = ∑
j

RS,∗
j3 hj (A14)

ρ4 = ∑
j

RS,∗
j4 hj , σ2

0 = ∑
j

RS,∗
j5 hj (A15)

• Mass matrix of the pseudoscalar sector, Basis: (σ1, σ2, σ3, σ4), (σ1, σ2, σ3, σ4)

m2
A0 =


mσ1σ1 − f vχ − 1√

2
fσvσ − f vη − 1√

2
fσvχ

− f vχ mσ2σ2 − f vρ mσ4σ2

− 1√
2

fσvσ − f vη − f vρ mσ3σ3 − 1√
2

fσvρ

− 1√
2

fσvχ mσ2σ4 − 1√
2

fσvρ mσ4σ4

+ ξZm2(Z) + ξZ′ m2(Z′) (A16)
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mσ1σ1 =
1
4

(
2
(

λ12v2
η + λ13v2

χ

)
− 2

√
2vηvσξ14 + 4λ1v2

ρ + v2
σ

(
2λ14 + ζ14

))
+ µ1 (A17)

mσ2σ2 =
1
2

(
2λ2v2

η + λ12v2
ρ + λ23v2

χ + v2
σ

(
2ξ24 + λ24

))
+ µ2 (A18)

mσ3σ3 =
1
4

(
2
(

λ13v2
ρ + λ23v2

η +
√

2vηvσξ34

)
+ 4λ3v2

χ + v2
σ

(
2λ34 + ζ34

))
+ µ3 (A19)

mσ2σ4 =
1
4

(
− 8vηvσξ24 +

√
2
(

v2
χξ34 − v2

ρξ14

))
(A20)

mσ4σ4 =
1
4

(
2
((

2λ4 + λ44

)
v2

σ + v2
η

(
2ξ24 + λ24

))
+ v2

χ

(
2λ34 + ζ34

)
+ v2

ρ

(
2λ14 + ζ14

))
+ µ4 (A21)

The gauge fixing contributions are

m2(ξZ) =


mσ1σ1 mσ2σ1 mσ3σ1 mσ4σ1

mσ1σ2 mσ2σ2 mσ3σ2 mσ4σ2

mσ1σ3 mσ2σ3 mσ3σ3 mσ4σ3

mσ1σ4 mσ2σ4 mσ3σ4 mσ4σ4

 (A22)

mσ1σ1 =
1
3

v2
ρ

(
− 2

√
3g1g2RZ

12RZ
22 + 3g2

1RZ,2
12 + g2

2RZ,2
22

)
(A23)

mσ1σ2 =
1
6

g2vρvη

(
g1RZ

12

(
− 3RZ

32 +
√

3RZ
22

)
+ g2RZ

22

(
− RZ

22 +
√

3RZ
32

))
(A24)

mσ2σ2 =
1

12
g2

2v2
η

(
− 2

√
3RZ

22RZ
32 + 3RZ,2

32 + RZ,2
22

)
(A25)

mσ1σ3 = − 1
6

vρvχ

(
− 3g1g2RZ

12

(√
3RZ

22 + RZ
32

)
+ 6g2

1RZ,2
12 + g2

2RZ
22

(√
3RZ

32 + RZ
22

))
(A26)

mσ2σ3 =
1

12
g2vηvχ

(
− 2g1RZ

12

(
− 3RZ

32 +
√

3RZ
22

)
+ g2

(
− 3RZ,2

32 + RZ,2
22

))
(A27)

mσ3σ3 =
1
12

v2
χ

(
12g2

1RZ,2
12 − 4g1g2RZ

12

(
3RZ

32 +
√

3RZ
22

)
+ g2

2

(
2
√

3RZ
22RZ

32 + 3RZ,2
32 + RZ,2

22

))
(A28)

mσ1σ4 =
1
6

g2vρvσ

(
g1RZ

12

(
− 3RZ

32 +
√

3RZ
22

)
+ g2RZ

22

(
− RZ

22 +
√

3RZ
32

))
(A29)

mσ2σ4 =
1

12
g2

2vηvσ

(
− 2

√
3RZ

22RZ
32 + 3RZ,2

32 + RZ,2
22

)
(A30)

mσ3σ4 =
1

12
g2vχvσ

(
− 2g1RZ

12

(
− 3RZ

32 +
√

3RZ
22

)
+ g2

(
− 3RZ,2

32 + RZ,2
22

))
(A31)

