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Abstract: Silica aerogels are considered as the distinguished materials of the future due to their
extremely low thermal conductivity, low density, and high surface area. They are widely used
in construction engineering, aeronautical domains, environmental protection, heat storage, etc.
However, their fragile mechanical properties are the bottleneck restricting the engineering application
of silica aerogels. This review briefly introduces the synthesis of silica aerogels, including the processes
of sol–gel chemistry, aging, and drying. The effects of different silicon sources on the mechanical
properties of silica aerogels are summarized. Moreover, the reaction mechanism of the three stages
is also described. Then, five types of polymers that are commonly used to enhance the mechanical
properties of silica aerogels are listed, and the current research progress is introduced. Finally, the
outlook and prospects of the silica aerogels are proposed, and this paper further summarizes the
methods of different polymers to enhance silica aerogels.

Keywords: silica aerogels; polymer; mechanical properties; crosslinking

1. Introduction

Aerogels are the lightest solid materials in the world due to their high porosity and
low density [1–4]. The liquid constituent of these materials are substituted with air and
form intact interconnected solid structures. Relying on their unique mesoporous structure,
aerogels demonstrate excellent properties and have been favored by researchers [5–8].
There are many kinds of aerogels, such as silica aerogels [9], carbon aerogels [10,11],
polymer aerogels [12–15], metal oxide aerogels [16–18], metal aerogels [18], and bio-based
aerogels [19,20]. These aerogels are considered as the “wonder materials” and have broad
prospects of application in various fields [21–25].

Silica aerogels with excellent properties of low bulk density (0.003~0.200 g/cm3),
high porosity (80~99.8%), large specific surface area (500~1500 m2/g), and low thermal
conductivity (0.015~0.030 W/m·K) are the typical representatives of aerogels [26–29]. It has
been more than 90 years since silica aerogel was first invented by the American scientist
Kistler in 1931 [30,31]. Although silica aerogels have a long history of development,
their commercial production history only dates back to about 20 years. In 2001, Aspen
realized the commercial production of silica aerogels for the first time in the United States.
As Figure 1 shows, silica aerogels are widely used in construction engineering [32,33],
aeronautical domains [34–36], environmental protection [37,38], flexible electronics [39],
and chemical engineering [40–42]. Especially in the aerospace field, silica aerogels have
made remarkable contributions to the safety of personnel and equipment [43].
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Figure 1. The applications of silica aerogels in various fields.

However, the application of silica aerogels on a large scale is still limited due to the
poor mechanical properties of silica aerogels [44]. The main reason for the poor mechanical
properties of silica aerogels is their pearl-necklace-like three-dimensional network structure.
This network structure is connected by the interparticle necks, and the connection strength
is very fragile. However, other properties of silica aerogels are excellent in the engineering
field. Thus, the problem of the poor mechanical properties of silica aerogels urgently needs
to be solved [45,46].

The secondary particles of silica aerogels are connected via point contact with a
small contact area and weak bond force between the particles [47]. Once the aerogels
have suffered from external stress, the neck region between the secondary particles break,
resulting in the connection being disconnected and the gel skeleton collapsing [48]. In
order to solve the above problems, scholars around the world have conducted extensive
research. Focusing on the problem of the poor mechanical properties of silica aerogels,
reinforcing phases have been introduced to improve the mechanical properties of silica
aerogels. As shown in Figure 2, the reinforcing phases mainly include carbon, biomaterial,
fiber, and polymer. The mechanical properties of silica aerogels have been enhanced to
varying degrees through the experiment.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 25 
 

 

engineering [40–42]. Especially in the aerospace field, silica aerogels have made remarka-
ble contributions to the safety of personnel and equipment [43]. 

 
Figure 1. The applications of silica aerogels in various fields. 

However, the application of silica aerogels on a large scale is still limited due to the 
poor mechanical properties of silica aerogels [44]. The main reason for the poor mechani-
cal properties of silica aerogels is their pearl-necklace-like three-dimensional network 
structure. This network structure is connected by the interparticle necks, and the connec-
tion strength is very fragile. However, other properties of silica aerogels are excellent in 
the engineering field. Thus, the problem of the poor mechanical properties of silica aero-
gels urgently needs to be solved [45,46].  

