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Abstract: So far, there is no report on the quality evaluation of lemonade available in the market.
In this study, a sample preparation method was developed for the determination of flavonoid
glycosides by ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) based on
vortex-assisted dispersive liquid-liquid microextraction. First, potential flavonoids in lemonade were
scanned and identified by ultra-performance liquid chromatography–time of flight mass spectrometry
(UPLC-TOF/MS). Five flavonoid glycosides were identified as eriocitrin, narirutin, hesperidin, rutin,
and diosmin according to the molecular formula provided by TOF/MS and subsequent confirmation of
the authentic standard. Then, an ultra-performance liquid chromatography–triple quadrupole mass
spectrometry (UPLC-QqQ/MS) method was developed to determine these five flavonoid glycosides
in lemonade. The results showed that the content of rutin in some lemonade was unreasonably high.
We suspected that many illegal manufacturers achieved the goal of low-cost counterfeiting lemonade
by adding rutin. This suggested that it was necessary for relevant departments of the state to make
stricter regulations on the quality standards of lemonade beverages.

Keywords: vortex-assisted dispersive liquid-liquid microextraction; flavonoid glycoside; UPLC-MS;
counterfeiting lemonade

1. Introduction

Lemon (Citrus limon L.) is considered the third most important citrus species in the world [1], with
a large spectrum of biological activities that include antioxidant, antimicrobial, antiviral, antifungal,
and antidiabetic activities [2,3], generating a large variety of healthy foods. Flavonoids are widely
contained in lemon, conferring the typical taste and biological activities to lemon. According to the
aglycone structures, flavonoids are divided into four classes: flavanones, flavones, flavonols, and
flavans. Flavanones are the most abundant flavonoids, which are usually present in the 7-O-diglycoside
form. Lemon flavanones are present in glycoside or aglycone forms. Among the phytochemicals,
hesperetin and eriodictyol are the most abundant types of aglycones and rutinoside is the most
abundant types of glycoside forms [4,5]. It has been reported that hesperidin and eriocitrin were the
most abundant flavonoids in all the lemon juices studied and far exceed others [6–8].

Due to the high cost of fruit, counterfeiting of fruit juice has become a common problem in
the industry. The three most common forms of counterfeiting are: (1) When a kind of cheaper fruit
is used to replace all or part of it, (2) when a monomeric compound contained in the fruit with
another cheaper source is added, and (3) when it is completely made up of additives such as artificial
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sweeteners, preservatives, and colors [9]. As the products produced with the first two counterfeiting
methods contain some natural characteristic ingredients, they can generally meet the national testing
standards [10]. However, such kinds of counterfeit juice not only seriously affect consumer confidence
in the juice market, but may also cause a series of food safety problems. In addition to pure lemon
juice, lemonade containing lemon ingredients occupies an increasing market share in the beverage
market. Thus, it is of great scientific significance and commercial value to identify the authenticity of
lemonade available in the market.

Some methods for analyzing lemon juice have been reported, such as nuclear magnetic
resonance [11], 13C/12C isotope ratios [12], capillary electrochromatography (CEC) [13], and
HPLC [6,7,14]. Among them, HPLC was considered as the most reliable method for determining
flavonoids with high selectivity and sensitivity. Lemonade beverages currently available in the
market contain a large number of additives besides a small amount of lemon juice. Therefore, a new
sample preparation method is required to selectively separate and enrich low-content flavonoids from
lemonade, so as to identify the authenticity of lemonade.

At present, sample preparation methods of flavonoids can be divided into liquid-liquid extraction
(LLE) and solid phase extraction (SPE) [15–17]. However, they have some inherent disadvantages.
For example, LLE needs a substantial amount of toxic solvents and is time-consuming. SPE materials
are expensive and have poor reusability [18]. The dispersive liquid-liquid microextraction (DLLME)
method developed in recent years can make up for these disadvantages [19–21]. DLLME can not only
separate and enrich target analyte from aqueous solution, but also reduce or even eliminate the matrix
interference of samples. Therefore, DLLME is considered to be an effective pretreatment method for
food samples with the advantages of less solvent consumption, simple operation, high enrichment
factor, etc. In order to improve the work efficiency by speeding up the mass transfer process and
reducing the balance time, some assistant emulsification methods were also applied to improve the
performance of DLLME, such as ultrasound-assisted [22], vortex-assisted [23], air-assisted [24], and
microwave-assisted [25] DLLME. Currently, there are some studies on sample preparation of flavonoids
by DLLME. However, as far as we know, there is no research on flavonoids in lemonade.