mσ4σ4 =
1

12
g2

2v2
σ

(
− 2

√
3RZ

22RZ
32 + 3RZ,2

32 + RZ,2
22

)
(A32)

m2(ξZ′) =


mσ1σ1 mσ2σ1 mσ3σ1 mσ4σ1

mσ1σ2 mσ2σ2 mσ3σ2 mσ4σ2

mσ1σ3 mσ2σ3 mσ3σ3 mσ4σ3

mσ1σ4 mσ2σ4 mσ3σ4 mσ4σ4

 (A33)
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mσ1σ1 =
1
3

v2
ρ

(
− 2

√
3g1g2RZ

13RZ
23 + 3g2

1RZ,2
13 + g2

2RZ,2
23

)
(A34)

mσ1σ2 =
1
6

g2vρvη

(
g1RZ

13

(
− 3RZ

33 +
√

3RZ
23

)
+ g2RZ

23

(
− RZ

23 +
√

3RZ
33

))
(A35)

mσ2σ2 =
1

12
g2

2v2
η

(
− 2

√
3RZ

23RZ
33 + 3RZ,2

33 + RZ,2
23

)
(A36)

mσ1σ3 = −1
6

vρvχ

(
− 3g1g2RZ

13

(√
3RZ

23 + RZ
33

)
+ 6g2

1RZ,2
13 + g2

2RZ
23

(√
3RZ

33 + RZ
23

))
(A37)

mσ2σ3 =
1

12
g2vηvχ

(
− 2g1RZ

13

(
− 3RZ

33 +
√

3RZ
23

)
+ g2

(
− 3RZ,2

33 + RZ,2
23

))
(A38)

mσ3σ3 =
1

12
v2

χ

(
12g2

1RZ,2
13 − 4g1g2RZ

13

(
3RZ

33 +
√

3RZ
23

)
+ g2

2

(
2
√

3RZ
23RZ

33 + 3RZ,2
33 + RZ,2

23

))
(A39)

mσ1σ4 =
1
6

g2vρvσ

(
g1RZ

13

(
− 3RZ

33 +
√

3RZ
23

)
+ g2RZ

23

(
− RZ

23 +
√

3RZ
33

))
(A40)

mσ2σ4 =
1

12
g2

2vηvσ

(
− 2

√
3RZ

23RZ
33 + 3RZ,2

33 + RZ,2
23

)
(A41)

mσ3σ4 =
1

12
g2vχvσ

(
− 2g1RZ

13

(
− 3RZ

33 +
√

3RZ
23

)
+ g2

(
− 3RZ,2

33 + RZ,2
23

))
(A42)

mσ4σ4 =
1

12
g2

2v2
σ

(
− 2

√
3RZ

23RZ
33 + 3RZ,2

33 + RZ,2
23

)
(A43)

where RZ is the rotation matrix that diagonalize the mass of the neutral gauge boson
components in the {W3, W8, X} basis, which is given by the following matrix

g2
1v2

ρ + g2
1v2

χ − g1g2v2
ρ√

3
− g1g2v2

χ

2
√

3
− 1

2 g1g2v2
χ

− g1g2v2
ρ√

3
− g1g2v2

χ

2
√

3

g2
2v2

ρ

3 +
g2

2v2
η

12 +
g2

2v2
χ

12 +
g2

2v2
σ

12 − g2
2v2

η

4
√

3
+

g2
2v2

χ

4
√

3
− g2

2v2
σ

4
√

3

− 1
2 g1g2v2

χ − g2
2v2

η

4
√

3
+

g2
2v2

χ

4
√

3
− g2

2v2
σ

4
√

3

g2
2v2

η

4 +
g2

2v2
χ

4 +
g2

2v2
σ

4

 (A44)

The matrix (A16) is diagonalized by the matrix RP

RPm2
A0 RP,† = mdia

2,A0 (A45)

with

σ1 = ∑
j

RP,∗
j1 A0

j , σ2 = ∑
j

RP,∗
j2 A0

j , σ3 = ∑
j

RP,∗
j3 A0

j (A46)

σ4 = ∑
j

RP,∗
j4 A0

j (A47)

