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Abstract: While there has been much effort in recent years to characterise ionic liquids in 
terms of parameters that are well described for molecular solvents, using these to explain 
reaction outcomes remains problematic. Herein we propose that many reaction outcomes in 
ionic liquids may be explained by considering the electrostatic interactions present in the 
solution; that is, by recognising that ionic liquids are salts. This is supported by evidence in 
the literature, along with studies presented here. 
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1. Introduction 

Ionic liquids have been touted as potential alternatives to volatile organic solvents.[1] Arbitrarily 
defined as having a melting point of less than 100 ºC [2], they are typically based on bulky organic 
cations, generally containing either cationic nitrogen or phosphorus centres, with the charge balanced 
by one or more of a variety of organic and inorganic anions [3-7]. Whilst liquid, the electrostatic 
interactions between the component ions result in many of the properties widely associated with ionic 
liquids, particularly their negligible vapour pressure [3,8]. Modification of either of the ionic 
components alters the physical properties [6-11], particularly miscibility with other liquids [6,7], 
allowing them to be ‘tuned’ to a given process and thus utilised as versatile ‘designer  
solvents’ [12-16]. 
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A significant hurdle in the widespread application of ionic liquids is the effect that they have on 
reaction outcomes. When a reaction is carried out in an ionic liquid, differences in the rates and 
selectivities of the process are often observed when compared to the corresponding reaction in 
molecular solvents [17]. The variation in outcomes is elegantly demonstrated through treatment of 
toluene with nitric acid in a range of ionic liquids [18]. While halogenation, rather than nitration can, 
be readily rationalised in the halide based salts, the change in rate and selectivity observed in a 
bis(trifluoromethanesulfonyl)imide ionic liquid and the oxidation, rather than nitration, observed in a 
mesylate ionic liquid are not so easily explained. 

At this stage there are limited reports detailing the origins of such changes [17], which is in marked 
contrast to the extensive understanding of the effect on reaction outcome upon changing from one 
molecular solvent to another [19]. In addition, these reports focus on using traditional solvent 
parameters to describe ionic liquids and, even when limited to considering Diels-Alder processes in 
ionic liquids with hydrogen-bonding cations [20-24], the methods give poor correlations, particularly 
for rates [24]. Further, the contributing factors vary between different reactions. At the extreme case, 
the contributing properties are observed to be markedly different even when the dienophile is changed 
in a Diels-Alder reaction [24]. This means that different reactions need to be considered in different 
ways, making for a very non-unified or ad hoc approach to explaining reaction outcomes. 

Here we propose that an alternative way to understand the effects of moving to ionic liquid solvents 
is to consider ionic liquids as originally described in the literature; as molten salts. Being made up of 
ions, the principle interactions in such a solvent are electrostatic and the interactions between the 
component ions are typically much larger than between the ions and solute molecules. While we have 
used such an argument previously to describe the anomalously high solubility of benzenes in ionic 
liquids [25,26] and others, particularly Kobrak et al. [27-30], have considered this to describe the 
physical properties of ionic liquids, here we extend this idea as a method of rationalising  
reaction outcomes. 

Some of our earlier work [31,32] has focused on the effect of ionic liquids on the unimolecular 
substitution process outlined in Scheme 1. Particularly, the effect of the ionic liquid 1-butyl-3-
methylimidazolium ([Bmim]+) bis(trifluoromethanesulfonyl)imide ([N(CF3SO2)2]-) on this chloride 
solvolysis was shown to be a decrease in both the enthalpy and entropy of activation.[32] This was 
rationalised through a stabilisation of the incipient charges in the transition state, with an increase in 
the ordering of the ionic components of the solution required to achieve this. A key experiment 
included in that work was an example where an 'ordinary' salt, in this case lithium 
bis(trifluoromethanesulfonyl)imide was added. The effects on the reaction were observed to be 
(qualitatively) similar to those obtained with the ionic liquid. This 'salt effect' was used to rationalise 
an initial rate increase seen on addition of a small amount of the ionic liquid. However, it also 
introduced the possibility that ionic liquids could be considered simply as molten salts in terms of 
explaining their observed effects. As such, it serves as a starting point for the work described here. 
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Scheme 1. Nucleophilic substitution of the chloride 1 to give the ether 2, carried out in a 
mixture of alcohol and ionic liquid. 
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2. Results and Discussion 

