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Abstract: In the present work, a high-throughput field sample preparation method was reported
for the simultaneous determination of 5-hydroxymethylfurfural and phenolic compounds in honey.
Combining a simple and green homogenous liquid–liquid extraction, matrix-induced sugaring-out,
with the use of a 96-deepwell plate and multichannel pipette, the proposed method showed its
merits in instrument-free and high-throughput preparation. Due to the high-throughput property,
the parameters of the method were rapidly and systematically studied using a constructed 4 × 2 × 4
× 3 array (sample amount × ratio of ACN:H2O × standing time × replicates) in a 96-deepwell plate.
Analytical performance was fully validated, and the limits of detection and limits of quantification
were in the range of 0.17–1.35 µg/g and 0.51–4.14 µg/g, respectively. Recoveries were between 83.98
and 117.11%, and all the precisions were <5%. Furthermore, the developed method was successfully
applied in the outdoor preparation of commercial honey samples and the in-field preparation of raw
honey samples in apiary. The current work presented a simple, rapid, and high-throughput method
for the field sample preparation of honey and provides a valuable strategy for the design of field and
on-site sample preparation.

Keywords: field sample preparation; high-throughput; homogenous liquid-liquid extraction; matrix-
induced sugaring-out; honey

1. Introduction

Honey, the natural sweet food produced by honeybees, has been long consumed
by humans due to its special flavor and nutritional benefits [1]. Fructose and glucose
are the major components of honey, with total content >60% (w/w) [2]. However, honey
is more than a simple concentrated sweet substance given its diverse constituents from
both plant and honeybee. These constituents including flavor compounds, organic acids,
vitamins, proteins and amino acids, phenolic compounds, lipids, minerals, and other
specific phytochemicals of botanic origin [3–8]. Since the honey matrix is complex, a sample
preparation procedure prior to analysis is often required to reduce interferences and enrich
analytes for this challenging analytical sample [9].

Homogenous liquid–liquid extraction (HLLE) is a widely used sample preparation
technique based on the traditional liquid–liquid extraction (LLE) [10,11]. In HLLE, water
miscible organic solvent is mixed with water to form a homogenous solution for extracting
analytes. Subsequently, phase-separation agents or conditions are introduced to trigger
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the partition of organic solvent from its aqueous solution. After phase separation, multiple
analytes with a wide range of polarities can be rapidly and efficiently extracted into the
separated organic phase [12–15]. Moreover, the phase separation also makes high-polarity
matrix compounds e.g., proteins [16] and sugars [17] mostly stay at the aqueous phase,
which significantly reduces the interference. In addition, the obtained extractive solution
is compatible with dispersive solid-phase extraction (d-SPE) [18,19], disposable pipette
extraction (DPX) [20], matrix solid-phase dispersion [21], and dispersive liquid–liquid
micro-extraction (DLLME) [22–25] for further clean-up or enrichment. Furthermore, the
emerging solvents ionic liquids and deep eutectic solvent have been successfully used in
HLLE and extended the applications of HLLE in micro-extraction [26,27].

Recently, we developed a novel HLLE method named matrix-induced sugaring-out
(MISO) for the determination of neonicotinoid pesticides in honey [28]. The proposed
MISO method takes advantage of constituents in sample matrix, the high contents of
sugars in honey, to induce the phase separation of acetonitrile–water homogenous solution.
Therefore, the general step of introducing a phase-separation agent in conventional HLLE
is eliminated, which makes MISO a simple, fast, and low-cost HLLE method. This idea of
matrix-induced HLLE has found application in another food matrix [29]. In the present
work, MISO is further developed into a high-throughput field HLLE method for the
simultaneous determination of HMF and phenolic compounds, which are the indicator
of freshness [30,31] and the important functional constituents [6] in honey, respectively.
The proposed method provides a simple and instrument-free strategy for the rapid field
preparation of honey sample.

