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Abstract: Polar benzotriazoles are corrosion inhibitors with widespread use; they are environmentally
characterized as emerging pollutants in the water system, where they are present in low
concentrations. Various extraction methods have been used for their separation from various matrices,
ranging from classical liquid-liquid extractions to various microextraction techniques, but the most
frequently applied extraction technique remains the solid-phase extraction (SPE), which is the focus
of this review. We present an overview of the methods, developed in the last decade, applied for
the determination of benzotriazoles in aqueous and solid environmental samples. Several other
matrices, such as human urine and plant material, are also considered in the text. The methods are
reviewed according to the determined compounds, sample matrices, cartridges and eluents used,
extraction recoveries and the achieved limits of quantification. A critical evaluation of the advantages
and drawbacks of the published methods is given.
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1. Introduction

Solid-phase extraction (SPE) is one of the most frequently used techniques for sample preparation
in environmental analysis, not only for well-known organic pollutants, but also for contaminants of
emerging concern. The latter group includes polar benzotriazoles, which are the focus of this review.
We aim to present an overview of the SPE methods applied for the determination of benzotriazoles in
aqueous and solid environmental samples, as well as in several other matrices. The literature reviewed
in this work has been published in the last decade (2008-2018).

In general, SPE is a procedure in which the dissolved analytes are put into contact with a
solid phase, where they are retained due to the interactions with the sorbent. Ideally, the matrix of
the sample solution remains unaffected by the sorbent, and solely the analytes are extracted from
the sample. The selectivity of the extraction is mainly determined by the sorbent, which can be
chosen among reversed-phase (C1g), normal-phase (silica), ion exchange and mixed-mode (polymeric)
phases. Moreover, in the many decades of SPE use, various forms of sorbents have been developed,
for example sorbents in the shape of disks, cartridges and well plates. The principal difference between
these configurations is their capacity, which is directly related to the mass of the contained sorbents.
In environmental research, cartridges are the prevalent form of SPE sorbents.

Generally, an SPE method consists of four steps, usually performed with the aid of a vacuum
manifold. The cartridge is first conditioned with an organic solvent and pH-adjusted water solution.
This minimizes the surface tension of the sorbent (especially important in reversed-phase sorbents) and
enables interactions with the desired form of sorbents (protonated or de-protonated in ion exchange
and mixed-mode sorbents) [1]. Secondly, the sample is loaded onto the sorbent and a washing
or rinsing step is performed. This facilitates the removal of weakly bound interferences (matrix
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components) and strengthens the analyte—sorbent interactions. Finally, the sorbent is dried under
vacuum or under nitrogen flow and the analytes are eluted with an organic solvent optimized to sever
the analyte-sorbent interactions (usually pH-adjusted in ion exchange and mixed-mode sorbents).

2. Benzotriazoles

Benzotriazoles are heterocyclic compounds, with the basic structure of a benzene ring fused to a
triazole ring. Non-polar benzotriazoles, usually hydroxyphenyl derivatives, are used as UV stabilizers in
plastic materials and personal care products [2]. Polar benzotriazoles, including the basic benzotriazole
and the methyl-, hydroxy- and chloro- derivatives, are used as corrosion inhibitors in antifreeze liquids,
various industrial systems (cooling, braking, cutting and metal-working fluids), aircraft de-icing fluids
and household dishwashing detergents [2—4]. The most commonly used are the benzotriazole (BTZ)
and a mixture of 4- and 5-methyl-benzotriazole (MBZ) isomers, also known as tolyltriazole.

In this review, we focus on the polar compounds listed in Table 1. Due to a high aqueous mobility
stemming from their polarity (observable as logKyy in Table 1) they are ubiquitously present in the
hydrosphere, having been found in snow, groundwater, rivers, lakes, seas, treated and untreated wastewater,
recycled water and also in drinking water [2,5-11]. Furthermore, they have been also determined in air, soil,
sediments, house dust and textiles [12-16], in human urine, amniotic fluid and plants [11,17,18].

Table 1. Table of the reviewed compounds, their abbreviations and selected chemical properties
(logKow, pKa: predicted values from the Scifinder database).