In this work, the sample preparation of flavonoids in lemonade was firstly performed by the
vortex-assisted dispersive liquid-liquid microextraction (VA-DLLME) method. Then, the structure
and content of flavonoids in lemonade available on the market from eight different manufacturers
were identified and determined by ultra-performance liquid chromatography–time of flight mass
spectrometry (UPLC-TOF/MS) and ultra-performance liquid chromatography–triple quadrupole mass
spectrometry (UPLC-QqQ/MS), respectively. Finally, the counterfeiting phenomenon of lemonade was
evaluated according to the determination results of flavonoids. As far as we know, this study was
the first determination of flavonoid glycosides by UPLC-MS to authenticate commercial lemonade
available in the market.

2. Results and Discussion

2.1. Identification of Flavonoid Glycosides by UPLC-TOF/MS

The time of flight mass spectrometer (TOF MS) was used to scan and identify potential flavonoids
in lemonade for the first time in this work. As one of the most common high-resolution MS, TOF MS
can determine the exact molecular formula of the target compound, thus identifying the structure in
a complex matrix. After the target compound was located and identified, the triple quadrupole mass
spectrometer (QqQ MS) was an excellent choice for subsequent quantitative analysis [26].

In this study, according to the calculation based on the molecular formula by TOF and the
subsequent confirmation of the authentic standard under the same chromatographic conditions,
5 flavonoid glycosides in lemonade available in the market were located and identified (Figure 1),
which were eriocitrin, narirutin, hesperidin, rutin, and diosmin, respectively. As shown in Table 1,
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the error of each compound in high-resolution MS is within ±5 ppm, which is the acceptable error
limit for structure confirmation [27].
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Figure 1. Chemical structures of eriocitrin, narirutin, hesperidin, rutin, and diosmin.

Table 1. UPLC-MS parameters of five analytes in the negative ion-scan mode.

Analyte
TOF/MS QqQ/MS

Quasi-Molecular Ion
(m/z)

Error
(ppm) Product Ion (m/z) Parent Ion

(m/z)
Product Ion

(m/z)

eriocitrin 595.16788 1.7 287.0586, 151.0065 595 287 *, 151 #

narirutin 579.17238 0.8 271.0612 579 271 *, 151 #

hesperidin 609.18386 2.2 301.0737 609 301 *, 286 #

rutin 609.14689 1.3 301.0383, 300.0281 609 300 *, 271 #

diosmin 607.16784 1.0 299.0582, 284.0345 607 299 *, 284 #

Note: * quantitative ion, # qualitative ion.

2.2. The Selection of VA-DLLME Conditions

Since the extraction conditions have a crucial influence on the performance of VA-DLLME,
single-factor experiments were carried out to select the extraction conditions of the amount of ethyl
acetate and acetonitrile. In the present study, recoveries of 5 flavonoid glycosides were assessed by
means of fixing one variable and changing the other two variables. The results are shown in Figure 2.
Due to structural differences, the recoveries of the 5 flavonoid glycosides were different, but the overall
trend was relatively consistent. Based on the investigation of single-factor experiments, the VA-DLLME
condition was set as 1 mL of lemonade, 500 µL acetonitrile, and 1.5 mL ethyl acetate.
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2.3. Determination of Flavonoid Glycosides by UPLC–QqQ/MS