2. Results and Discussion
2.1. High-Throughput Field Matrix-Induced Sugaring-Out

The strategy of high-throughput field matrix-induced sugaring-out (HT-F-MISO) is
shown in Figure 1. The 96-deepwell plate and multichannel pipette were selected to make
the sample preparation very simple and suitable for high-throughput field operation. In the
HT-F-MISO, honey samples were weighed in the 96-deepwell plate with a portable balance,
then water and acetonitrile (ACN) were added and mixed sequentially. After standing,
the mixture was separated into two phases due to the MISO. The multiple analytes were
extracted into the upper ACN phase, and the field sample preparation was completed after
collecting the ACN phase for HPLC analysis.
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Figure 1. Schematic presentation of high-throughput field matrix-induced sugaring-out.

The present method provides the advantages of simple and rapid preparation and the
low consumption of samples and solvents. After optimization, 96 samples can be prepared
within 60 min in one well-plate. Thus, the average consumption time for each sample is as
low as only 40 s. In addition, the preparation method also exhibits the characteristics of
miniaturization. The amount of sample is 0.3 g, which effectively reduces the generation
of waste, and the preparation of one sample only requires 0.7 mL of ACN, which also
effectively reduces the consumption of organic solvents in the protocol.

2.2. High-Throughput Optimization of Method Parameters

Since the high-throughput property, parameters of the HT-F-MISO was rapidly opti-
mized using the sample array in a 96-deepwell plate.
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Honey sample was mixed with H2O and ACN sequentially using multichannel pipette.
In the original MISO method [28], ACN-H2O mixture was added to the honey sample,
then homogenized by vortex device was carried out, whereas in field preparation, the use
of electrical instruments should be avoided; thus, the multichannel pipette was used to
perform homogenization in the HT-F-MISO. Because of the high viscosity, honey sample
was mixed with H2O and ACN sequentially rather than mixed with ACN-H2O mixture for
better homogenization. After adding water, honey sample could be well homogenized in
2 min. Then ACN was added and mixed with the aqueous honey solution with 1 min for
completing homogenization.

Our previous study indicated that a high concentration of ACN in an ACN-H2O
mixture was critical to obtain high extraction yields for polar compounds [13]. Therefore,
ACN and H2O with volume ratios of 6:4 and 7:3 were investigated in the array optimization.
Under these two concentrations, the amount of honey sample plays a crucial role in the
phase separation: when sample mass was larger than 0.2 g, phase separation could be
clearly observed. However, as the sample mass increased to greater than 0.6 g, insoluble
substances in the lower phase emerged. Thus, the amount of sample was studied in the
range between 0.2–0.5 g with increment of 0.1 g.

Additionally, standing for a certain time after homogenization was necessary for
achieving stable phase separation. Clear two-phase solution could be observed after
standing for 5 min, and thus, the effects of standing time on the recovery were investigated
at 5, 15, 25, and 35 min.

Based on the above considerations, we constructed a 4 × 2 × 4 × 3 array (sample
amount × ratio of ACN:H2O × standing time × replicates), with a total of 96 samples
in a 96-deepwell plate to perform the high-throughput optimization of the preparation
parameters. Calculated recoveries of the HMF and the nine phenolic compounds under
different conditions are summarized in Figure 2.

It can be seen from Figure 2 that when the ratio of ACN:H2O is 7:3 (v/v), recoveries
of the analytes with lower retention time (Figure 2a–e) are higher than that at the ratio of
6:4 (v/v). This result is consistent with our previous research finding that increasing the
concentration of ACN in ACN-H2O mixture results in the improvement of extraction yield,
especially for compounds with high polarity [13]. For less-polar compounds (Figure 2f–j),
high recovery was achieved at both 7:3 and 6:4 (v/v).

Additionally, prolonging the standing time is beneficial to the improvement of recovery.
Results indicated that recoveries increased and reached the plateau in 25 min, which
indicated that stable phase separation of HT-F-MISO could be achieved in 25 min without
the assist of centrifugation instrument.

The sample amount of honey plays an important role in the HT-F-MISO. As shown
in Figure 2, recoveries of most analytes reach the highest value at the mass of 0.3 g. With
further increases in sample amount, the recoveries reduced slightly. This may be due to the
low water content in the ACN-H2O mixture, which leads to the limitation of dissolvability
for honey sample. This speculation could be supported by the observation that with further
increasing the sample mass to be larger than 0.6 g, insoluble solid matter in the lower phase
appeared after standing. Therefore, 0.3 g of honey sample was suitable for the HT-F-MISO
to obtain a stable and high recovery.