Abbreviation Full Name logKow pKa
BTZ 1H-benzotriazole 1.44 8.38
1MBZ 1-methyl-1H-benzotriazole 1.08 -
2MBZ 2-methyl-2H-benzotriazole 1.59 -
4MBZ 4-methyl-1H-benzotriazole 1.82 8.74
5MBZ 5-methyl-1H-benzotriazole 1.98 8.74
DMBZ 5,6-dimethyl-1H-benzotriazole 2.28 8.92
24DMBZ 2,4-dimethyl-2H-benzotriazole 1.96 -
CIBZ 5-chloro-1H-benzotriazole 2.13 7.46
NBZ 5-amine-1H-benzotriazole 0.40 9.61
10HBZ 1-hydroxy-benzotriazole 0.69 7.39
40HBZ 4-hydroxy-benzotriazole 0.80 7.25

The main sources of these pollutants appear to be airport run-off and industrial and municipal
wastewater [2,5,8], as benzotriazoles are not readily biodegradable. According to different sources,
only 13-62% of BTZ and 11-72% of MBZ are removed in public wastewater treatment plants [2,5,19]
due to their long half-lives [20], with 5SMBZ being much more susceptible to degradation than 4MBZ.
The compounds can also pass through common steps in the preparation of drinking water [21],
but can be removed from recycled water with additional treatment steps, such as reverse osmosis
after ultrafiltration [22], ozonization [23] or photodegradation with UV/H,O, [24]. Degradation
pathways in activated sludge are not well known, but the suggested metabolites of aerobic digestion
appear to include phenol, phthalic acid, 1-methyl benzotriazole, 4-methoxy-1H-benzotriazole and
5-methoxy-1H-benzotriazole for BTZ, 2,5-dimethyl benzoxazole and benzotriazole for 5SMBZ and
5-chloro-2-methyl benzoxazole and benzotriazole for CIBZ [20].

The benzotriazoles have been shown to be toxic to aquatic bacteria, plants and invertebrates [25].
BTZ is also a possible carcinogen [6] and expresses anti-estrogenic activity [26].

As these compounds are classified as emerging pollutants, the limits for their acceptable concentrations
in the environment are not generally set. The only exceptions we found in the literature are the
limits of 5 mg/m? BTZ in workplace air and 0.1 mg/L BTZ in drinking water from Russia, cited by
Pervovaetal. [27], and the limit of 7 ng/L 5MBZ in drinking water of Australia, reported by
Janna et al. [6].
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Due to low environmental concentrations, the determination methods use sensitive chromatographic
techniques, such as liquid or gas chromatography with mass spectrometric detection (LC-MS, GC-MS) in
concert with various extraction techniques. Along with the classical SPE, newer techniques have also been
applied for their determination, for example QUEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe
extraction) [28], stir-bar sorptive extraction (SBSE) [29], solid-phase microextraction (SPME) [30,31] and
dispersive liquid-liquid microextraction (DLLME) with optional concurrent derivatization [32,33]. In some
cases, determination without pre-concentration has also been reported for samples with higher analyte
concentrations [2,22], but the vast majority of the studies make use of SPE to achieve a pre-concentration of
analytes and a reduction of matrix effects.

For readers with further interest in benzotriazoles, we suggest a dedicated review on toxicity
and occurrence of BTZ and 5SMBZ, which has been published by Alotaibi et al. [34], and a review of
available analytical methods, published by Herrero et al. [35]. In contrast to these works, this review
focuses only on SPE as the sample preparation technique for determination of polar benzotriazoles and
also considers the research, published in the years following the publication of the previous reviews.

3. Analytical Techniques for the Determination of Polar Benzotriazoles

In environmental chemistry, the determination of benzotriazoles is commonly done with
chromatographic methods. Due to the compounds’ polarity, low volatility and occurrence in low
concentrations, the most commonly chosen techniques are LC for separation and MS for sensitive
detection and identification. Occasionally, UV /VIS or fluorescence detection [32,36] have also been
used, but noticeably higher limits of quantification (LOQ) have been achieved in those cases.