Clearly, given the above observations, it is of interest to determine whether the effects of ionic 
liquids on reaction outcomes could be mimicked by salts that are not liquids at room temperature. 
Since we have an interest in understanding these reaction processes at the molecular (or ionic!) level, 
we are particularly interested in the effect of salts on the kinetics and selectivities of such processes 
and have focused on systems for which we have some background. In addition, we discuss a prominent 
example from the ionic liquid literature where treating the ionic liquid simply as a salt may provide 
some insight along with highlighting the potential of molecular dynamics simulations for these 
systems and how such simulations fit well into this argument. 

2.1. Bimolecular substitution of a benzyl bromide 

The Menschutkin reaction [33] of pyridine and the benzyl bromide 3 (Scheme 2) was considered as 
it is related to the unimolecular process described above, however, the extent of charge development is 
less than for the unimolecular process. The reaction was carried out in acetonitrile, acetonitrile 
containing lithium bis(trifluoromethanesulfonyl)imide (at χ = 0.10) and in [Bmim][N(CF3SO2)2] (at χ 
= 0.87). Reaction progress was monitored using 1H-NMR spectrosopy over a range of temperatures 
and the activation parameters (Table 1) were calculated using the Eyring equation.[34]. 

Scheme 2. Menschutkin reaction of the benzyl bromide 3 with pyridine. 

Br
Br N N

3 4  

Table 1. Activation parameters for the reaction outlined in Scheme 2 in the solvent system 
specified. Uncertainties quoted are standard deviations. 

Solvent ΔH‡ (kJ mol-1) ΔS‡ (J K-1 mol-1) 
Acetonitrile 43.2 ± 1.1 -219 ± 4 
Acetonitrile containing Li[N(CF3SO2)2] 57.1 ± 0.5 -191 ± 2 
[Bmim][N(CF3SO2)2] 48.8 ± 0.9 -193 ± 3 
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The effect of the ionic liquid, in this case, is opposite to that observed previously [32] with an 
increase in both the enthalpy and entropy of reaction. While the origin of the changes in the activation 
parameters on addition of an ionic liquid are discussed in detail elsewhere [35], these results imply an 
increase in stabilisation of, and ordering about, the starting material relative to the transition state on 
going from acetonitrile to the systems containing ions. Importantly for the argument presented here, 
the effect of the corresponding lithium salt was the same, with only the magnitude of the change in 
activation enthalpy being larger. This difference is presumably as a result of the more charge-dense 
lithium cation. That is, this case represents a further example where the effect of an ionic liquid is 
comparable to an 'ordinary' salt. 

2.2. Hydrolysis of benzaldehyde dimethyl acetal (5) 

A further reaction we have considered in ionic liquids is the hydrolysis of the acetal 5 to the 
corresponding aldehyde 6 (Scheme 3). This reaction was considered as, along with being a markedly 
different reaction type to the substitutions described above, it also requires a water-miscible ionic 
liquid, in contrast to the systems already studied. As such, the reaction was carried out in mixtures of 
acetonitrile/water (10:1), acetonitrile/water containing sodium chloride (at χ = 0.07) and in 
acetonitrile/ water containing [Bmim]Cl (at χ = 0.21). Using 17O-NMR spectroscopy, the reaction 
progress was followed over a range of temperatures and the activation parameters (Table 2) were 
calculated using the Eyring equation [34]. [Bmim]Cl, while often used simply as a precursor to other 
ionic liquids, is also an ionic liquid itself and the mole fraction used here corresponds to ca. 50%  
by weight. 