In short, based on the above results obtained from the constructed array, the optimal
protocol could be determined as 0.3 g of honey sample mixed with 0.3 mL of H2O for 2 min
followed by mixing with 0.7 mL of ACN for another 1 min, then standing for 25 min for
phase separation.
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Figure 2. Effects of the ratio of ACN-H2O (6:4 and 7:3, v/v), mass of honey sample (0.2, 0.3, 0.4,
and 0.5 g), and standing time (5, 15, 25, and 35 min) on the calculated recovery (%) of analytes.
(a) 5-hydroxymethylfurfural; (b) protocatechuic acid; (c) pinocembrin; (d) caffeic acid; (e) 3,4-
dimethoxycinnamic acid; (f) quercetin; (g) apigenin; (h) kaempferol; (i) chrysin; (j) galangin.

2.3. Analytical Performance

Reversed-phase HPLC separation was modified based on the literature [32]. Coumarin
was used as the internal standard for quantification, which had proved to be suitable for
the simultaneous measurement of multiple phenolic compounds in HLLE [33]. It can be
seen from Figure 3 that all ten target analytes and the internal standard are well separated.
The linearity range and the linear equation of calibration curves are shown in Table 1.
Good linearity was obtained with coefficients (r2) all larger than 0.9989. The limits of
detection (LODs, S/N = 3) and limits of quantification (LOQs, S/N = 10) in honey sample
were in the ranges of 0.17–1.35 µg/g and 0.51–4.14 µg/g, respectively. The accuracy and
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precision were evaluated by recovery using a 3 × 6 array (3 spiked levels × 6 replicates) in
a 96-deepwell plate. As summarized in Table 2, the obtained recoveries in intra-day and
inter-day experiments were between 83.98 and 117.11%. Additionally, the precisions were
all <5%. These results indicated that this simple, rapid, and high-throughput field sample
preparation method could provide satisfactory analytical performance.
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Figure 3. Representative chromatogram of (a) standards and (b) extractive solution from spiked
honey sample. Peak 1, 5-hydroxymethylfurfural; 2, protocatechuic acid; 3, pinocembrin; 4, caffeic
acid; 5, 3,4-dimethoxycinnamic acid; 6, quercetin; 7, apigenin; 8, kaempferol; 9, chrysin; 10, galangin;
internal standard (IS), coumarin.

Table 1. Linearity, LOD, and LOQ of the ten analytes.

Analytes Linear Equation Linearity Range
(µg/mL) r2 LOD (µg/g) LOQ (µg/g)

5-Hydroxymethylfurfural y = 2.1198x 1.44–40 0.9998 0.18 0.54
Protocatechuic acid y = 0.3618x 0.76–21 0.9997 0.90 4.04

Pinocembrin y = 0.9226x 0.09–2.5 0.9997 0.17 0.51
Caffeic acid y = 0.8331x 0.18–5 0.9996 0.51 1.02

3,4-Dimethoxycinnamic acid y = 0.7344x 0.22–6 0.9994 0.39 1.17
Quercetin y = 0.2954x 0.72–20 0.9992 0.69 4.14
Apigenin y = 0.6312x 0.54–15 0.9996 0.83 2.50

Kaempferol y = 0.3666x 0.72–20 0.9989 1.35 4.04
Chrysin y = 0.9792x 0.36–10 0.9997 0.35 1.57

Galangin y = 0.4508x 0.58–16 0.9993 1.01 3.03
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Table 2. Accuracy and precision in spiked honey sample at three spiked levels.

Analytes
Spiked Levels

(µg/g)

Intra-Day
Inter-Day

Day 1 Day 2 Day 3

Recovery (%) ±
SD (n = 6) RSD (%) Recovery (%) ±

SD (n = 6) RSD (%) Recovery (%) ±
SD (n = 6) RSD (%) Recovery (%) ±

SD (n = 6) RSD (%)

5-Hydroxymethylfurfural
5.7 98.63 ± 2.40 2.44 101.99 ± 3.99 3.91 97.85 ± 2.06 2.11 99.49 ± 3.32 3.34

11.4 104.96 ± 4.14 3.94 107.97 ± 3.63 3.36 102.07 ± 4.25 4.16 105.00 ± 4.51 4.30
28.6 102.07 ± 3.28 3.22 96.33 ± 1.67 1.73 97.93 ± 3.50 3.57 98.78 ± 3.71 3.76

