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Abstract: This review addresses the importance of Zn for obtaining multifunctional materials with
interesting properties by following certain preparation strategies: choosing the appropriate synthesis
route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type
conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We
mainly followed the results of studies of the last ten years through chemical routes, especially by
sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for
developing multifunctional materials with various applications. ZnO can be used for the deposition of
thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO).
Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li,
Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used
as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful
as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for
nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications
in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells,
and photoluminescence applications. Its versatility is the main message of this review.

Keywords: ZnO thin films; sol-gel; seed layer; doping; nanostructures; composite materials

1. Introduction

Zinc oxide is a versatile material with a wide range of applications in different fields
such as chemistry, materials science, biology and nanotechnology due to its simple and envi-
ronmentally friendly synthesis, biocompatibility, and high chemical stability [1]. Over time,
as a result of their impressive properties, involving a wide band gap of 3.37 eV, exceptional
electron mobility (1 to 200 cm2/Vs), and an exciton binding energy of 60 meV [2,3], ZnO has
been comprehensively explored in different forms for certain applications [4]. Thus, depend-
ing on the synthesis methods, ZnO can be obtained as: bulk [5,6], nanostructures [7,8], thin
films, or hybrid materials [9,10]. The properties of ZnO-based materials can be tailored and
enhanced by controlling and optimizing several parameters (solution concentration [11],
dopant level [12,13], synthesis [14–17], and annealing temperature [18] or pH [19]). In the
last decade, the development of nanostructures with various morphologies [20–27] such as:
nanowires, nanorods (NR), nanoflowers, nanosheets, nanobelts, nanoneedles, nanoplates,
has gained tremendous attention, being used in biological applications [8,28–34]: bioimag-
ing, biosensing, antibacterial and drug delivery agents. In particular, ZnO thin films
have optical (photoluminescence) [33,35–42], electrical (thermoelectric [43–46], piezoelec-
tric [47–53]) and biological (antimicrobial [54–56], antibacterial [57–59]) characteristics,
which make them excellent candidates for the development of optoelectronic [60–65], piezo-
electric [66–68], transparent conductive oxides (TCO) devices [69–71], ultraviolet (UV)
photodetectors [13,72,73], solar cells [74–78], photocatalysts [79,80], gas sensors [81–90] or
biosensors [91–93]. The previous papers have discussed ZnO films with varying morpholo-
gies (e.g., nano-particles or nanorods) that were grown on a wide range of substrates, using
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different chemical methods for different applications. In 2022 alone, at least nine reviews
were published on ZnO, suggesting the topicality of a review about materials with Zn in
various combinations and forms.

To illustrate the continuous progress and growing research interest in ZnO, a graph
depicting the annual number of publications on ZnO and ZnO thin films from 1980 to 2023
(Figure 1) was included, obtained with SCOPUS. This graph highlights a significant growth
in the publication numbers between the years 2000 and 2015. The inset in Figure 1 shows a
constant interest in this topic, for the last decade.
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The novel viewpoint of this review is that it starts from ZnO nanoparticles (NPs),
continuing with mono- and mixed ZnO layers, covering doped and codoped ZnO, and
finally, considering Zn as a dopant by itself.

2. Preparation Methods of ZnO Films

Over the years, various physical and chemical methods have been used to prepare ZnO
films. In this chapter, we focus on the chemical methods and highlight some unique aspects
based on recent literature findings. Some of the best-known chemical methods for ZnO
film preparation include sol-gel (SG) (using dip-coating and spin-coating for deposition),
hydrothermal (HT), chemical bath deposition (CBD), and successive ionic layer adsorption
and reaction (SILAR).

2.1. Sol-Gel Synthesis

The SG technique is one of the most popular deposition methods, extensively used in
the last years to prepare inexpensive ZnO thin films. A graphic illustration (Figure 2) of the
SG solution preparation, the spin-coating deposition of a seed-layer, and the HT growth of
ZnO nanorods is presented in Ref. [94].
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Figure 2. Graphic illustration of sol-gel solution preparation, ZnO seed layer deposition and ZnO
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The synthesis conditions of the SG method can modify the film surface and at the
same time, they can improve the catalytic and chemical sensing properties of the film. The
variation of precursor concentrations is among the best-known procedures to obtain the
desired properties.

Other factors that may influence the final properties of the films are the microwave
treatment of the sol [95] or the polymer modifiers [96–99]. The application of microwave
heating in the SG method is a good way to reduce the preparation time and to obtain
nanostructured films at lower temperatures [96]. On the other hand, hydroxypropyl
cellulose (HPC) or ethylcellulose (EC) added into the sol-gel precursor solution led to high
photocatalytic activity, high chemical sensitivity [96] and the control of the particle size [97]
and film porosity [98].

Shankar [99] showed that adding the monomer of the polymer poly(vinyl alcohol)
(PVA) along with dehydrated zinc acetate led to an enhanced carrier concentration in ZnO
nanorods and in turn increased the sensitivity to ethanol detection at room temperature.

Jang [100] proved that the modification of ZnO with siloxane polymers increased the
sensitivity of ethanol detection at room temperature.

Significantly enhanced charge transport characteristics necessary in sensor applications
were obtained using conjugated polymer (CP) semiconductors [101], contributing to the
next generation of high-performance organic field-effect transistor (OFET) sensors.
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2.2. Hydrothermal Method

The hydrothermal method is usually performed to grow ZnO NRs in an autoclave,
from a water-based solution at specific conditions of high pressure and temperature. A
previously deposited SL on the substrate induces the formation and the growth of NRs
with a specific morphology [94,102–104].