It is important to note that the reaction does not have a single elementary step; a proton transfer 
equilibrium exists prior to the rate determining step. As such, changing the temperature and the solvent 
may affect the position of this equilibrium. The linearity of the Eyring plots obtained suggests 
otherwise, in this case. Further, a systematic error is introduced in the observed entropies of activation. 
No attempt to determine this error is made, as it is difficult to ascertain and the entropies of activation 
can only be reported taking note of this deviation (for details, see Supplementary Information). Given 
that it is the changes in these parameters, not their absolute values, that are of interest, this systematic 
error does not affect the argument presented. 

Scheme 3. Acid-catalysed hydrolysis of benzaldehyde dimethyl acetal 5. 
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Table 2.  Activation parameters for the reaction outlined in Scheme 3 in the solvent 
systems specified. Uncertainties quoted are standard deviations. 

Solvent ΔH‡ (kJ mol-1) ΔS‡ (J K-1 mol-1) 
Acetonitrile/water (10:1) 136 ± 5 139 ± 17 
Acetonitrile/water containing NaCl 110 ± 3  44 ± 10 
Acetonitrile/water containing [Bmim]Cl  71 ± 4  -84 ± 13 
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Once again, the effect on the activation parameters of replacing sodium chloride with the ionic 
liquid [Bmim]Cl is the same, leading to a reduction in both the enthalpy and entropy of activation 
relative to the case when both were absent. This implies that the charge separation involved in the rate 
determining step is favoured, presumably by the more 'ionic' environment, but that such stabilisation 
requires significant ordering of the components of the solution about the transition state, resulting in a 
decrease in the entropy of activation (it is worth highlighting that the effect on the activation 
parameters are the reverse of that observed in Section 2.2; this is discussed elsewhere [35]). The 
greater effect in the ionic liquid case can be attributed to the larger amount of [Bmim]Cl that can be 
dissolved in the reaction mixture when compared to sodium chloride, though the effect remains the 
same as the 'typical' salt. 

2.3. A nitrile oxide cycloaddition 

In addition to considering the effects of ionic liquids on the kinetic parameters of organic processes, 
we have examined the effect of these solvents on the regioselectivity of nitrile oxide cycloadditions, 
such as that shown in Scheme 4 [36]. These systems have been shown to be versatile synthetic 
intermediates due to the high degree of functionality (for a detailed discussion, see [37]). However, for 
our purposes it is the mixture of regioisomers produced, which is dependent on both steric and 
electronic effects, which is of interest. We have shown that steric contributors to the regioselectivity 
are more significant in ionic liquids.[36] Whether 'ordinary' salts have the same effect was examined 
by considering the reaction between the nitrile oxide 7 and the cinnamate 8 in acetonitrile, acetonitrile 
containing lithium bis(trifluoromethanesulfonyl)imide (at χ = ca. 0.32), acetonitrile containing 
tetrabutylammonium tetrafluoroborate (at χ = ca. 0.32) and in [Bmim][N(CF3SO2)2] (at χ = ca. 0.9). 
(The ionic liquid is representative of one of a series used; for the others see [36].) The ratio of the 
isoxazoles 9a and 9b produced was determined using 1H-NMR spectroscopy (Table 3).  

Scheme 4. Nitrile oxide cycloaddition of benzonitrile oxide 7 to ethyl trans-cinnamate 8 to 
give the isoxazoles 9a and 9b. 
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Table 3. Ratios of the isoxazoles 9a and 9b produced in the reaction outlined in Scheme 4 
in the solvent systems specified and extents of conversion. Uncertainties quoted are 
standard deviations. 

Solvent 9a : 9b (% conversion) 
Acetonitrile (6.5 ± 0.4) : 1 (44%)[36] 

Acetonitrile containing Li[N(CF3SO2)2] (4.6 ± 0.3) : 1 (15%) 
Acetonitrile containing [NBu4]BF4 (7.5 ± 0.4) : 1 (30%) 