Protocatechuic acid
4.2 88.13 ± 1.75 1.98 88.83 ± 1.70 1.91 89.78 ± 1.58 1.77 88.91 ± 1.72 1.94
8.3 83.98 ± 1.68 2.00 89.06 ± 1.97 2.21 85.86 ± 2.42 2.82 86.30 ± 2.89 3.35

20.8 86.98 ± 1.72 1.98 85.22 ± 3.41 4.00 84.14 ± 3.49 4.15 85.45 ± 3.05 3.57

Pinocembrin
0.5 92.58 ± 2.19 2.37 95.22 ± 1.71 1.79 96.56 ± 1.53 1.59 94.79 ± 2.42 2.55
1.0 94.74 ± 2.00 2.12 97.04 ± 2.92 3.00 95.20 ± 3.37 3.54 95.66 ± 2.84 2.97
2.4 100.45 ± 1.90 1.89 96.54 ± 3.38 3.50 97.67 ± 2.66 2.72 98.22 ± 3.06 3.11

Caffeic acid
1.1 95.61 ± 2.80 2.92 96.02 ± 2.65 2.76 96.16 ± 2.80 2.92 95.93 ± 2.59 2.70
2.2 95.77 ± 2.73 2.85 96.40 ± 3.76 3.90 95.58 ± 2.76 2.89 95.92 ± 2.95 3.08
5.5 92.87 ± 1.29 1.39 92.78 ± 3.65 3.93 93.37 ± 3.20 3.43 93.00 ± 2.74 2.94

3,4-Dimethoxycinnamic acid
1.2 105.17 ± 3.84 3.65 106.44 ± 2.96 2.78 105.75 ± 1.82 1.72 105.79 ± 2.86 2.70
2.3 105.43 ± 3.09 2.93 110.38 ± 4.06 3.68 106.99 ± 2.99 2.79 107.60 ± 3.85 3.58
5.8 106.51 ± 0.96 0.90 102.60 ± 2.23 2.17 103.66 ± 2.14 2.07 104.25 ± 2.44 2.34

Quercetin
4.0 113.50 ± 4.51 3.98 117.11 ± 3.66 3.13 111.77 ± 3.44 3.08 114.13 ± 4.32 3.79
8.0 104.75 ± 3.64 3.48 100.29 ± 4.18 4.17 107.06 ± 1.18 1.10 104.03 ± 4.22 4.06
20.2 96.07 ± 3.69 3.84 93.60 ± 3.34 3.57 98.28 ± 3.39 3.45 95.99 ± 3.81 3.97

Apigenin
3.1 102.87 ± 3.92 3.81 102.36 ± 1.88 1.84 96.35 ± 2.60 2.69 100.53 ± 4.10 4.08
6.1 101.77 ± 4.86 4.78 95.01 ± 1.54 1.62 94.19 ± 3.23 3.43 96.99 ± 4.79 4.94

15.4 99.52 ± 4.37 4.39 95.21 ± 2.32 2.44 94.71 ± 3.03 3.20 96.48 ± 3.85 4.00

Kaempferol
3.8 103.70 ± 3.45 3.33 101.69 ± 3.67 3.61 99.74 ± 3.86 3.87 101.71 ± 3.82 3.76
7.7 103.59 ± 3.10 2.99 99.96 ± 2.65 2.65 100.95 ± 3.15 3.12 101.50 ± 3.21 3.16

19.2 102.36 ± 3.96 3.87 98.02 ± 2.06 2.10 100.65 ± 3.02 3.00 100.34 ± 3.45 3.44

Chrysin
2.0 105.11 ± 2.98 2.84 101.20 ± 3.18 3.14 100.36 ± 2.99 2.98 102.23 ± 3.57 3.49
4.0 104.70 ± 3.18 3.03 105.44 ± 2.32 2.32 104.57 ± 2.22 2.12 104.91 ± 2.51 2.40

10.2 101.48 ± 1.99 1.96 106.82 ± 4.42 4.14 103.67 ± 2.30 2.22 103.99 ± 3.68 3.54

Galangin
2.9 104.95 ± 2.48 2.36 107.77 ± 2.75 2.55 104.59 ± 2.61 2.50 105.77 ± 2.86 2.71
5.9 106.67 ± 2.84 2.66 108.00 ± 2.47 2.28 103.81 ± 3.49 3.36 106.16 ± 3.32 3.12