The growth characteristics of nanorods and nanowires are as many as their use in
specific applications [105–108], with requirements regarding the density, length, and thick-
ness of the nanowires. These requirements can be met by varying the temperature (higher
temperatures generally lead to faster growth rates), the pressure (the use of a low-pressure
can result in the growth of long and thin nanowires), the growth time (affecting the length
of the resulting nanorods or nanowires), the number of deposition cycles, etc.

2.3. Chemical Bath Deposition

Chemical Bath Deposition is a process used to deposit thin films onto a substrate
which involves the use of a chemical solution that contains precursors for the desired
material [109–112]. The substrate is immersed in the solution and a reaction occurs at the
surface of the substrate, resulting in the deposition of a thin film. Figure 3 [113] illustrates
the step-by-step process of ZnO thin film formation using the CBD technique.
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Figure 3. Schematic diagram of CBD technique used to obtain ZnO thin films. Reprinted from [113]
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The CBD process offers several advantages, including low cost, ease of use, and the
ability to deposit films on a wide range of substrates, including plastics and glass. The pro-
cess can also be used to deposit films with controllable thickness and composition, making
it useful for a variety of applications, including solar cells, sensors, and optoelectronics.

2.4. Successive Ionic Layer Adsorption and Reaction

The successive ionic layer adsorption and reaction deposition method was first de-
scribed by Nicolau [114] and Ristov et al. [115]. It is an ion-by-ion deposition at room
temperature, which is conducted by alternately immersing the substrate, first in the cation
solution and then in the anion solution of a given compound, each step being followed by
the rinsing of the excess solution with deionized water. A schematic diagram of this process
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is presented in Figure 4 [116]. The thickness and the morphology are better controlled
than in other related methods, such as CBD [117]. The thickness is monitored using the
number of successive immersions, as well as the concentration and the type of the reactant
precursors, tuning the thickness from the nm to µm range, depending on their intended
use.
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Among other precursors, zinc chloride is proven to be the most suitable precursor for
Al-doped ZnO thin films [118], with good morphological, optical, and electrical properties,
for applications in optoelectronic devices.

The number of SILAR cycles plays a major role in obtaining a texture suitable for
photoelectrochemical applications [119], with a preferential orientation along the (002)
plane. With the increase of the deposition cycles from 60 to 120, a more compact growth
of the nanorods was observed, which can be explained by the formation of more nu-
cleation centers on the substrate. A second increase from 120 to 180 cycles leads to an
agglomerated growth with a deviation from vertical shape, with a negative impact on the
photoelectrochemical performance.

2.5. Other Chemical Methods: Spray Pyrolysis, Inkjet Printing, Chemical Vapor Deposition (CVD)

Another chemical method is spray pyrolysis [120–122], popular for its low-cost results,
in which the precursor solution is deposited on a heated substrate using a high-velocity gas
carrier. The film thickness and properties can be controlled by adjusting the concentration
of the precursor solution, the spray rate, and the substrate temperature.

Spray pyrolysis was used to obtain ZnO thin films. The observed increase of the
bandgap energy is a result of the ZnO SL presence, which also induces changes in the
morphology from flower-like (~6 µm diameter) for samples without SL to horizontal
nanorods (~0.8 µm length) in the presence of the SL [123]. This method was also used to
obtain undoped and Mg-doped ZnO films on indium tin oxide (ITO) SL [124]. The choice of
a different material for the SL had, as a result, the selective nucleation and further growth of
ZnO grains which exhibited a good H2 sensing response, even more, improved by doping
ZnO with Mg.

This method is a relatively simple and cost-effective process used to deposit a wide
range of materials, such as oxides, nitrides, and metals, for various applications, including
sensors, photovoltaics, and catalysis.

A variation of the spray pyrolysis method is the Inkjet printing, where using jets with
different pressures, the material is deposited on previously designed shapes [125–128]. The
inkjet printing technique offers several advantages for ZnO thin film deposition. It allows
for precise control of the thickness and morphology of the film, as well as the ability to
pattern the film with high spatial resolution. It is also a low-cost method that can be used
to obtain ZnO thin films on a variety of substrates, including flexible ones. Inkjet printing
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is a promising technique for the fabrication of ZnO thin films for different applications,
such as solar cells, sensors, and electronic devices.

The CVD method is used to grow different films on a substrate using a chemical reac-
tion between vapor phase reactants [129,130]. The CVD method allows for the deposition
of high-purity films with exceptional uniformity over large areas and enables the growth
of complex structures (nanowires, thin films, multilayers, etc.), with precise control over
composition, thickness, and orientation [131–133].

In summary, there are several effective methods for preparing ZnO films, including
SG, CVD, spray pyrolysis, etc., each with its advantages and disadvantages depending on
the desired film properties and application requirements.

3. ZnO as Seed Layer (SL)

In this chapter, a brief overview of the importance of SL is emphasized, together with
some applications in which the SL is essential in tuning the final material properties.

An SL is typically defined in the literature as a very thin layer deposited on differ-
ent substrates to further assist the growth of specific nanostructures, such as nanorods,
nanowires, nanosheets, etc. The ZnO SL quality is critical, because it plays a significant
role in inducing a preferential orientation of the ZnO films grown on its surface, and at the
same time it influences their morphology, diameter, and crystallinity.

The deposition of a SL is also important in obtaining a good adherence of a subsequent
layer to the substrate. In various applications, such as piezoelectric materials, for example,
the nucleation sites of a SL offer the possibility to grow nanowires of different dimensions
and directions, depending on the SL thickness.