All 5 flavonoid glycosides are acidic compounds. Therefore, acid mobile phase could increase
the separating degree, symmetry factor, and the number of theoretical plates. Considering the ion
suppression induced by a high concentration of acid, 0.2% formic acid was finally added into the
mobile phase [28]. In order to optimize the MS condition of 5 flavonoid glycosides in the present
study, all of these target analytes were tested in direct infusion mode using the full-scan MS method,
respectively. It was found that the negative mode was more sensitive and selective than the positive
mode. By optimizing mass spectrum variables, including the vaporizer temperature, sheath gas
pressure, aux gas pressure, the parent/product ion pairs, collision energy, and S-Lens value, two stable
product ions with high sensitivity were selected for MRM analysis (Table 1). The representative mass
spectra of lemonade samples are shown in Figure 3.
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2.4. Speculation on the Possible Counterfeiting Means of Lemonade

A total of 8 batches of lemonade samples purchased from local supermarkets was determined by
the proposed UPLC-QqQ/MS method. The contents of 5 flavonoid glycosides are shown in Table 2.
The content of total flavonoid glycosides in lemonade varies greatly. On the surface, it seems that
the higher the content of total flavones, the higher the amount of lemon juice added in lemonade,
which means the better the quality of the product. However, after further analysis of the content of
monomeric compounds, it was found that the main ingredients in S1–S4 were flavanone glycosides
(mainly hesperidin and eriocitrin) and the content of flavonol glycosides (mainly rutin) was relatively
low. This result is consistent with the distribution characteristics of flavonoid glycosides in Citrus L.
With regard to S5–S8, the content of rutin is extremely high and hesperidin as a characteristic ingredient
of Citrus L. is not detected (nd). Hesperidin was the predominant flavonoid glycoside in lemon
reported by the previous study. For example, Mannan et al. reported values of 67 ± 15 mg/L for
hesperidin in 38 natural lemon juices, showing that the absence of this compound in lemonade shows
it to be a possible counterfeit [29]. Under normal circumstances, the content of rutin in lemon should
not exceed the content of hesperidin. Xi reported the contents of hesperidin and rutin in juice varied
from 105.5 to 210.3 µg/g and nd to 3.82 µg/g, respectively [30]. Due to the abnormal phenomenon in
our work, we have reason to suspect that S5–S8 were counterfeited as there was no or only a small trace
of lemon juice and had instead a large amount of rutin added to meet the national testing standards
(colorimetric assay by UV-Vis) of fruit juice products. Rutin is widely distributed in the plant kingdom.
It was reported that its content in Sophora japonica L. was up to 37.8% [31]. Therefore, only with a simple
separation process the commercialized low-cost supply of rutin can be realized [32]. For example, the
price of rutin reagent supplied by Aladdin is ¥368/100 g and if it is a crude extract of food-grade, the
price will be even lower. According to the testing method of total flavonoids in fruit juice beverage
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specified by national standard, rutin also has an obvious response in the colorimetric assay by UV-Vis
at a wavelength of 420 nm. Therefore, illegal businessmen achieved the goal of low-cost counterfeiting
lemonade by adding rutin.

Table 2. The contents of five flavonoid glycosides in eight lemonade samples (µg/100 mL).

Sample No. Eriocitrin Rutin Hesperidin Diosmin Narirutin Total

S1 0.04 0.27 1.00 nd nd 1.31
S2 0.92 0.34 3.82 0.66 nd 5.75
S3 1.73 0.29 16.33 2.95 nd 21.30
S4 28.96 6.01 28.30 0.28 0.74 49.07
S5 2.66 191.54 nd 0.64 nd 194.83
S6 0.04 243.71 nd nd nd 243.75
S7 0.05 264.24 nd nd nd 264.29
S8 0.35 470.00 nd nd nd 470.35

3. Material and Methods

3.1. Chemicals and Reagents

A total of eight lemonade samples were purchased from local supermarkets. A total of five
authentic standards of eriocitrin, narirutin, hesperidin, rutin, and diosmin were obtained from Chengdu
Push Bio-technology Co., Ltd. (Chengdu, China). The Milli-Q water purification system was used
to prepare ultra-pure water for UPLC analysis (Millipore, Bedford, MA, USA). Formic acid and
acetonitrile of LC/MS grade for UPLC-MS analysis were purchased from Sigma-Aldrich. Ethyl acetate,
ether, dichloromethane, methanol, acetone, and acetonitrile of analytical grade were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Preparation of Standard Solution