14.7 109.74 ± 2.72 2.48 104.54 ± 1.63 1.56 105.68 ± 2.91 2.76 106.65 ± 3.28 3.07
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2.4. Real Samples Analysis

The validated HT-F-MISO method was applied in commercial and raw honey samples
(Table 3). Twelve commercial samples (C1-C12) were purchased from market and prepared
using a 12 × 3 array (samples × replicates) in outdoor environment to simulate field
condition. Raw honey samples (R1-R6) were collected in six honeybee colonies in an apiary.
The collected raw honey samples were in-field prepared in the apiary using a 6 × 3 array
(samples × replicates). The obtained extractive solutions after preparing outdoor and
in-field were brought to laboratory for HPLC analysis. Results shown that the detected
contents of HMF were ranged from 1.85 µg/g to 85.88 µg/g in the commercial samples,
in which three samples were found over the regulated level (40 µg/g) [2]. In contrast, the
detected contents of HMF in the raw samples were all below LOQ. It is valuable to point
out that the formation of HMF comes from the thermal dehydration of sugars [34], and
the concentration of HMF in honey increases gradually along with the processing and
storage [35–37]. Results obtained from the real samples indicated that HMF in the fresh
honey was at very low level, whereas in commercial samples, heat treatment and long-term
storage could lead to significant increases in HMF concentration. More importantly, since
the phase separation of HLLE dramatically decreases the residual content of sugars in the
extractive [17], this field sample preparation may reduce the impact of the sample transport
process on the promotion of HMF production. In addition, four phenolic compounds were
also detected in the samples, including protocatechuic acid, caffeic acid, and kaempferol in
three commercial samples and 3,4-dimethoxycinnamic acid in four raw samples.

Table 3. Results of detected compounds in the real honey samples.

Sample ID
Detected Compounds (µg/g, Mean ± SD, n = 3)

5-Hydroxymethylfurfural Protocatechuic Acid Caffeic Acid 3,4-Dimethoxycinnamic Acid Kaempferol

C1 34.96 ± 3.25 - - - -
C2 9.67 ± 1.11 - - - -
C3 6.14 ± 0.17 - - - -
C4 20.14 ± 0.15 - - - -
C5 8.21 ± 0.47 - - - -
C6 85.88 ± 1.07 - 1.30 ± 0.02 -
C7 43.23 ± 1.65 <LOQ - - -
C8 14.16 ± 1.04 - - - -
C9 1.85 ± 0.12 - - - -

C10 72.07 ± 0.54 - - - -
C11 18.16 ± 1.35 - - - -
C12 27.97 ± 0.54 - - - <LOQ
R1 <LOQ - - - -
R2 <LOQ - - <LOQ -
R3 <LOQ - - <LOQ -
R4 <LOQ - - 2.02 ± 0.03 -
R5 <LOQ - - <LOQ -
R6 <LOQ - - - -

C1–C12: commercial honey samples; R1-R6: raw honey samples; LOQ: limit of quantification; -: not detected.

3. Materials and Methods
3.1. Chemicals and Materials

HPLC grade acetonitrile (ACN) and methanol were obtained from Merck (Darm-
stadt, Germany). Formic acid was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Standards of 5-hydroxymethylfurfural (HMF), protocatechuic acid,
pinocembrin, caffeic acid, 3,4-dimethoxycinnamic acid, quercetin, apigenin, kaempferol,
chrysin, galangin, and coumarin (internal standard, IS) were from Aladdin (Shanghai,
China). Ultrapure water (18.2 MΩ·cm) was used through this article. Honey sample used
in the method development was collected in Putian, China. Commercial honey samples
in the method application were purchased from local market. The raw honey samples for
field preparation were collected and performed in an apiary located in Jiufeng Moutain,
Fuzhou, China. Stock solution of standards were prepared in methanol with concentra-
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tion of 200 µg/mL. Working standard solutions were prepared by further dilution with
methanol. All standard solutions were stored at 4 ◦C until used. Data were processed using
Origin software (OriginLab, Northampton, MA, USA).