Especially in the hydrothermal method (HT), a SL is necessary before growing 2D
structures. This technique was successfully used to obtain columnar ZnO grains of
1300–1700 nm thickness and 80–160 nm in diameter, grown from a ZnO SL deposited
by the SG method [47]. Figure 5 shows (a) the bright-field (BF) transmission electron
microscopy image and (b) the high-angle annular dark-field (HAADF) image of ZnO NWs
film grown on Au/Ti/SiO2/Si substrate by HT method [47].
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Good quality ZnO SL is also used to reduce the lattice mismatch between a substrate
and the layers to be grown on it, developing vertically aligned ZnO nanorods with a good
density and crystallinity control [134,135].

Many works have investigated the effect of deposition parameters on the initial SL
in obtaining vertically oriented nanorods. The SL quality is highly influenced by the
preheating temperature and annealing conditions. The preheating stage is the thermal
treatment performed after each deposition on a multi-layer SG film and its temperature
varies depending on the different precursor solutions used in the deposition process.



Molecules 2023, 28, 4674 7 of 27

As shown in [136], a preheating temperature of 400 ◦C is necessary to decompose the
organics by-products and to obtain vertically aligned ZnO nanorods, while in [137] it is
stated that the preheating process is providing the necessary energy for the nucleation
and growth kinetics of the ZnO film, directly affecting the crystalline quality of the final
film. The influence of different preheating temperatures on the growth of vertical nanorods
is studied in [135,138] and in this case, the best nanorods alignment along the c-axis was
found in the samples with a SL obtained at 350 ◦C preheating temperature.

In other words, the effect of ZnO SL annealing temperature on the growth of ZnO
nanorods has been studied. A higher temperature (500 ◦C) led to an increase in the diameter
and length of ZnO NR, due to the larger size of the SL grains [139]. UV sensors were
produced based on SLs obtained at different annealing temperatures (100 ÷ 500 ◦C) [140]
with the highest response for the sample annealed at 500 ◦C.

An increase from one to five successively deposited ZnO layers results in a thicker and
denser SL on the substrate, when using the SG spin coating technique [141]. In the case of
the CBD method, the increase of the number of adsorbed atoms provides a larger growth
area for ZnO nanowires, and the highest density and rod-like structure of ZnO nanowires
is obtained for the sample with five depositions of ZnO SL [141]. When ZnO nanowires
were grown on the thinner SL, they had a flower-like structure [141].

Even though most thermal treatments are performed to improve the final properties
of the samples, the annealing of the ZnO SL was reported in some cases to have a negative
impact on the device performances, in applications such as NO sensors [142]. The annealing
process enabled a larger diameter of the nanorods and lower porosity and, consequently a
few percent decrease in gas sensing response in comparison with the as-deposited ZnO
nanorods.

Banari et al. [108] have studied the UV photodetection properties of ZnO nanorods
grown by two-step (spin coating and hydrothermal) method on SLs, with thickness varying
in the range of 50–125 nm. Depending on the successive number of spin-coating depo-
sitions (3, 5, 7, and 9), increasing the SL thickness first leads to an increase in the carrier
concentration from three to five layers, followed by a decrease in the last two cases. The
high value of the carrier concentration was assigned to the surface defects and oxygen
vacancies in the ZnO films.

In summary, the SL is a critical factor as it affects the nucleation, diameter, length, and
uniformity of the resulting nanostructures.

4. ZnO in Composite Thin Films

The possible growth directions and the morphologies of ZnO (1D, 2D and 3D) are
illustrated in Figure 6 [143]. In this chapter, we focus on different double-layer composites,
with respect to the overall improvement of the composite thin films’ properties.

There are different combinations of double layers that contain ZnO and are efficient in
the development of many applications. Such examples are presented in Table 1 for sensor
applications.
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Table 1. ZnO in composite layers deposited by chemical methods for sensor applications.

No. Hetero-
Structures Method Year Sensor

Application Main Results Ref.

1

ZnO-NiO

HT 2019 H2S
The performance of the gas sensor toward H2S was
significantly improved after the formation of NiO/ZnO
heterostructures.

[144]

2 HT 2020 VOC

Selective VOCs sensors based on NiO/ZnO p–n
heterojunction diode for 2-propanol, toluene, and
formaldehyde vapors detection can be attained by
controlling the applied voltage.
An advantage of this diode is the ability to modify the
forward bias voltage, tailoring the number of carriers
implied in the sensing process.
A higher forward voltage leads to the increase of the
O− adsorbates that exist on the ZnO surface.

[145]

3 HT 2020 NH3

The improvement of gas sensing properties could be
assigned to the hierarchical structure which leads to a
better adsorption of gas molecules and also the
formation of n-ZnO/p-NiO heterojunction.

[146]

4 HT 2022 H2CO

The detection of formaldehyde at low temperatures
was improved by the formation of ZnO/NiO
heterostructures with high porosity which promotes
the adsorption of gas molecules on the surface.

[147]

5 CdO-ZnO HT 2021 H2CO

The gas sensing measurements highlighted an
improved response of CdO-ZnO nanorices structures
towards formaldehyde gas sensing, compared to the
ZnO nanoflowers.

[148]
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Table 1. Cont.

No. Hetero-
Structures Method Year Sensor

Application Main Results Ref.

6 ZnO-CuO SG 2018 H2CO

The gas sensing properties of the ZnO sensor can be
enhanced through CuO addition to creating a
CuO/ZnO heterojunction. The experimental results
proved that the CuO/ZnO-based sensor exhibits
exceptional selectivity and sensitivity for room
temperature formaldehyde detection.

[149]

7

ZnO-graphene

SG 2018 NO2

G-ZnO composite thin films act as selective sensors for
NO2 detection at low temperature, the superior
capabilities being due to the concomitant adsorption of
NO2 gas and molecular oxygen on the graphene and
ZnO surfaces.