• Mass matrix for Charged Higgs, Basis:
(

ρ∗+, η+,∗
1 , σ

p,∗
2 , η−

2 , χ−, σ−
1

)
,
(

ρ+, η+
1 , σ

p
2 , η−,∗

2 ,

χ∗
−, σ−,∗

1

)

m2
H− =



mρ∗+ρ+ 0 0 m∗
η−2 ρ+

0 m∗
σ−

1 ρ+

0 mη+,∗
1 η+1

m∗
σ

p,∗
2 η+1

0 m∗
χ−η+1

0

0 mη+,∗
1 σ

p
2

mσ
p,∗
2 σ

p
2

0 m∗
χ−σ

p
2

0

mρ∗+η−,∗
2

0 0 mη−2 η−,∗
2

0 m∗
σ−

1 η−,∗
2

0 mη+,∗
1 χ∗

−
mσ

p,∗
2 χ∗

−
0 mχ−χ∗

−
0

mρ∗+σ−,∗
1

0 0 mη−2 σ−,∗
1

0 mσ−
1 σ−,∗

1


+ ξW+m2(W+) + ξW ′+m2(W ′+) (A48)
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mρ∗+ρ+ =
1
2

(
2λ1v2

ρ +
(

λ12 + ζ12

)
v2

η + λ13v2
χ + λ14v2

σ

)
+ µ1 (A49)

mη+,∗
1 η+1

=
1
4

(
2
(

λ12v2
ρ +

(
λ23 + ζ23

)
v2

χ

)
+ 4λ2v2

η + v2
σ

(
2λ24 + ζ24

))
+ µ2 (A50)

mη+,∗
1 σ

p
2
=

1
4

(√
2v2

ρξ14 + vηvσ

(
4ξ24 + ζ24

))
(A51)

mσ
p,∗
2 σ

p
2
=

1
4

(
2
((

2λ4 + λ44

)
v2

σ + λ34v2
χ

)
+ v2

η

(
2λ24 + ζ24

)
+ v2

ρ

(
2λ14 + ζ14

))
+ µ4 (A52)

mρ∗+η−,∗
2

=
1
4

(
− 4 f vχ + vρ

(
2ζ12vη +

√
2vσξ14

))
(A53)

mη−2 η−,∗
2

=
1
4

(
2
((

λ12 + ζ12

)
v2

ρ + λ23v2
χ

)
+ 4λ2v2

η + v2
σ

(
2λ24 + ζ24

))
+ µ2 (A54)

mη+,∗
1 χ∗

−
=

1
4

(
− 4 f vρ + vχ

(
2ζ23vη −

√
2vσξ34

))
(A55)

mσ
p,∗
2 χ∗

−
=

1
4

(√
2
(

2 fσvρ + vηvχξ34

)
+ vχvσζ34

)
(A56)

mχ−χ∗
−
=

1
2

(
2λ3v2

χ + λ13v2
ρ +

(
λ23 + ζ23

)
v2

η + λ34v2
σ

)
+ µ3 (A57)

mρ∗+σ−,∗
1

=
1
4

(√
2
(

2 fσvχ − vρvηξ14

)
+ vρvσζ14

)
(A58)

mη−2 σ−,∗
1

=
1
4

(
−
√

2v2
χξ34 + vηvσ

(
4ξ24 + ζ24

))
(A59)

mσ−
1 σ−,∗

1
=

1
4

(
2
((

2λ4 + λ44

)
v2

σ + λ14v2
ρ

)
+ v2

χ

(
2λ34 + ζ34

)
+ v2

η

(
2λ24 + ζ24

))
+ µ4 (A60)

The gauge fixing contributions are

m2(ξW+) =



0 0 0 0 0 0
0 1

4 g2
2v2

η − 1
4 g2

2vηvσ 0 − 1
4 g2

2vηvχ 0
0 − 1

4 g2
2vηvσ

1
4 g2

2v2
σ 0 1

4 g2
2vχvσ 0

0 0 0 0 0 0
0 − 1

4 g2
2vηvχ

1
4 g2

2vχvσ 0 1
4 g2

2v2
χ 0

0 0 0 0 0 0


(A61)

m2(ξW ′+) =



1
4 g2

2v2
ρ 0 0 − 1

4 g2
2vρvη 0 1

4 g2
2vρvσ

0 0 0 0 0 0
0 0 0 0 0 0

− 1
4 g2

2vρvη 0 0 1
4 g2

2v2
η 0 − 1

4 g2
2vηvσ

0 0 0 0 0 0
1
4 g2

2vρvσ 0 0 − 1
4 g2

2vηvσ 0 1
4 g2

2v2
σ


(A62)