In the majority of cases, separation has been performed on various Cyg columns [4,10,11,21,37-39],
although columns with phenyl stationary phase have also been used [2,8,22]. Usually, the mobile phase
has initially a high water content and is then gradually adjusted to raise the ratio of organic solvent,
this solvent being either methanol (MeOH) [10,40], acetonitrile (ACN) [22,32] or both [38,41]. The critical
problem of the LC is the separation of 4- and 5-methyl-benzotriazole isomers, due to their similar retention.
It has been claimed that the use of ACN is necessary for their separation [35] and in the cases where both
solvents were tested, better chromatographic profiles and lower retention times [32] or better peak heights
and shapes [39] were achieved when using ACN. When LC is coupled with MS, formic or acetic acid is
added to the mobile phase to increase the ionization efficiency of the analytes [4,8,21,41].

Ionization is almost invariably performed in the positive mode of electrospray ionization (ESI+), since
atmospheric pressure chemical ionization (APCI) was proven to be much less sensitive, resulting in higher
limits of detection (LOD) [22]. To achieve high sensitivity, tandem MS (MS/MS) or high resolution MS
(HRMS) are commonly used. MS/MS is usually performed with a triple quadrupole analyser in selected
reaction monitoring (SRM) mode, with two transitions being recorded for each analyte to satisfy the
requirements for quantification and identification [10,42]. For HRMS, performed with Orbitrap [21,37,38]
or time-of-flight (TOF) [22] analysers, only a precursor and a product ion are required for a proper
identification of the analytes. The main drawback of LC-MS methods is the appearance of the matrix effect,
which is the suppression or enhancement of analyte ionization due to the sample matrix. This effect depends
on the matrix composition of the injected sample and the concentration level of analytes, and is often more
pronounced at lower concentration levels. It is one of the main reasons for using intensive sample clean-up
procedures. Other methods of circumventing this problem include the use of matrix-matched calibration
or an isotopically labelled internal standard [35].

For quantification of benzotriazoles in environmental samples, external calibration [4,11,21,38,43],
matrix-matched calibration [17,39,42] and the standard addition method [8,23] have been used to
date. External calibration is generally used in cases of simple samples and very low matrix effects,
while standard addition and matrix-matched calibration are used in the case of more complex samples,
since they compensate for some of the matrix effects.

In comparison to LC, GC is used less often. Although polar benzotriazoles are quite
non-volatile, they can be determined either with derivatization (trimethylsulfonium hydroxide (TMSH),
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acetylation [33,44,45]) or without [7,46], to reduce the complexity of the method [47]. The stationary
phase used is 5%-phenyl-methylpolysiloxane or equivalent [5,7,45,46,48-50], except in rare cases,
for example [51], where the authors tested various ionic liquids as stationary phases and reported faster
separation and better peak shape than with conventional columns. A two-dimensional GC x GC-TOF
method has been developed by Jover et al. [47], who separated co-eluted analytes and achieved LODs
similar to LC-MS/MS.

Almost invariably, MS [5,45,49,50,52] or MS/MS [7,46] detectors are used after separation. In one
case, isotope ratio MS was also performed, but the authors reported difficulties with low sensitivity,
low volatility, and interactions of analytes with the exposed metal components of the instrument,
demanding instrument modification or derivatization of the analytes [44]. The main drawbacks of
GC-MS appear to be poor retention on non-polar columns [51], peak tailing or peak disappearance on
polar columns and low sensitivity due to low m/z of the target ions [47].

4. Solid-Phase Extraction of Benzotriazoles from Aqueous Samples

As mentioned before, SPE is the prevalent extraction technique for polar benzotriazoles
in environmental samples due to its high pre-concentration factors (large sample volume),
smaller amounts of solvent used (in comparison to liquid-liquid extraction, LLE), practical simplicity
and the possibility of automatization. The methods developed in the last decade for determination of
benzotriazole pollutants in aqueous environmental samples have been collected in Table 2. In addition
to the sorbent phase used, several other parameters are presented. The choice of the elution solvent
can depend on recoveries and the selected analytical technique (for example volatile solvents for GC),
although the elution solvent is often evaporated and the sample reconstituted in a suitable solvent (this
can also serve as an additional concentrating step). Where possible, recoveries and LOQs were added
as quality control parameters, as reported by the authors. Usually, the recoveries were calculated
comparing the instrument response of a post-extraction spiked sample to a pre-extraction spiked
sample, either in river waters or in effluent wastewater (when the former was not available). LOQs are
given as reported by the authors, but it is necessary to consider that they also depend on the analytical
techniques used for determination. Some of the studies reported in the Table 2, are discussed here
more in-depth, as their authors presented novel research and optimization of SPE procedures (pH of
the sample solution, reduction of matrix effect, sorbent phases used, etc.).