[150]

8 SG 2021 NO2

The hybrid materials based on ZnO/graphene
heterostructures improve gas detection sensitivity at
low temperatures due to the combination between the
specific properties of ZnO and graphene.

[151]

9 Reflux
method 2018 CO

The rGO–ZnO composites enhance the sensor
performance, in terms of reducing the working
temperatures for CO gas detection.

[152]

10

ZnO-SnO2

SG 2016 CO The ZnO–SnO2 composite materials with different
content of SnO2 selectively detect the CO gas. [153]

11 HT 2019

C2H5OH

The SnO2/ZnO heterostructures show a higher gas
sensing response in contrast with the ZnO nanorods.
The formation of SnO2/ZnO heterojunction may be
responsible for the improved performance of the
sensors.

[154]

12 Spray
pyrolysis 2019

The Zn:Sn molar ratio has an important role in the
morphology of the nanostructures, the best gas sensing
results being obtained in the case of a higher content of
ZnO nanorods. Thus, a better sensitivity was found in
the films with higher amounts of ZnO, due to their
higher crystallinity.

[155]

13 ZnO-Cr2O3

Two-step
chemical

route
2018 H2CO

The gas sensing measurement showed that the
Cr2O3-ZnO heterostructures exhibit excellent gas
sensing properties for formaldehyde, which can be
assigned to the formation/presence of hierarchical
structures.

[156]

ZnO-graphene is an interesting and promising combination. Graphene and its deriva-
tives present nonlinear optical properties (NLO), with high absorption and dispersion
properties, with the ultrafast optical response, which makes them suitable for the appli-
cation of the mode-locked lasers [157]. ZnO has strong second and third-order nonlinear
optical features [158,159]. Sreeja et al. [160] showed that adding reduced graphene oxide
(rGO) to the AZO layers leads to an increase in the absorption and decrease of the optical
band gap, an effect that intensifies with the increase of the rGO concentration. The increase
in the percentage of rGO from 2 to 6 wt.% leads to an enhanced formation of sheet-like
structures in rGO, which subsequently merge with agglomerated ZnO particles, as could
be seen in Figure 7 [160].
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ZnO-graphene is also used in gas sensors [161,162] because it improves their selectivity,
shortens the recovery time, and operates at lower temperatures [162]. At the same time,
this combination managed to mitigate electromagnetic radiation (with around 30 dBs) in
the domain of 10–20 GHz [163], the attenuation being a function of the ZnO/graphene
nanoplatelets ratio and of the frequency employed.

ZnO-polymer can form very efficient piezoelectric coatings on flexible metallic sub-
strates. Chelu et al. [47] showed that a vertical ZnO nanowires (ZnO NWs) array grown on
flexible Ti substrate by the hydrothermal method at low temperature and covered with a
layer of poly(methyl methacrylate) (PMMA) leads to high values, above 120 pC/N, of the
piezoelectric coefficient d33. With such values, it is possible to foresee that PMMA/(ZnO
NWs)/Ti nanostructures open the way towards integration in wireless or defense technolo-
gies and in wearable or implantable biomedical systems as efficient harvesters.

Gen-Wen Hsieh et al. [164] demonstrated that the composite dielectric film of poly
(dimethylsiloxane)-PDMS-elastomeric silicone and zinc oxide tetrapod display remarkable
sensing performance in the capacitance change and a pressure sensitivity of 2.55 kPa−1

over that of pristine polymer sensors, enabling a minimum detectable pressure of only
1.0 Pa. At the same time the composite has a rapid response and reliable sensing stability
for over 1000 cycles. By introducing stress-sensitive additives of zinc oxide nanostructures,
PDMS-ZnO composites may provide the basis for potential applications in touch sensing,
electronic skin and sensitive wearable healthcare devices.

Another example of the role of ZnO-polymer composites is their use in medicine in
sutures, dermal fillers, or stents applications [165]. Venkatesh et al. [166] used polylactic acid
(PLA) and polypropylene (PP) polymers in urinary stent applications. Their combination
with ZnO increased the antibacterial properties and polymer degradation.

The combination of ZnO-Poly(butylene adipate-co-terephthalate) (PBAT) is very use-
ful in mechanical, thermal, and biological activity for food packaging [167] showing su-
perior antimicrobial activity against Escherichia coli and Staphylococcus aureus. The tensile
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strength in the nanocomposite film with 10 wt.% ZnO enhanced to 45.0 MPa compared
to 37.9 MPa of pure PBAT film, as well as increased thermal stability due to the good
dispersion of ZnO nanoparticles in the PBAT matrix.

Another application was recently presented by B.C. Kang [162], in which ZnO NW,
polymers, and carbon were used together in Wearable Pressure/Touch Sensors Based on
Hybrid Dielectric Composites of Zinc Oxide Nanowires (NWs)/Poly(dimethylsiloxane)
(PDMS) and Flexible Electrodes of Immobilized Carbon Nanotube (CNT) Random Net-
works. The incorporation of ZnO NW into PDMS increased the sensitivity of the composite
in low-pressure regions, from 1.32 × 10−4 Pa−1 to 8.77 × 10−4 Pa−1. This effect appears
due to the enhancement of piezoelectricity induced by ZnO NW on flexible CNT electrodes.

Combining the high charge carrier mobility of ZnO with the good film-forming
properties of the polymer, the ZnO-polyethyleneimine (PEI) composite layer served as
a cathode buffer layer for organic and perovskite solar cells [161]. Power conversion
efficiency of the composite is improved compared to that of each individual ingredient and
the performance of the perovskite as a solar cell increases from 10.05% to 11.76%. Chen
et al. [168] also used PEI for doping ZnO for an efficient electron transport layer (ETL)
in solar cell applications. At 7 wt.% PEI, they obtained vertical transport and the power
conversion efficiency improved to 4.6% from a value of 3.7% of the corresponding device
with pristine ZnO.

