

- 1 Article
- 2 The role of surface exposed lysine in conformational
- 3 stability and functional properties of lipase from

4 staphylococcus family

Nurul Nadirah Ahmad ¹, Nor Hafizah Ahmad Kamarudin ^{1,2,*} Adam Thean Chor Leow ^{1,3}, and Raja Noor Zaliha Raja Abd. Rahman ^{1,4}

- 1 Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences,
 Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; nurulnadirahad@gmail.com (N. N. A);
 adamleow@upm.edu.my (T. C. L); rnzaliha@upm.edu.my (R. N. Z. R. A. R);
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang Selangor 43400,
 Malaysia;
- 12 3 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences,
 13 Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia;
- 14 4 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra
 15 Malaysia, Serdang Selangor 43400, Malaysia
- 16 * Correspondence: hafizah_kamar@upm.edu.my; Tel.: +60397696966; Fax: +60397696997

18Figure S1. Multiple sequence alignment of WT lipase to other Staphylococcal lipase (Family I.6) and19other genera of *Bacillus* and *Pseudomonas*. The highlighted in yellow colour showed lysine residue20(highly conserved or non-conserved) across the various species of *Staphylococcus*; and *Bacillus* and

21 *Pseudomonas* genera.

WT 2HIH	-AQAQYKNQYPVVFVHG MARIRARGSSRVDVPKENTTAQNKFTSQASDKKPTVKAAPEAVQNPENPKNKDPFVFVHG ***: *.*****	16 60
WT 2HIH	FVGLVGEDSFSMYPNYWGGTKYNVKQELTKLGYRVHEANVGAFSSNYDRAVELYYYIKGG FTGFVGEVA - AKGENYWGGTKANLRNHLRKAGYETYEASVSALASNHERAVELYYYLKGG	76 119
	..*** : : ******* *:::.* * ****.*.*.**.********	
WT	RVDYGAAHAAKYGHKRYGRTYEGIMPDWEPGKKIHLVGHSMGGDTIRLMEHFLRNGNQEE	136
2HIH	RVDYGAAHSEKYGHERYGKTYEGVLKDWKPGHPVHFIGHSMGGDTIRLLEHYLRFGDKAE	179
WT	IDYQRQYGGTVSDLFKGGQDNMVSTITTLGTPHNGTPAADKLGSTKFIKDTINRIGKIGG	196
2HIH	IAYQQQHGGIISELFKGGQDNMVTSITTIATPHNGTHASDDIGNTPTIRNILYSFAQMSS * **:*:** :*:************************	239
WT	TKALDLELGFSQWGFKQKPNESYAEYAKRIANSKVWETEDQAVNDLTTAGAEKLNQMTTL	256
2HIH	-HLGTIDFGMDHWGFKRKDGESLTDYNKRIAESKIWDSEDTGLYDLTREGAEKINQKTEL : :::*::****** ** ::* ****************	298
WT	NPNIVYTSYTGAATHTGPLGNEVPNIRQFPLFDLTSRAIGGDDNKNVRVNDGIVPVSSSL	316
2HIH	NPNIYYKTYTGVATHETQLGKHIADLGMEFTKILTGNYIGSVDDILWRPNDGLVSEISSQ ***** *.:***.*** **:::: ***: *: ***.**	358
WT	HPSDEAFKKVGMMNLATDKGIWQVRPVQYDWDHLDLVGLDTTDYKRTGEELGQFYKSMIN	376
2HIH	HPSDEKNISVD-ENSELHKGTWQVMPTMKGWDHSDFIGNDALDTKHSAIELTNFHSISD	417
WT	NMLKVEELDG 386	
2HIH	YLMRIEKAESTKNA 431 ::::*: :.	

22

23 24

24

25

Figure S2. Sequence alignment of WT lipase and the template, *S. hyicus* lipase (PBD ID: 2HIH). The conserved pentapeptide region (GXSXG) is shown in the red box. Symbols are indicated as follows: (*) fully conserved residue; (:) conservation of strong groups; and (.) conservation of weak group.

26 27

28

29

30

31

32

Figure S3. SDS-PAGE (12%) analysis of two-steps purification of **(a)** K325G and **(b)** K91A/K325G. Symbols denote (C) crude enzyme, flow-through of impurities and washing step fractions. The elution fractions represented GST-tagged mutant lipases (~69 KDa). GST tag was cleaved by PreScission Protease. Purified protein denotes purified mutant lipases (~43 KDa). GST tag was collected into later fractions (~26 kDa). A standard protein marker (Fisher Thermo Scientific, USA) was utilised.

33

34 Table 1. Predicted structure validation of WT and mutant lipases based on Ramachandran plot and35 Errat2.

	The structure quality						
		Single mutants			Double mutants		
Validation tools	WT	K91A K177A	V177A	K325C	K91A/	K91A/	K177A/
			K323G	K177A	K325G	K325G	
Ramachandran Plot							
a) Most favored	90.6%	90.9%	92.7%	92.1%	87.2%	92.1%	92.1%
region							
b) Additional	9.1%	8.8%	6.4%	7.0%	11.9%	7.3%	7.3%
allowed region							
c) Generously	0.3%	0.3%	0.9%	0.9%	0.9%	0.3%	0.6%
allowed region							
d) Disallowed	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%
region							
Errat2 (Overall	97.60	98.39	99.73	98.93	92.61	95.21	96.78
quality factor)							

36 37 38

Table S2. QMEAN analysis of WT and the mutants. The analysis of QMEAN Z-scores consist of linear combination from six structural descriptors as scoring function to show the overall structure quality for each of the enzymes. Another four Z-scores of individual analysis were reported.

Lipases	QMEAN	C-β	All Atom	Solvation	Torsion
WT	-0.64	-0.48	-1.04	-0.41	-0.56
K91A	-0.46	-0.46	-1.27	-0.49	-0.19
K177A	-0.84	-0.87	-0.91	-0.38	-0.61
K325G	-0.83	-0.72	-0.90	-0.21	-0.65
K91A/K177A	-1.68	-0.85	-1.30	-0.94	-1.27
K91A/K325G	-0.66	-1.02	-1.08	-0.70	-0.33
K177A/K325G	-0.64	-0.82	-1.22	-0.65	-0.34

39