Stock solutions of five target analytes (eriocitrin, narirutin, hesperidin, rutin, and diosmin) were
prepared by dissolving each 10 mg authentic standard in 10 mL of methanol. Then, 250 µL of each of
the five stock solutions was transferred to a 50-mL volumetric flask and diluted with 20% methanol
to obtain the mixed stock solution. Next, 500 µL of mixed stock solution was transferred to a 50-mL
volumetric flask and diluted with 20% methanol to obtain the working solution I with a concentration
of approximately 50 ng/mL. Finally, mixed working solutions II–V were obtained by diluting working
solution I with respective concentrations of about 20.0 ng/mL, 10.0 ng/mL, 5.0 ng/mL, and 2 ng/mL.
All the solutions were stored in a refrigerator at 4 ◦C before use.

3.3. Sample Preparation by the VA-DLLME Procedure

Accurately add 1 mL of lemonade to a 4 mL centrifuge tube, then add 500 µL of acetonitrile and
1.5 mL ethyl acetate, then vortex for 30 s. After centrifugation, the upper organic phase was transferred.
The extraction was repeated once using another 1.5 mL of ethyl acetate and the combined solvent of
the upper organic phase was removed by a Termovap Sample Concentrator. The resulting residue was
re-dissolved in 1 mL of 20% methanol and filtered through a 0.22 µm filter for UPLC-MS analysis.

3.4. UPLC–MS Analysis

3.4.1. Identification of Flavonoid Glycosides by UPLC-TOF/MS

The Shimadzu UPLC ((Shimadzu, Kyoto, Japan) system consists of an online degasser (DGU-20A5R),
an auto-sampler (SIL-30AC), two pumps (LC-30AD), and a column oven (CTO-30aHE). Chromatographic
separation was performed on a Waters BEHC18 analytical column (2.1 × 100 mm, 1.7 µm, Waters,
Milford, MA, USA) at 40 ◦C. The mobile phase consisted of 0.2% formic acid and acetonitrile. The linear
gradient elution with a constant flow rate of 0.2 mL/min was 10%~10%~40%~95%~10% acetonitrile at
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0~1~10~13~15 min. The sample solution and mixed working solutions of 5 µL were injected into the
UPLC system by the auto-sampler.

TOF/MS measurements in negative ion mode were performed on a 4600 Q-TOF mass spectrometer
(AB Sciex, Concord, CA, USA) equipped with an electrospray ionization (ESI) source with the following
parameters: Ion source gas 1 (GS1) at 50 psi, ion source gas 1 (GS1) (N2) at 50 psi, curtain gas at 35 psi,
temperature at 500 ◦C, and ionspray voltage floating at −4500 V. The mass range was set to m/z 100–800.
The system was operated under Analyst 1.6 and Peak 2.0 (AB Sciex, Concord, CA, USA) and used an
APCI negative calibration solution to calibrate the instrument’s mass accuracy in real-time.

3.4.2. Determination of Flavonoid Glycosides by UPLC-QqQ/MS

Chromatographic separation was the same as that used in UPLC-TOF/MS analysis described
above. QqQ/MS measurements in negative ion mode were accomplished by a triple quadrupole
mass spectrometer equipped with an ESI source (Thermo Fisher Scientific, San Jose, CA, USA).
The determination of the target analytes was performed in a multi-reaction monitoring mode. The MS
parameters were as follows: Vaporizer temperature and capillary temperature both 350 ◦C, aux gas
pressure of 10 Arb, sheath gas pressure of 40 Arb, ion sweep gas pressure of 2 Arb, discharge current of
4.0 µA, and spray voltage of −2000 V. Data collection and processing were conducted with Thermo
Xcalibur Workstation (Version 2.2, Thermo).