Another category of examples is the class of multi-component films based on ZnO,
such as p-CuS-ZnS/n-ZnO heterostructures, prepared by SG [169] which can produce non-
toxic, stable UV photodiode with an excellent rectifying behavior and very fast response.

5. Zn as Dopant

Zn can be interesting not only as a basic element in the ZnO films but also as a dopant
introduced in other oxidic films. In Table 2 the role of Zn as a dopant is exemplified for SG
films, as pointed out by recent works.

Table 2. Effect of Zn doping on different oxides prepared by SG.

Year Dopant Ions Doped Oxide Doping Effect Ref.

2022 Co2+, Cu2+, Zn2+ NiO Changes in the NiO film color [170]

2022 Zn2+ MgO Biosensors-detection of glucose level [171]

2022 Zn2+ ITO Improved sensor response to CO2 and
TCO characteristics for solar cell [172]

2022 Zn2+ SrTiO3 Good effect on the dielectric response [173]

2022 Zn2+ ITO Optimized electrical conductivity
and carrier density [174]

2021 Zn2+ NiO Refractive index increase with the Zn
concentration (1–5%) [175]

2018 Zn2+ BiFeO3
Significant decrease of the leakage current

of BiFeO3 film at low electric fields. [176]

2018 Zn2+ CuO Increasing band gap with Zn
concentration [177]

2017 Cu2+, Zn2+, Mn2+ BiFeO3
Considerably lower leakage currents in

doped films compared with pure BFO film [178]

The examples above can be expanded with films prepared by other methods than
SG, such as: Spray pyrolysis [179–183]; Chemical bath deposition [184–186]; thermally vacuum
evaporation [187], and others [188–190]. When oxide layers are doped with Zn, their con-
centration plays an important role in improving parameters in various applications. The
optoelectronic devices and solar cells have a better performance due to the enhancement of
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refractive index with the Zn concentration increase (1–5%) [175] and with the increase of
smoothness of the surface morphology as the Zn wt.% grows to 10 wt.% [180].

In some cases, ZnO may have a positive effect only when it is in a small amount, while
when its concentration is slightly higher, the effect is negative. Such a case is presented
by Sheikh et al. [191] for Polyether block amide (PEBA) nanocomposites doped with ZnO.
The effect of low ZnO (≤0.5%) concentration on the thermal and mechanical properties
of prepared PEBA/ZnO nanocomposite thin films is very good but with increasing the
concentration to 1%, it weakens due to agglomeration of the nanoparticles.

6. Doped and Codoped ZnO Films; p-Type Conductivity

Through the SG method, it is relatively easy to prepare stable n-type ZnO, but it
is very difficult to obtain a p-type material due to the generation of donor-type defects
which compensate for the charge of acceptor dopants (self-compensation effect) and the
low solubility of the acceptor dopant ions [192]. According to Li et al. [193], p-type ZnO
is characterized by a low concentration and mobility of holes, making it unstable over
time. This instability leads to the tendency of the p-type ZnO to revert to n-type at room
temperature within a specific time interval.

Thus, undoped ZnO shows n-type conductivity due to intrinsic defects such as inter-
stitial Zn and oxygen vacancies. By doping and co-doping, p-type ZnO can be obtained
through three fundamental approaches: (a) replacing Zn with the group I and IB elements
(Li, Na, K, Ag, Cu), (b) by doping with group V elements (N, P, As, Sb) which replace
oxygen in the lattice or (c) co-doping with donors and acceptors (Li-Ni, In-N, Al-N, F-
Ag) [193–195]. In recent years, group I elements have been reported to possess better
dopant behavior than group V or group III elements in terms of acceptor, and donor level,
respectively [196,197].

An extensive discussion on the ZnO band structure, the partial density of states
(PDOS), and the lattice parameters are presented in [198] and illustrated in Figure 8a,b.
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Li is considered the most suitable element from group I (Li, Na, K) to produce p-type
ZnO modifying the strain effects and energy levels through the replacement of Zn with
Li [199,200]. The reason for this is the small ionic radius of Li of 0.68 Å, which is very close
to the ionic radius of Zn (0.74 Å). As a result, Li can occupy the Zn vacancy (VZn) and
induce the desired effects [201–203].
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According to [204,205], another option is to dope ZnO with Na ions (0.95 Å), which
replace Zn ions (NaZn) and create a shallow acceptor state [205].

Also, it has been reported that apart from the ionic radius that can affect doping, the
substrate material also plays a role in the doping of ZnO. For example, p-type behavior
was thus obtained for Li-doped ZnO deposited on a silicon substrate, and n-type behavior
was obtained for ZnO deposited on a glass substrate [199,203].

Maksimov [206] has reported that obtaining p-type ZnO materials via anion substitu-
tion, by replacing oxygen with other group VI elements (S, Se, Te) is used for the fabrication
of photovoltaic devices [206,207].

ZnO has been doped with transition metals (such as Mn, Ni) to obtain dilute magnetic
semiconductors (DMS) for applications in spintronic devices [199] and also has been doped
with Ni or F elements to fabricate high-quality humidity sensors [208,209].

Co-doping of ZnO is reported to be feasible due to the strong attractive acceptor-donor
interaction, which overcomes the repulsive interactions between the acceptors and leads to
the formation of acceptor-donor-acceptor complexes [197].