3.2. Optimization of High-Throughput Field Matrix-Induced Sugaring-Out

A 4 × 2 × 4 × 3 array (sample amount × ratio of ACN:H2O × standing time ×
replicates) was used for the optimization of parameters. Honey samples (0.2, 0.3, 0.4, and
0.5 g) were weighed in 96-deepwell plate and fortified with standards (1.6 µg for HMF, 12 µg
for protocatechuic acid, 4 µg for pinocembrin, caffeic acid, and 3,4-dimethoxycinnamic
acid, and 8 µg for other phenolic compounds and IS). Then, different volumes of H2O
(300, 400, 500, and 600 µL) were added. After mixing for 2 min by aspirating in-out using
multichannel pipette, different volumes of ACN (700, 600, 500, and 400 µL) were added and
mixed again for 1 min. After standing for different times (5, 15, 25, and 35 min) for phase
separation, the extractive solution in the upper phase was collected for HPLC analysis.

3.3. Optimal Protocol of High-Throughput Field Matrix-Induced Sugaring-Out

Honey samples (0.3 g) were weighted in 96-deepwell plate, and 10 µL of IS (1 mg/mL)
was added. Then, 300 µL of H2O was introduced. After mixing for 2 min by aspirating
in-out using multichannel pipette, 700 µL of ACN was added and mixed for 1 min. Then,
the mixture stood with 25 min for phase separation. Finally, the extractive solution in the
upper phase was collected for HPLC analysis.

3.4. HPLC Analysis

HPLC analysis was performed on Shimadzu (Kyoto, Japan) LC-20AT pump, with SIL-
20AC autosampler, CTO-20AC column oven, and SPD-M20A photodiode array detector.
An Intersil ODS-3 (GL Sciences, Kyoto, Japan) C18 column (5 µm, 4.6 mm × 250 mm) was
used for the separation. The mobile phase was water with 0.1% (v/v) formic acid (solvent
A) and ACN with 0.1% (v/v) formic acid (solvent B). The gradient elution was as follows:
10% B at 0–5 min, 10% to 26% B at 5–10 min, 26% to 50% B at 10–57 min, 50% to 100% B
at 57–58 min, 100% to 10% at 58–60 min, and stayed at 10% for 10 min. The flow rate was
1 mL/min, the injection volume was 5 µL, the column temperature was 30 ◦C, and the
detection wavelength was set at 280 nm.

3.5. Method Validation

Validation was carried out according to ICH guideline [38]. Quantifications of analytes
were based on calibrations of internal standards. Five-level calibration curves were con-
structed by the ratio of peak area (analyte/IS) versus the ratio of weight (analyte/IS). The
y-intercept was set to 0, and linear fitting was performed to evaluate the linearity. Limits
of detection (LODs) and limits of quantification (LOQs) were estimated in spiked honey
sample. Accuracy and precision were investigated in the recovery experiment with three
fortification levels using 3 × 6 array (levels × replicates) in 96-deepwell plate. The relative
standard deviation (RSD) in repeatability (intra-day precision, n = 6) and intermediate
precision (inter-day precision, three consecutive days, n = 18) were calculated.

3.6. Real Samples Analysis

For commercial honey samples, a 12 × 3 array (samples × replicates) in 96-deepwell
plate was prepared as described in Section 3.3. Samples were weighed using a portable
balance and prepared outdoors. For in-field honey samples, six colonies in the apiary were
investigated. About 2 g of honey were directly collected from beehives using a syringe for
each colony. Then samples were weighed using a portable balance and prepared in-field
using a 6 × 3 array (samples × replicates) in 96-deepwell plate as described in Section 3.3.
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4. Conclusions

In summary, a simple and fast high-throughput field MISO method was developed
for the simultaneous determination of multiple analytes in honey, including the HMF and
nine phenolic compounds. The optimization of the method parameters was systematically
and rapidly investigated by constructing sample array in 96-deepwell plate. The proposed
method was successfully applied for the outdoor preparation of commercial honey samples
and the field preparation of raw honey samples in apiary. The present study provides
a simple, rapid, and instrument-free field preparation method for honey sample. This
proposed method would be valuable for the quality control of honey and for the design of
field and on-site sample preparation.
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