It is worth noting that in most of the reviewed analytical methods, benzotriazoles are not the only
compounds being determined. Often they are the subject of a combined analysis with benzothiazoles,
benzenesulfonamides or UV stabilizers [4,7,38,47], or some of them are targets of screening methods
that include tens or hundreds of other micropollutants (pesticides, pharmaceuticals, personal care
products, etc.) [53,54]. Naturally, this leads to the development of methods that are not perfectly
optimized for all the determined compounds, as can be observed for example in recoveries of polar
benzotriazoles ranging from 22 to 112% in [54]. In some of the reviewed papers, there is also very little
to no emphasis on method optimization, since they focus more on the application and interpretation
of concentrations and their changes in various environmental samples [5,6,52,55-58].

Considering the relatively high polarity and weakly acidic character of the polar benzotriazoles
(Table 1), the relevant extraction phases for their determination include polymeric balanced
polar/non-polar (HLB, Strata-X, Bond Elut PPL), strong anion (Oasis MAX, Strata-X-A) and cation
exchange (Oasis MCX, Strata-X-C) sorbents (Oasis series by Waters, Strata series by Phenomenex,
Bond Elut by Agilent), while Cig and charcoal based sorbents have been shown to be much less
effective in retention than HLB [7]. As can be seen in Table 2, the most widely used cartridge sorbent is
the HLB polymeric sorbent, a N-vinylpyrrolidone divinylbenzene copolymer with good retention for
non-polar and neutral polar compounds. In most cases [5-7,10,21,44,47,52] the samples were acidified
to pH 2-3. Some authors claim that the sample pH had great effect on recovery [10,21], shifting from
less than 50% at pH 7, to 79-110% at pH 2 [7]. This is countered by authors claiming that pH had
no significant effect on recovery, but the ionization suppression was higher at pH 3 than at pH 7 [4],
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or that the effect of pH on BTZ recovery was very low for HLB and various other sorbents (Oasis MAX,
MCX, WAX, WCX, Strata-X, X-A, X-AW, X-C, X-CW) [23].

In the cases where the research focuses on the extraction method, the main aim of development is
usually a reduction of matrix effects, not higher recoveries. One of the steps that has been taken to
achieve additional clean-up of the samples, was the use of a Florisil filled cartridge directly connected
to the HLB cartridge. In this way the SPE eluent came directly into contact with the Florisil sorbent
(magnesium silicate) which adsorbed the interferences, thereby reducing the matrix effect in spiked
wastewater from —65 to —40% without Florisil to —5 to —15% with Florisil [4].

A mixed-mode sorbent, which could also reduce matrix effects, has been applied for benzotriazoles
for the first time by Carpinteiro et al. [8]. Oasis MAX cartridges, containing strong anion exchange
and reversed-phase sorbent, were eluted with the same organic solvent mixture (MeOH/ACO) as
Oasis HLB. In comparison to HLB, MAX cartridges produced cleaner extracts and lower matrix effects,
which lead to the conclusion that interfering matrix components (for example humic, fulvic acids)
remained retained with anionic interaction. Although the sample pH was not modified, the recoveries
ranged 96-102% in river water and 82-86% in effluent wastewater, but only 50-55% in influent
wastewater. These recoveries correlated with the reported matrix effects: none for river water,
small suppression for effluent wastewater, and substantial suppression for influent wastewater,
which was also the most complex of the investigated matrices.