[Bmim][N(CF3SO2)2] (15.2 ± 0.8) : 1 (84%)[36] 
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As described previously [36], the effect of ionic liquids on nitrile oxide cycloadditions was to 
change the ratio of the isoxazoles produced in favour of the less sterically hindered isomer. This is 
seen in the above table with the ratio of the isoxazoles 9a:9b increasing on moving to the ionic liquid. 
The addition of salts to this reaction is more complicated than for the substitution reactions described 
above as a result of the oxygen atoms in the reagents. In the case of the lithium salt, a reversal of 
regioselectivity was observed along with a decrease in the extent of reaction. This is consistent with 
the reported effects of addition of lithium ions to nitrile oxide cycloaddition reactions in which both 
the dipolarophile and the nitrile oxide can coordinate to the lithium; the resulting chelation favours the 
isomer 9b [38]. When the lithium salt is replaced by a tetrabutylammonium salt (a range of salts, each 
with a non-coordinating cation, was considered, however, many qualify as ionic liquids; this salt has a 
relatively high melting point of 155-161°C [39]) a small but measurable increase in the proportion of 
the less sterically hindered isomer 9a is observed with a comparable extent of conversion. That is, 
once again the outcome of the reaction when ionic liquid is used might be considered an extension of 
that observed when an 'ordinary' salt is added to the reaction mixture with the greater effect accounted 
for by the larger mole fraction of ionic liquid present (the limitations of the potential effects of such 
salts are demonstrated here by the fact that the saturated ammonium salt solution used is only χ = ca. 
0.32 in the salt). Note that given the observed effect of ionic liquids was attributed to the internal 
pressure of the ionic liquid system, it is perhaps not surprising that the addition of salts to molecular 
solvents has been shown to increase the internal pressure of the mixture [36] (for a discussion on the 
increased extent of conversion in the ionic liquid see previous work [36]). 

2.4. Results present in the literature 

As far as the authors are aware, there are no examples in the literature where the effect of a molten 
and a solid salt on the same reaction are compared directly. While it might be of interest to examine a 
range of 'unexplained' outcomes in terms of this novel argument, this is beyond the scope of this 
article. Rather, it is worth considering one of the most studied processes in ionic liquids, that being the 
Diels-Alder reaction [40], on which information on the effect of a molten and a solid salt have been 
reported separately. 

This reaction is a particularly appropriate case to study is that this reaction has seen much 
investigation of the effect of dissolved salts on the outcome [41], with the use of 5 M lithium 
perchlorate in diethyl ether (LPDE) being particularly studied. LPDE has been demonstrated to 
dramatically increase the rate and stereoselectivity, with an increase in the endo:exo ratio being 
observed [42]. This was used to great effect in the synthesis of cantharadin, with reaction in LPDE 
being able to be completed under ambient conditions [42], whereas previous syntheses required 
ultrahigh pressure to be applied to the reaction mixture [43]. From these observations, it has been 
suggested that the effect of LPDE is to act as a medium with high internal pressure [44], with the 
effects on the Diels-Alder process being consistent with its negative volume of activation [45-47]. 
While the Lewis acidity of the lithium cation cannot be overlooked and may catalyse the 
cycloaddition, such acidity is moderated by the solvent [48]. The relative importance of each of these 
contributing factors (internal pressure and Lewis acid catalysis) is the subject of some debate and is 
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likely to vary with the reaction considered, both factors contribute to the change in reaction outcomes 
of Diels-Alder processes in LPDE [49]. 

When ionic liquids are used as solvents for Diels-Alder reactions, an increase in the rate and the 
endo:exo selectivity is generally observed [50-54]. While, as described in the introduction, correlating 
these with reaction outcomes remains problematic [20-24] the effect of the ionic liquid is qualitatively 
the same as for the ‘ordinary salt’ system, LPDE. In addition, the hydrogen bonding ability of the 
cation was shown to be an important parameter [22,24], which is consistent with the ionic liquid acting 
as a Lewis acid. The influence of this on reaction outcomes has been shown to vary with the reagents 
considered [24] and there are some systems where hydrogen bonding is not possible, and hence the 
Lewis acidity of the ionic liquid greatly decreased, but the outcomes observed are similar (for 
example, pyridinium [53]and phosphonium [54] based ionic liquids). The factors contributing to 
reaction outcomes in LPDE suggest that the internal pressure of the medium, shown to be larger than 
for molecular solvents [55], may also be significant in this case. 