In summary, based on the literature and the structural, morphological, elemental, opti-
cal, and electrical analysis, the p-type conductivity of ZnO (doped/co-doped) is attributed
to the formation of an impurity band above the maximum of the valance band, resulting in
a reduction of the band gap and a decrease in the energy of ionization of the acceptor (Li,
Na, P, N) [194,199–201,205] respectively of the donor (Al, In, Ni) [196,199,207] highlighted
in the spectroscopic analysis through the red shift in the UV emission [197,202].

The Raman spectra showed an increase in the intensity of phonon mode E1(LO) [197,200]
which is associated with impurities and the formation of defects such as oxygen vacancies,
demonstrating that the doping occurred.

A widening of the band-gap is usually observed for ZnO doped with donors, while a
reduction of the band gap was noticed by doping with acceptors [197,199,205,207,210].

The change of the lattice parameters indicates that the dopant (in the form of ions)
replaces the Zn ions and was incorporated into the ZnO lattice (confirmed by XRD, XRF,
XPS measurements) [192,194,199,204,206,211].

The Hall, Seebeck or the current–voltage (I–V) measurements indicated that, usually,
the undoped ZnO film exhibited n-type conductivity, while the doped ZnO films generally
exhibited p-type conductivity with low carrier concentration [192–194,196,199,201,205,209–213].

Repeated measurements after a period of time (4–12 months) demonstrated that the
conduction type is stable over time [199,211,212]. The p-type conductivity in thin films is
generated by free O2− vacancies and interstitial Zn atoms or substitution sites of Zn2+ ions.

In addition, the SG method [192,199,211,214] has proved to be an attractive technique
for obtaining p-type ZnO films among others due to the low deposition costs compared
to other more expensive methods such as RF magnetron sputtering [210,212] pulsed laser
deposition [215] or spray pyrolysis [196,213].

The ionic character of elements used for doping ZnO is presented below in Table 3.

Table 3. The ionic character of some elements used for doping ZnO.

Ionic Character

Acceptor Donor Acceptor-Donor

Li [197,199–203] F [204,209,214] Te [206,207] Li-Ni [199]

Na [192,197,204,205] Cl [214] Ga [214,215] Ga-N [213]

K [197] Al [216,217] Ni [199,208,217] In-N [203]

N [193,194,212] In [196] Mn [218] Al-N [210]

P [194] S [206] F-Ag [195]

Sn [215] Se [206]



Molecules 2023, 28, 4674 14 of 27

7. Applications

In the present section, a special attention is given to the applications of ZnO thin films
prepared by sol-gel and hydrothermal methods.

The versatility of the material is demonstrated in Figure 9.
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An overview of the SG-ZnO applications in the literature of the last ten years is
presented in Table 4.

Table 4. An overview of the SG-ZnO applications in the last ten years.

Year Title Application Review Content Ref.

2023

Controlled Growth of Semiconducting
ZnO Nanorods for

Piezoelectric Energy Harvesting-Based
Nanogenerators

Piezoelectric Nanogenerator;
Energy harvesting

ZnO nanorods; Piezoelectric properties;
Piezoelectric devices; [219]

2023
Recent Advances in Integrating 1D

Nanomaterials into
Chemiresistive Gas Sensor Devices

Gas sensors 1D Nanomaterials; Electrical properties;
Gas sensing [220]

2022
92 years of zinc oxide: has been studied

by the scientific community since the
1930s- An overview

Rubber industry; Biosensors;
Textile industry; Agriculture

(nano-fertilizers)

Vulcanization properties; Biological
properties; UV blocking property;

photo-catalytic self-cleaning; Electrical
conductivity; Photoluminescence (PL)

properties; Anti-fungal properties

[1]

2022 A review of flexible lead-free
piezoelectric energy harvester

Piezoelectric Nanogenerator;
Energy harvesting; Flexible

Nanogenerator

ZnO NWs; Electrical properties;
Piezoelectric behavior [52]

2022

Morphological evolution-driven
semiconducting nanostructures for

emerging solar, biological, and
nanogenerator applications

Solar cells; Nanogenerator;
Biological applications

ZnO nanostructures; Antimicrobial
properties; Antilarvicidal activity;
Anticancer activity; Piezoelectric

properties

[21]

2022 ZnO Transducers for
Photoluminescence-Based Biosensors Biosensors PL Properties [33]

2022
A Review of the Impact of Zinc Oxide

Nanostructure Morphology on
Perovskite Solar Cell Performance

Solar Cell Zinc Oxide Nanostructure; Electron
mobility [22]
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Table 4. Cont.

Year Title Application Review Content Ref.

2022
Immobilization of zinc oxide-based
photocatalysts for organic pollutant

degradation: A review
Photocatalysis Photocatalytic activity [221]

2021
Economic Friendly ZnO-Based UV

Sensors Using Hydrothermal Growth: A
Review

UV sensors Piezo-phototronics and piezotronics;
conductivity; photoresitivity [7]

2021 Review of ZnO-based nanomaterials in
gas sensors Sensors

ZnO nanomaterials; ZnO nanocomposite;
Gas sensing properties; Electronic

properties
[83]

2020 Photoluminescence of ZnO Nanowires:
A Review

Photoluminescence
applications

ZnO Nws; Optoelectronic properties;
PL properties [24]

2020 A review on ZnO: Fundamental
properties and applications

Field effect transistors (FET);
Gas sensing; LED devices;

Environmental applications

ZnO; Optical, magnetic, and PL
properties [222]

2020 Advances in doped ZnO nanostructures
for gas sensor Gas sensors ZnO nanostructures; Metal doping;

Hetero atomic doping [223]