The mechanisms of sorption in the mixed-mode phases have been studied by Salas et al. [38] in
both Oasis MAX and MCX cartridges. The authors optimized extraction procedures for both sorbents,
each including two rinsing steps. The first rinsing step consisted of pH-adjusted water, to wash off
weakly adsorbed hydrophilic compounds and increase ionic interactions, while in the second step they
used MeOH to rinse neutral compounds retained by hydrophobic interactions. With MCX cartridges,
the analytes remained adsorbed during washing, even though the sample pH was adjusted to pH 3 and
the analytes were in their neutral forms. When increasing the volume of MeOH used for rinsing, out of
the 5 benzotriazoles investigated only CIBZ washed off, indicating the weakest adsorption. In MAX
they noticed no differences in retention at pH 7 and 11.5, although the analytes were de-protonated
at the higher pH. This led to conclusion that the mechanism of retention in both phases is through
induced dipole-ionic interactions, possible due to the delocalized electron density and electronegative
elements in the benzotriazole rings. Rinsing lowered the amount of interferences in the extracts and
resulted in very low ionization suppression in influent wastewater extracts, while achieving high
recoveries with both cartridges (61-92%).

Although higher recoveries have been reported to be achieved with HLB (more than 90%) than
with MAX at pH 10 (20-64%) in wastewater [4], these examples state that to the contrary, high recoveries
can be achieved also with mixed-mode cartridges.

An innovative tandem SPE method for determination of analytes of various properties (BTZ among
them) has been developed by Deeb and Schmidt [23]. The Oasis MAX and MCX cartridges were connected
consecutively for the sample loading and then separated for washing and elution. All the analytes in the
combined extract had recoveries more than 90%, while the matrix effects were lower than 13% for all
matrices, including wastewater, implying that good clean-up was achieved for all samples.

Layered 'mixed bed’ cartridges have also been used for determination of a broad range
of compounds, including benzotriazoles [54,56,59-61], with the aim of extracting hydrophobic,
hydrophilic, anionic and cationic compounds in one step. The lab-prepared layered cartridges
contained a layer of Oasis HLB sorbent on the top, to adsorb compounds with non-specific interactions,
and a layer of Strata-X-AW, Strata-X-CW and Isoelute ENV+ mixture on the bottom, to adsorb the
remaining compounds either by ionic or hydrophilic interactions. The eluents used were acidified and
alkaline organic solvents, MeOH, ACN or ethyl acetate (EA). Osorio et al. [54] reported achieving lower
matrix effects with the mixed bed cartridges in comparison to the HLB sorbent (which is critical for
reducing the amount of co-elutions in the LC) and higher recoveries in comparison to the MAX sorbent.



Molecules 2018, 23, 2501

Table 2. SPE methods reported for polar benzotriazoles in aqueous environmental samples (eff-effluent, ww-wastewater, ND-no data).