This simple case study demonstrates two key points. Firstly, it is a further case where the ionic 
liquid can be considered to be acting in the same way as an ‘ordinary’ salt as the outcomes observed 
are qualitatively similar. Secondly, it demonstrates a case where an understanding of the effect of the 
addition of a simple salt can be used as a starting point to explain the effect of using an ionic  
liquid solvent. 

2.5. Comparison with molecular dynamics simulations 

It is important to note that, in one respect, treating ionic liquids in terms of molten salts to explain 
properties is not new. Both we [25,26,56] and many others [57] have used molecular dynamics (MD) 
simulations to explain the physical properties of ionic liquids, along with interactions between the 
ionic liquid and dissolved solutes, and the application of computational modeling to these problems is 
increasing [58]. In MD simulations, components of the ionic liquid are described by the use of 
forcefields, which contain parameters relating to the motion of bonded atoms (bending and torsions) 
and to non-bonded interactions (electrostatic and dispersion interactions). Several excellent forcefields 
exist with broad coverage for ionic liquids, for example those based on the OPLS/AMBER model [59-
63], and information from ab initio studies, and particularly those incorporating dispersion 
interactions, is helping to further refine and improve the ionic liquid forcefield descriptions [64-69]. It 
should be noted, however, that the bulk of properties and interactions reflect the electrostatic 
contributions,[70] particularly for small cations, i.e. those with short to medium alkyl chains. Overall, 
these simulations can accurately describe physical and solubility properties of ionic liquid solutions 
and suggests that MD simulation is an appropriate way of considering such systems. 

Perhaps surprisingly, given the excellent consistency with experimental data, there has been little 
reported use of molecular dynamics simulations to account for the effects that ionic liquids have on 
reaction outcomes. Partly this may be attributed to the difficulty of simulating reactive intermediates 
using classical MD and the computational intensity required for modeling even small timespans and 
molecular ensembles with ab initio MD methods. In terms of reactivity, simple electron transfer 
processes have been examined using the former [71] and proton transfers with the latter [72]. We have 
instead used atomistic classical MD simulations to demonstrate the increased ordering about a fixed 
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intermediate (and by implication, about the transition state leading to it) to describe a model system for 
solvolysis reactions, outlined in Scheme 1 [32]. Of particular note are the significant interactions 
between the IL cation and the incipient charge on the chlorine atom, reflecting the importance of the 
electrostatic contributions. 

The ability of such simulations to elegantly describe changes in reaction entropy and enthalpy on 
the molecular level opens up a number of possibilities. Initially, a reaction whose outcome is known in 
ionic liquids can be rationalised using molecular dynamics simulations, providing a microscopic 
viewpoint that can go hand-in-hand with the macroscopic view of the effect of the ionic liquid as a 
salt. Perhaps more excitingly, such an understanding (both at the microscopic and macroscopic levels) 
might be gained prior to studying the reaction experimentally. That is, this methodology can be used 
as a predictive tool and screening mechanism, catalysing rapid developments in the IL field. 

3. Experimental Section 

3.1. General 

The starting materials 3, 5 and 8 were commercially available, whilst phenylchloroaldoxime was 
prepared from commercially available starting materials using literature methods [73]. 
[Bmim][N(CF3SO2)2] was prepared from [Bmim]Cl, which was in turn prepared by literature methods 
from commercially available starting materials, and both were dried to constant weight over 
phosphorus pentoxide [7]. Water, where used, refers to deionised water. Pyridine was purified using a 
literature method [74] . Other reagents were of analytical grade and were used as received. 