2019 ZnO as a Functional Material Biomarkers; Gas sensors ZnO p-type; PL [4]

2019 Enhanced sensing performance of ZnO
nanostructures-based gas sensors Sensors; Gas sensors

ZnO nanostructures; Nanocomposites;
Gas sensing properties; Metal doping;

UV activation; heterojunction
[224]

2018
Synthesis, properties, and applications of

ZnO nanomaterials with oxygen
vacancies: A review

Photocatalyst;
Photoelectrochemical water

oxidation; Antibacterial agents;
Gas sensors; Supercapacitors;

Electronic devices

ZnO nanomaterials; PL; Electrical
properties; Ferromagnetism;

Antibacterial activity; Gas sensing
properties

[225]

2018
Fabrications and Applications of ZnO
Nanomaterials in Flexible Functional

Devices-A Review

Solar cell; Supercapacitors;
Flexible piezoelectric NGs; UV

photodetectors (PDs);
Photodiodes; Flexible and

porous 3-D ceramics;
Functional surface coating;

Biosensors; Gas sensors

ZnO nanomaterials; Thin films;
Optical and electrical properties [226]

2017 ZnO Nanowire Application in
Chemoresistive Sensing: A Review Gas sensors; Biosensors

ZnO NWs; ZnO Nanowire Sensors;
Sensing, photoresponse, and

semiconductor properties
[227]

2017 Zinc oxide nanostructure-based
dye-sensitized solar cells DSSCs ZnO nanomaterials; Photosensitizer dyes;

Photoconversion efficiency [228]

2016
Optical biosensors based on ZnO
nanostructures: advantages and

perspectives. A review
Optical biosensors ZnO nanostructures; Functionalization of

ZnO surface [229]

2015
ZnO nanostructured thin films:

Depositions, properties, and
applications—A review

Gas Sensors; SAW Devices
Thin Film Transistors (TFT);

LED; Solar Cells

ZnO thin films; Optical and electrical
properties [230]

2014 Zinc Oxide Nanomaterials for
Biomedical Fluorescence Detection Biomedical Optical and electronic properties ZnO

NR [231]

2013 p-Type ZnO materials: Theory, growth,
properties, and devices

LED; Photodetector;
Field-effect transistor (FET);
Sensors; Piezoelectric NG

Homo- and heterojunctions p-doping of
ZnO films; Emission properties [232]

In the previous sections, we mentioned the applications every time we considered
the different types of layers and their preparation methods. This is obvious in Table 1,
which is dedicated to sensor applications of composite layers containing Zn. Nevertheless,
additional remarks are in order, regarding fluorescence because it is one of the most
widely used detection mechanisms in many fields such as biology, biophysics, biochemistry,
genomics, proteomics, drug discovery, disease diagnostics, and environmental analysis. A
few recent examples are presented below:
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7.1. Medical Field

In the reference [231], the status of 1D ZnO in vitro as bio-detection supports is
summarized, as well as the challenges and future outlook concerning their application as
enhanced biomedical detection platforms are presented.

Al-doped ZnO (AZO) thin films, annealed at different temperatures (250 ◦C, 450 ◦C,
and 650 ◦C for 1 h in air) are used for the detection of glucose based on fluorescence
quenching [30]. From the AZO450 PL spectra (Figure 10) in the presence of glucose at
different concentrations and immobilized with glucose oxidase (GOx), a systematic decrease
in the PL intensity is observed with the increase in concentration from 20 µM to 20 mM.

Molecules 2023, 28, x FOR PEER REVIEW 16 of 28 
 

 

7.1. Medical Field 
In the reference [231], the status of 1D ZnO in vitro as bio-detection supports is 

summarized, as well as the challenges and future outlook concerning their application as 
enhanced biomedical detection platforms are presented. 

Al-doped ZnO (AZO) thin films, annealed at different temperatures (250 °C, 450 °C, 
and 650 °C for 1 h in air) are used for the detection of glucose based on fluorescence 
quenching [30]. From the AZO450 PL spectra (Figure 10) in the presence of glucose at 
different concentrations and immobilized with glucose oxidase (GOx), a systematic de-
crease in the PL intensity is observed with the increase in concentration from 20 μM to 
20 mM. 

  
(a) (b) 

Figure 10. (a) PL spectra for as-grown and annealed AZO samples, (b) AZO450 PL spectra before 
and after glucose exposure at different concentrations in the presence of GOx. Reprinted from [30] 
with permission from Elsevier. 

In 2014, ZnO nanoparticles (NPs) have been employed for fluorescence lifetime 
imaging in human skin [233] and in the same year, Wolska et al. [234] have shown that 
rare earth (RE) elements can activate ZnO NPs to work as biomarkers, for medical visu-
alization. ZnO NPs possess biocompatibility with the living organism and if they are 
doped with RE element, their route inside the organism can be monitored by the lumi-
nescence of RE atoms. 

7.2. Antibacterial Field 
The antibacterial activity of SG ZnO films presented by Kaviyarasu et al. [59] with 

different concentrations of ZnO particles (100–600 μg/mL) was successfully used against 
Gram-positive and Gram-negative bacteria (S. pneumonia, S. aureus, E. coli and E. her-
mannii). At the same time, the photocatalytic activity of ZnO under sunlight increases the 
degradation rate of Rhodamine-B (RhB), which is one of the common water pollutants 
emitted by textile and paper industries. 

This biological application became more attractive due to their duality in toxicity: bene-
fits in drug delivery and the antibacterial effects, as underlined in [20]. 

8. Summary, Conclusion, and Future Prospects 
This review covers the major recent results on materials based on Zn, highlighting 

low-cost preparation methods (like chemical ones, especially SG). It focuses on the ver-
satility of Zn in different combinations: as thin films (doped, undoped) for SL or main 
layer, as a thin film in a multilayer stack, as a component in a mixed thin film, or as a 
dopant in other films. A material with improved properties can be achieved by control-
ling and tailoring its morphology, crystallinity, and porosity. 