This matrix is diagonalized by RC

RCm2
H−RC,† = mdia

2,H− (A63)

with

ρ+ = ∑
j

RC
j1H+

j , η+
1 = ∑

j
RC

j2H+
j , σ

p
2 = ∑

j
RC

j3H+
j (A64)

η−
2 = ∑

j
RC,∗

j4 H−
j , χ− = ∑

j
RC,∗

j5 H−
j , σ−

1 = ∑
j

RC,∗
j6 H−

j (A65)

• Mass matrix for Doubly Charged Higgs, Basis: (ρ++,∗, χ−−, σ1
−−, σ2

++,∗), (ρ++,
χ−−,∗, σ1

−−,∗, σ2
++)
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m2
H−− =


mρ++,∗ρ++ m∗

χ−−ρ++ m∗
σ1

−−ρ++ m∗
σ2

++,∗ρ++

mρ++,∗χ−−,∗ mχ−−χ−−,∗ m∗
σ1

−−χ−−,∗ m∗
σ2

++,∗χ−−,∗

mρ++,∗σ1
−−,∗ mχ−−σ1

−−,∗ mσ1
−−σ1

−−,∗ 1
2 λ44v2

σ + v2
ηξ24

mρ++,∗σ2
++ mχ−−σ2

++
1
2 λ44v2

σ + v2
ηξ24 mσ2

++,∗σ2
++

+ ξY++m2(Y++) (A66)

mρ++,∗ρ++ =
1
4

(
2
(

λ12v2
η +

(
λ13 + ζ13

)
v2

χ +
√

2vηvσξ14

)
+ 4λ1v2

ρ

+ v2
σ

(
2λ14 + ζ14

))
+ µ1 (A67)

mρ++,∗χ−−,∗ =
1
2

(
− 2 f vη +

√
2 fσvσ + ζ13vρvχ

)
(A68)

mχ−−χ−−,∗ =
1
4

(
2
((

λ13 + ζ13

)
v2

ρ + λ23v2
η

)
− 2

√
2vηvσξ34 + 4λ3v2

χ

+ v2
σ

(
2λ34 + ζ34

))
+ µ3 (A69)

mρ++,∗σ1
−−,∗ =

1
4

(
4 fσvχ + vρ

(
− 2vηξ14 +

√
2vσζ14

))
(A70)

mχ−−σ1
−−,∗ =

1
4

vχ

(
− 2vηξ34 +

√
2vσζ34

)
(A71)

mσ1
−−σ1

−−,∗ =
1
2

(
2
(

λ4 + λ44

)
v2

σ + λ14v2
ρ + λ24v2

η + v2
χ

(
λ34 + ζ34

))
+ µ4 (A72)

mρ++,∗σ2
++ =

1
4

vρ

(
2vηξ14 +

√
2vσζ14

)
(A73)

mχ−−σ2
++ =

1
4

(
4 fσvρ + vχ

(
2vηξ34 +

√
2vσζ34

))
(A74)

mσ2
++,∗σ2

++ =
1
2

(
2
(

λ4 + λ44

)
v2

σ + λ24v2
η + λ34v2

χ + v2
ρ

(
λ14 + ζ14

))
+ µ4 (A75)

The gauge fixing contributions are

m2(ξY++) =


1
4 g2

2v2
ρ − 1

4 g2
2vρvχ

1
2

1√
2

g2
2vρvσ − 1

2
1√
2

g2
2vρvσ

− 1
4 g2

2vρvχ
1
4 g2

2v2
χ − 1

2
1√
2

g2
2vχvσ

1
2

1√
2

g2
2vχvσ

1
2

1√
2

g2
2vρvσ − 1

2
1√
2

g2
2vχvσ

1
2 g2

2v2
σ − 1

2 g2
2v2

σ

− 1
2

1√
2

g2
2vρvσ

1
2

1√
2

g2
2vχvσ − 1

2 g2
2v2

σ
1
2 g2

2v2
σ

 (A76)

This matrix is diagonalized by R2C

R2Cm2
H−−R†

2C = mdia
2,H−− (A77)

with

ρ++ = ∑
j

R2C,j1H++
j , χ−− = ∑

j
R∗

2C,j2H−−
j , σ1

−− = ∑
j

R∗
2C,j3H−−

j (A78)

σ2
++ = ∑

j
R2C,j4H++

j (A79)
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