3.2. Bimolecular substitution of benzyl bromide 

Kinetic analyses of the Menschutkin reaction of the benzyl bromide 3 with pyridine were carried 
out in solutions containing the bromide 3 (ca. 0.05 mol L-1) and pyridine (ca. 5-20 equiv.) in either 
acetonitrile, acetonitrile (5.91 g, 0.144 mol) containing lithium bis(trifluoromethanesulfonyl)imide 
(4.96 g, 17.3 mmol, 1.73 mol.L-1) or [Bmim][N(CF3SO2)2] at temperatures between 278 K and 312 K. 
In each case the reaction was followed using 1H-NMR spectroscopy until more than 95% of the 
starting material 3 was consumed. Spectra were taken at regular intervals during the reaction and at 
least twenty spectra were obtained for each kinetic run. The extent of reaction was deduced through 
integration of the signal corresponding to the benzyl protons in the starting material 3 (ca. δ 4.5) and 
the products 4 (ca. δ 5.8). From this information, the pseudo-first order rate constants for the reaction 
under these conditions was calculated and, consequently, from the concentration dependence of these 
values, the second order rate constants at each temperature. The activation parameters were then 
determined using the bimolecular Eyring equation [34]. 

3.3. Hydrolysis of benzaldehyde dimethyl acetal (5) 

Benzaldehyde dimethyl acetal (5, 0.6 mL), water (0.3 mL) and pyridinium p-toluenesulfonate (1.5 
mg) were added to acetonitrile (3 mL). The reaction mixture was monitored using 17O-NMR 
spectroscopy, specifically the disappearance of the signal corresponding to compound 5 at δO 18, at 
temperatures between 288 K and 308 K. From these, the first order rate constants at each temperature 
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were calculated and the activation parameters determined using the unimolecular Eyring equation [34]. 
The process was repeated for mixtures containing the acetal 5 (0.2 mL), 17O-enriched water (0.1 mL; 
the conditions of the experiment necessitated using 0.02% 17O enriched water to ensure sufficient 
signal strength given the time constraints of the experiment), pyridinium p-toluenesulfonate (0.5 mg), 
[Bmim]Cl (0.45 g) and acetonitrile (0.5 mL) over the temperature range 288 K to 308 K. It was also 
repeated for mixtures containing the acetal 5 (0.2 mL), 17O-enriched water (0.1 mL), pyridinium 
p-toluenesulfonate (0.5 mg) and acetonitrile (1 mL) which had been saturated with sodium chloride 
(ca. 45 mg, χ = 0.07) over the temperature range 308 K – 328 K. In each of these latter cases, the 
reaction was followed by observing the appearance of the signal corresponding to the aldehyde 6  
at δO 550. 

3.4. A nitrile oxide cycloaddition 

The reactions were carried out as described previously [36]. Briefly, the nitrile oxide 7 was 
produced in situ from the corresponding chloroaldoxime [73], through the addition of triethylamine 
(50 μL) to a solution of the chloroaldoxime (25 mg), the cinnamate 8 (52 mg) and either lithium 
bis(trifluoromethanesulfonyl)imide (5.14 g) or tetrabutylammonium tetrafluoroborate (5.85 g) in 
acetonitrile (2 mL) over 24 h. The regioisomeric ratio of the isoxazoles 9a and 9b produced and the 
extent of reaction was determined using 1H-NMR spectroscopy, specifically the integrations of the 
signals corresponding to the C-4 and C-5 protons of the products 9a and 9b and the alkene protons of 
the residual starting material 8 [36]. The extent of conversion of the cinnamate 8 in these cases was ca. 
15% in the case of the lithium salt addition, 30% in the case of the tetrabutylammonium salt addition. 

4. Conclusions 

The above results demonstrate that, for a range of reaction types, the effect of ionic liquids parallels 
that of more 'typical' salts, though care must be taken to recognise that the components of ionic liquids 
tend to be comparatively non-coordinating. This is not to suggest that ionic liquids can be replaced by 
these salts. The benefits of ionic liquids, particularly the potential to replace volatile organic solvents 
and to be highly soluble in such solvents when they are required, remain. However, in terms of 
understanding the effects that ionic liquids have on reaction outcomes, this overview demonstrates that 
the starting point for proper comprehension of IL interactions is their charged nature. It is clear that, in 
these systems, electrostatic interactions are principal and have important application in predicting the 
effect of changing reaction solvent from a molecular solvent to an ionic liquid. 
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