The importance of the SL and its properties for obtaining thin films have been dis-
cussed, its presence being imperative for the growth of nanostructures with different 

Figure 10. (a) PL spectra for as-grown and annealed AZO samples, (b) AZO450 PL spectra before
and after glucose exposure at different concentrations in the presence of GOx. Reprinted from [30]
with permission from Elsevier.

In 2014, ZnO nanoparticles (NPs) have been employed for fluorescence lifetime imag-
ing in human skin [233] and in the same year, Wolska et al. [234] have shown that rare
earth (RE) elements can activate ZnO NPs to work as biomarkers, for medical visualization.
ZnO NPs possess biocompatibility with the living organism and if they are doped with
RE element, their route inside the organism can be monitored by the luminescence of RE
atoms.

7.2. Antibacterial Field

The antibacterial activity of SG ZnO films presented by Kaviyarasu et al. [59] with
different concentrations of ZnO particles (100–600 µg/mL) was successfully used against
Gram-positive and Gram-negative bacteria (S. pneumonia, S. aureus, E. coli and E. hermannii).
At the same time, the photocatalytic activity of ZnO under sunlight increases the degrada-
tion rate of Rhodamine-B (RhB), which is one of the common water pollutants emitted by
textile and paper industries.

This biological application became more attractive due to their duality in toxicity: benefits
in drug delivery and the antibacterial effects, as underlined in [20].

8. Summary, Conclusions, and Future Prospects

This review covers the major recent results on materials based on Zn, highlighting low-
cost preparation methods (like chemical ones, especially SG). It focuses on the versatility
of Zn in different combinations: as thin films (doped, undoped) for SL or main layer, as a
thin film in a multilayer stack, as a component in a mixed thin film, or as a dopant in other
films. A material with improved properties can be achieved by controlling and tailoring its
morphology, crystallinity, and porosity.

The importance of the SL and its properties for obtaining thin films have been dis-
cussed, its presence being imperative for the growth of nanostructures with different
orientations. Some strategies for the improvement of ZnO properties were discussed such
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as: doping and co-doping of ZnO films and the addition of polymers, graphene, or other
oxide materials in the ZnO matrix. Each approach is discussed in connection with the
intended application. In order to prepare sensing (gas or biomarker) or transparent con-
ductive materials the incorporation of one or more dopants is necessary, to induce p- or
n-type conductivity, while the piezoelectricity is improved by growing 2D structures or
polymer coatings.

The future major challenges regarding the development of sensitive materials consist
of a better understanding of the sensing mechanism (gas sensor: adsorption reactions;
biosensor: host–guest interactions), improving the sensitivity, selectivity, and stability
of the samples as well as reducing the operating temperature to room temperature. An
expanded analysis concerning the increase of gas performance of ZnO-based materials can
be conducted through (a) control of morphology (optimization of synthesis parameters),
(b) defects generation (finding the suitable dopant concentration), (c) investigation of pho-
tophysical (photons generation under excitation) and photochemical properties (generation
of electrons after excitation) and (d) development of new composite materials (creating of
surface defects which can lead to a better adsorption by electron transfer).

In the case of biological applications, additional studies are needed to elucidate the
interaction mechanism between the sample and analyzed species and the study of bio-
compatibility of ZnO composite materials (implants or stents). From a biological point of
view, an important challenge is the immobilization of the biomolecules on the surface of
the sensor, while the extinction of the fluorescence would be a major problem for the photo-
luminescent sensors. The piezoelectricity of ZnO-based systems remains a promising topic
for medical applications. An interesting approach to achieving piezoelectric properties
involves the growth of nanostructures with preferential orientations and good uniformity
coated with polymer layers, the number of layers having an important influence on the
piezo–response of the final materials. As mentioned above, there are still many aspects that
need to be to be further investigated in order to improve the performance of the studied
materials.

In conclusion, due to its versatility, ZnO has gained a great interest in the scientific
community since its discovery and will be studied in the future for a wide range of
applications.
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List of acronyms (in alphabetical order)
AZO Al-doped ZnO
BF Bright field
CBD Chemical Bath Deposition
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CNFs Ceramic nanofibers
CNT Carbon nanotubes
CP Conjugated polymer
CVD Chemical Vapor Deposition
DMS Dilute Magnetic Semiconductors
DSSCs Dye-sensitized solar cells
EC Ethylcellulose
ETL Efficient electron transport layer
FET Field effect transistors
HT Hydrothermal synthesis
HPC Hydroxypropyl cellulose
ITO Indium Tin Oxide
LED Light emitting diodes
NLO Nonlinear optical properties
NG Nanogenerator
NPs Nanoparticles
NR Nanorods
NWs Nanowires
OFET Organic field-effect transistor
PBTA Poly(butylene adipate-co-terephthalate)
PDMS Poly(dimethylsiloxane)
PDOS Partial density of states
PEBA Polyether block amide
PEI Polyethyleneimine
PL Photoluminescence
PLA Polylactic acid
PP Polypropylene
PVA Poly(vinyl alcohol)
POPs Persistent organic pollutants
RE Rare earth
ROS Reactive oxygen species
rGO Reduced graphene
RhB Rhodamine-B
SEM Scanning Electron Microscopy
SG Sol-Gel
SILAR Successive Ionic Layer Adsorption and Reaction
SL Seed Layer
TCO Transparent Conductive Oxide
TEM Transmission electron microscopy
TFT Thin Film Transistors
UV Ultraviolet
VOC Volatile organic compound
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