Compounds Sample Matrices Cartidge Type, mg Elution Solvent Recovery LOQ (ng/L) Reference
BTZ, 4MBZ, 5MBZ, tap, surface, effluent Oasis HLB 500 3 x 2.5 mL ACN/MeOH (1:1) 57-125% 2-11 [21,37]
DMBZ, 10HBZ, CIBZ
BTZ, 4AMBZ, 5SMBZ, river, influent, effluent Strata-X 5mL EA 85-115% 31-99 [47]
DMBZ
BTZ, 4MBZ, 5SMBZ river Bond Elut PPL 200 2 mL ACN/MeOH (1:1) 49-79% 6-15 [5]
BTZ, IMBZ groundwater, river Qasis HLB 200 6 ml MeOH 47-56% 1 [62,63]
BTZ, 4MBZ, 5SMBZ groundwater Qasis HLB 200 7 mL MeOH/ACO (6:4) 95-113% 50 [2]
BTZ, 5MBZ tap, river, influent, Qasis HLB 500 5 mL 3% MeOH in DCM 101-118% (eff) 0.2 [6]
effluent
BTZ, 5SMBZ tap, groundwater, Qasis HLB 500 3 x 2mL DCM/MeOH (1:1) 79-108% 9.8-36.7 [7,46,48]
influent, effluent
BTZ, 5SMBZ river, sea Qasis HLB 500 15 mL MeOH 69 £ 10% (sea) 0.4-1.2 [40]
BTZ, 5MBZ, DMBZ river, influent, effluent Qasis MAX 150 5 mL MeOH/ACN (7:3) 87-99% 2-5 [8]
BTZ, 5MBZ, DMBZ influent, effluent Strata-X 100 10 mL hexane/EA (1:1) 78-98% (ww) 60-810 [51]
BTZ, IMBZ, 4MBZ, groundwater, river, Qasis HLB (10) + 0.1% HCOOH in MeOH 94-124% 0242 [59]
5MBZ effluent Strata-X-AW(1.4)/
Strata-X-CW(1.4)/
Isoelute ENV+(2.1)
BTZ, 5MBZ, DMBZ, river, effluent Strata-X 200 2 x 5 mL MeOH/ACN (1:1) 73-104% (ww) 0.42-10 [39]
10HBZ
BTZ, 4MBZ, 5MBZ, river, influent, effluent Qasis HLB 150 + 2 x 3mL MeOH 85-93% 2 [4]
DMBZ, CIBZ Florisil 500
BTZ, 5SMBZ sea QOasis HLB 200 6 mL MeOH 67-75% 0.11-0.17 [53]
BTZ, 5SMBZ effluent Qasis HLB 200 6 mL MeOH 47-56% 40 (eff) [64]
BTZ, IMBZ, 4MBZ, tap, effluent Oasis HLB 200 10 mL EA 80-93% ND [44]
5MBZ
BTZ, 4MBZ, 5SMBZ airport runoff Strata C-18 E 500 40 mL DCM 68-102% 0.3-10 [49]
BTZ, 1IMBZ, 4MBZ, recycled water Qasis HLB 200 + 8 mL EA/MeOH/NH3 + 4 mL ND 1-50 [60]
5MBZ, 10HBZ, Strata-X-AW(100)/ EA/MeOH/ HCOOH
40HBZ Strata-X-CW(100)/
Isoelute ENV+(150)
BTZ, 4MBZ, 5MBZ, wastewater Strata-X 200 10 mL MeOH/ACN (1:1) 36-85% 52-376 [65,66]
DMBZ, CIBZ
BTZ, SMBZ river, influent, effluent PLRP-s ACN/H,0/HCOOH 85-100% (eff) 0.8-1.1 [42,67]
(24.9:74.9:0.2)
BTZ effluent Bond Elut PPL 200 ND ND 50 [55]
BTZ tap, river, effluent QOasis MAX (100) + separate elution: MAX 6 mL 93 + 4% 5.7 [23]
Oasis MCX (100) MeOH/EA/HCOOH (69:29:2),
MCX 6 mL MeOH/EA /NHj;
(67.5:27.5:5)
2MBZ, 24DMBZ groundwater, river Merck EN 200 10 mL DCM ND 3.3-6.7 [50]
BTZ, 4MBZ, 5MBZ, river, influent, effluent QOasis MCX 500, MCX: 5 mL 5% NHj; in MeOH, MCX: 87-105%, MCX: 5-17, [38]
DMBZ, CIBZ QOasis MAX 500 MAX: 5 mL 5% HCOOH in MeOH MAX: 75-92% MAX: 5-21