3.5. Analytical Figures of Merit

Method validation was performed according to the above UPLC–QqQ/MS conditions. After it was
determined by the mixed working solutions I–V, the calibration curves of five analytes were obtained
as shown in Table 3 by taking the concentration of each authentic standard as the abscissa (x) and the
corresponding peak area as the ordinate (y), respectively. The limit of detection (LOD) and the limit of
quantification (LOQ) were measured by a gradual dilution process of the standard stock solutions until
the signal-to-noise ratio of 3:1 and 10:1, respectively. The precision was evaluated by standard working
solution III, which was tested within one day to determine the intra-day precision and was tested
within 3 days to determine the inter-day precision. The repeatability was evaluated by analyzing six
independent portions of sample S4 with parallel running. The recovery was carried out by spiking an
amount of about 1:1 of authentic standards to six independent portions of sample S4 with parallel
running. The validation results are summarized in Table 3, which show that the present developed
UPLC–QqQ/MS method meets the requirements of quantitative analysis and was appropriate for the
determination of five flavonoid glycosides in lemonade. The analytical figures of merit were compared
with those of several other quantitative methods reported for flavonoid glycosides in lemon as shown
in Table 4.



Molecules 2019, 24, 3016 7 of 10

Table 3. The results of method validation.

Analyte Regression Equation Linear Range
(ng/mL)

LOD LOQ Precision (RSD, n = 6) Repeatability (n = 6) Recovery (n = 6)
(y = ax + b, r2) (ng/mL) (ng/mL) Intra-Day Inter-Day Mean (µg/100 mL) RSD Mean RSD

eriocitrin y = 523.81x − 82.61, 0.996 2.01–50.3 0.70 2.01 1.36% 3.53% 28.9 3.22% 88.5% 3.93%
rutin y = 1034.77x − 1160.22, 0.996 2.44–60.9 0.81 2.44 2.51% 3.79% 6.01 4.62% 89.9% 4.51%

hesperidin y = 513.03x + 252.28, 0.998 2.01–50.4 0.70 2.10 1.97% 2.58% 28.3 3.47% 88.7% 5.30%
diosmin y = 769.76x + 84.74, 0.995 2.14–53.4 0.71 2.14 2.02% 3.17% 0.28 5.47% 102% 2.61%
narirutin y = 556.25x + 148.69, 0.997 2.02–51.2 0.70 2.02 1.48% 3.69% 0.74 4.86% 92.8% 4.47%

Table 4. Comparison of analytical methods reported for determination of flavonoid glycosides in lemon.

Method Analyte Linea Range LOD LOQ Recovery

CEC [13] eriocitrin, narirutin, hesperidin 5–200 µg/mL 2.5 µg/mL 5 µg/mL 71–112%
HPLC/UV [33] narirutin, hesperidin, diosmin 0.25–20 µg/mL - 0.1 µg/mL -
HPLC/UV [34] narirutin 2–50 mg/L 1.25 mg/L 2.5 mg/L 83%

hesperidin 2–50 mg/L 1.0 mg/L 2.5 mg/L 74%
HPLC/UV [35] eriocitrin 1.01–50.50 µg/mL 0.02 µg/mL 0.065 µg/mL 103.10%

narirutin 0.505–10.10 µg/mL 0.024 µg/mL 0.18 µg/mL 99.14%
hesperidin 5.00–100.00 µg/mL 0.04 µg/mL 0.132 µg/mL 99%

rutin 0.101–10.100 µg/mL 0.079 µg/mL 0.263 µg/mL 98.37%
UPLC/UV [36] eriocitrin 0.5–130 mg/L 6 µg/kg - 90.50%

narirutin 0.05–300 mg/L 5 µg/kg - 87.40%
hesperidin 0.05–500 mg/L 8 µg/kg - 92.70%

rutin 0.05–310 mg/L 5 µg/kg - 88.40%
diosmin 0.01–200 mg/L 8 µg/kg - 100.80%



Molecules 2019, 24, 3016 8 of 10

4. Conclusions

In this study, five flavonoid glycosides of eriocitrin, narirutin, hesperidin, rutin, and diosmin
in lemonade were identified and determined by UPLC-TOF/MS and UPLC-QqQ/MS, respectively.
By estimating the content characteristics of flavonoid glycosides in the samples, we highly suspected
that some lemonade available in the market was counterfeited: Cheap rutin was added to increase the
content of “total flavonoids of lemon”. This indicates that besides using total flavonoids, the content of
multiple flavonoid compounds should be included in the quality standard of lemonade in the future.
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