6 of 14
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Compounds Sample Matrices Cartidge Type, mg Elution Solvent Recovery LOQ (ng/L) Reference
BTZ, SMBZ groundwater PLRP-s ACN/H,0/HCOOH [68]
(24.9:74.9:0.2)
BTZ, 4MBZ, 5SMBZ, tap, lake, effluent Poly-Sery HLB 60 2 mL MeOH 89-103% 0.4-4.8 [10]
10HBZ, CIBZ
BTZ tap, recycled water QOasis HLB 500 5mL MeOH + 5 mL [11]
MTBE/MeOH (9:1)
BTZ, MBZ, DMBZ, influent, effluent Qasis MCX 60 6 mL MeOH + 4 mL 72-102% 500-2000 [58]
CIBZ ACN
BTZ, MBZ river QOasis HLB 200 10 mL EA + 10 mL 0.1% 31-72% 0.53-0.66 [41]
NHj; in MeOH
BTZ, DMBZ, CIBZ, tap, swimming pool Poly-Sery HLB 200 6 mL MeOH 95-105% 1.5-15 [69]
NBZ
BTZ, MBZ influent, effluent QOasis HLB 200 5 mL 5% HCOOH in 108-154% 10-20 [70]
MeOH + 5 mL EA
BTZ, 5SMBZ river, influent, effluent, Qasis HLB 3 mL MeOH + 3 mL 91-104% 10 [71,72]
aquaculture ponds diethyl ether/MeOH
(1:1)
BTZ river Supel-Select HLB 6 mL MeOH/ACO/EA 94% ND [73]
200 (2:2:1)
BTZ, MBZ effluent Qasis HLB 9 + 0.1% HCOOH in MeOH 97-102% 2-5 [61]
Strata-X-AW(2.6)/
Strata-X-CW(2.6)/
Isoelute ENV+(3.8)
BTZ, 5MBZ, CIBZ, river Poly-Sery HLB 200 6 mL MeOH 80-110% 04-1.5 [74]
DMBZ
BTZ, 4MBZ, 5MBZ, river Qasis HLB 200 + 5mL MeOH/ACN (2:8) 22-112% 0.1-58 [54]
CIBZ, DMBZ Strata-X-AW(100)/ + 6 mL 0.5% NHj3 in
Strata-X-CW(100)/ MeOH/ACN (2:8) +
Isoelute ENV+(150) 4 mL 1.7% HCOOH in
MeOH/ACN (2:8)
BTZ wastewater QOasis HLB 200 + 6 mL EA/ MeOH/NHj3; 4-24% ND [56]
Strata-X-AW(100)/ +3 mL EA/MeOH/
Strata-X-CW(100)/ HCOOH
Isoelute ENV+(150) +
ENVI-Carb (200)
BTZ, 5MBZ, CIBZ, river, groundwater Qasis HLB 500 3 x 2mLMeOH/DCM 71-95% 0.8-1.3 [57]
DMBZ (1:1)

Oasis series is produced by Waters, Strata series by Phenomenex, Bond Elut by Agilent, Poly-sery by Anpel, PLRP-s by Spark, Isoelute ENV+ by Biotage, Supel-Select and ENVI-Carb

by Supelco.
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5. Solid-Phase Extraction of Benzotriazoles from Solid and Other Samples

SPE can be also used for clean-up of solid sample extracts obtained from sediments, activated
sludge, soil, plant and detergent matrices, as presented in Table 3. The original samples have been
either simply dissolved [6,44], or extracted with liquid—solid extraction (LSE) with ultrasonication,
accelerated solvent extraction (ASE [14]), pressurized hot water extraction (PHWE [75]) or microwave
extraction (MAE [76]).

In addition to environmental samples, polar benzotriazoles have also been determined in other
samples, presented in Table 4. The analysis of detergents and industrial fluids is important for
investigations of the point of origin of these compounds in the environment, while an estimation of
human and foetal intake of benzotriazoles can be made from the concentrations found in urine and
amniotic fluid.

Because SPE is such a staple in analytical chemistry, it is rarely compared to other extraction
techniques any more, but Asimakopoulos et al. [17] have compared extractions with two SPE
cartridges (Strata-X-CW and Oasis HLB) to LLE with ACN/DCM for benzotriazoles in human urine.
While recoveries were acceptable with both methods (92-127% SPE with HLB, 84-90% with LLE),
the researchers noted high background contamination levels in LLE and also a co-elution of an isobaric
component with BTZ, which led to higher LOD (1.17 ng/mL with LLE vs. 0.38 ng/mL with SPE).
Suppression of ionization was noticed for both methods; but in real samples, lower concentrations of
MBZ and DMBZ have been determined when using the LLE method than with SPE.

Table 3. SPE methods reported for benzotriazoles in solid samples (ND-no data).

Compounds Sample Matrices Cartidge Type, mg Elution Solvent Recovery LOQ (ng/g) Reference

BTZ, 5SMBZ detergent Oasis HLB 500 5 mL 3% MeOH in DCM ND ND [6]

BTZ, 5MBZ river sediments, LSE (MeOH) + Oasis 6 mL 15% MeOH in EA 70-226% 0.22 [43]

sludge HLB 500

BTZ, 5MBZ, DMBZ, sludge, suspended LSE (MeOH/H,0) + 2 x 5mLMeOH/ACN [39]

10HBZ particles Strata-X 200 (1:1)

BTZ, 1IMBZ, 4AMBZ, detergent, sludge Qasis HLB 200 10 mL EA 80-93% ND [44]

5MBZ

BTZ, 4MBZ, 5SMBZ, house dust LSE (MeOH/H,0) + 5 mL MeOH 71-108% 0.5 [15]

DMBZ, 10HBZ, CIBZ Oasis MAX 60

BTZ, 4MBZ, 5MBZ, sludge PHWE + Oasis HLB 2 x 3 mL MeOH 39-89% 0.5 [75]

DMBZ, CIBZ 150 + Florisil 500

BTZ, 5MBZ detergent Oasis HLB 500 2 X 5mLH,O(pH ND ND [22]

2.9)/MeOH (95:5)

BTZ, 5SMBZ estuary sediments ASE + Oasis HLB 6 mL MeOH ND 1.5-1.8 [14]

BTZ, 4MBZ, SMBZ, sludge LSE (MeOH/H,0) + 10 mL MeOH/ACN (1:1) 51-77% 118-1666 [65]

DMBZ, CIBZ Strata-X 200

BTZ plants LSE (MeOH/H,0) + 5 mL MeOH +5mL 100.5% ND [11]
Oasis HLB 500 MTBE/MeOH (9:1)

5MBZ soil LSE (ACO/hexane) + 10 mL EA 92-110% 0.002-0.019 [45]
Strata-X 100

BTZ, MBZ, DMBZ, sludge LSE (MeOH/H,0) + 6 mL MeOH + 4 mL ND ND 58]

CIBZ Oasis MCX 60 ACN

BTZ, MBZ sludge LSE (MeOH) + Oasis 5mL 5% HCOOH in 97-9% 20 [70]
HLB 200 MeOH + 5 mL EA

BTZ sludge MAE + Oasis HLB 5mL MeOH + 5 mL ND ND [76]
250 MeOH/MTBE (1:9)

Qasis series is produced by Waters, Strata series by Phenomenex.

Table 4. SPE methods reported for benzotriazoles in human samples and industrial liquids (ND-no data).

Compounds Sample Matrices Cartidge Type, mg Elution Solvent Recovery LOQ (ng/L) Reference
BTZ, 4AMBZ, 5MBZ detergents; anti-icing, Bond Elut PPL 200 2mL ACN/MeOH (1:1) 36—41% 6-15 [52]
de-icing fluid (anti-icing)
BTZ, 5MBZ, DMBZ, human urine QOasis HLB 200 10 mL MeOH/ACN (1:1) 93-117% 0.2-5 [17]
10HBZ
BTZ mineral oil Sep-pak Plus 500 5mL H,O/ACN (4:6) 77% ND [36]
BTZ, MBZ, 10HBZ, human urine, amniotic Qasis HLB 200 10 mL MeOH/ACN (1:1) urine: 5-510 [18]
CIBZ fluid 67-106%,
amn.fl.
71-93%

Qasis series and Sep-pak Plus are produced by Waters, Bond Elut by Agilent.
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6. Conclusions

Although in recent years the trends toward miniaturization of extraction techniques and an overall
greener approach have led to the development of various new analytical approaches, SPE remains the
mainstay of environmental chemistry. It is one of the first choices for researchers when encountering
organic pollutants and this stays true also for emerging contaminants such as benzotriazoles. In recent
years, many methods have been developed for the determination of polar benzotriazoles, not only
for aqueous but also for solid environmental, industrial and biological samples, as presented in this
review. The general trends and advances in SPE seem to be focused on reducing the matrix effects
and investigating various newer sorbent phases, which is reflected also in the study of benzotriazoles,
where quite a few new studies were done with mixed-mode sorbents. Benzotriazoles are also often
included in screening studies of environmental samples, where the trend of more and more analytes
being determined in one analysis can be observed. The amount of publications found in this corner of
environmental chemistry leads us to conclude that despite its long tradition, SPE has many uses for
research left.
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ACN acetonitrile

ACO acetone
DCM dichloromethane

EA ethyl acetate

GC gas chromatography
LC liquid chromatography
LLE liquid-liquid extraction
LSE liquid—solid extraction

LOD limit of detection
LOQ limit of quantification
MeOH methanol

MS mass spectrometry
MTBE  methyl tert-butyl ether
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