The secondary particles of silica aerogels are connected via point contact with a small 
contact area and weak bond force between the particles [47]. Once the aerogels have suf-
fered from external stress, the neck region between the secondary particles break, result-
ing in the connection being disconnected and the gel skeleton collapsing [48]. In order to 
solve the above problems, scholars around the world have conducted extensive research. 
Focusing on the problem of the poor mechanical properties of silica aerogels, reinforcing 
phases have been introduced to improve the mechanical properties of silica aerogels. As 
shown in Figure 2, the reinforcing phases mainly include carbon, biomaterial, fiber, and 
polymer. The mechanical properties of silica aerogels have been enhanced to varying de-
grees through the experiment. 

In this paper, the composites of silica aerogels with polymers are summarized, and 
the properties are discussed in detail. 

 

Figure 2. Materials for enhancing mechanical properties of silica aerogel. Reprinted with permission
from Refs. [49–52]: Copyright 2019, Elsevier; Copyright 2022, Elsevier; Copyright 2011, American
Chemical Society; Copyright 2022, American Chemical Society.



Molecules 2023, 28, 5534 3 of 23

In this paper, the composites of silica aerogels with polymers are summarized, and
the properties are discussed in detail.

2. Synthesis of Silica Aerogel

As shown in Figure 3, the preparation of the silica aerogels comprises (a) synthesis,
(b) aging, and (c) drying [53]. The synthesis of silica aerogels mainly depends on the
method of sol–gel [54]. During the sol–gel process, a three-dimensional network structure
is built [55,56]. And the properties of silica aerogels are influenced by the precursors,
catalysts, temperature, surface treatments, mass concentration, pH, and drying [57–60].
Then, the aging process enhances the network structure of the silica sol. Finally, the solvents
are removed from the solid via the drying technology.
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2.1. Sol–Gel Chemistry

Gels are colloids that are composed of colloidal particles suspended in a solvent. The
sol–gel method is a common technique used for the synthesis of wet gels, and then the silica
aerogels are produced via the drying process [61,62]. During the sol–gel process, ethanol or
methanol is used as a solvent. Using the solvent, the precursors form a soluble gel through
hydrolysis and polycondensation reactions [63,64]. The results of the reactions are greatly
influenced by the pH of the solution, the concentration of silicon precursor, the reaction
time, and other factors. Moreover, the solid network of silica is formed in this process, and
the particles are more closely connected [65–68]. However, the repetitive washing and the
tedious water-to-alcohol solvent exchange still need more time [69]. As shown in Figure 4,
the primary particles form secondary particles in the solution and then the secondary
particles form a continuous solid network connected by the neck regions [70]. With the
development of sol–gel chemistry, silica alkoxides are the precursors of silica aerogels, such
as tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS), and so on [71–73]. These
precursors have a great influence on the morphology and properties of silica aerogels [74].
Moreover, various precursors can also be used together to realize the self-reinforcement
of silica aerogel skeletons [75,76]. Bhagat et al. [77] applied nine different co-precursors
to prepare TEOS-based silica aerogels and investigated their physical properties. The
pre-polymerization of silicon precursors is also a method of silica self-reinforcement that
is currently being explored. Zu et al. [78] reported a new method of pre-polymerized
silica-based precursors and enhanced the flexibility of aerogels. Table 1 lists some common
precursors that are used for the synthesis of silica aerogels.
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Table 1. Common silica precursors for silica aerogel synthesis.

Silica Precursor Chemical Formula Abbreviation Physical Properties Mechanical Properties Thermal Properties Ref.

Tetraethylorthosilicate Si (OC2H5)4 TEOS / G modulus: 10.7 MPa / [79]
Tetramethylorthosilicate Si (OCH3)4 TMOS Skeletal densities: 2.2

g/cm3 / / [80]

Trimethylchlorosilane Si (CH3)3Cl TMCS Surface area: 914.4 m2/g;
porosity: 96.16% / / [81]

Methyltrimethoxysilane Si (OCH3)3CH3 MTMS Shrinkage: 3.5% / / [82]

Methyltriethoxysilane Si (OC2H5)3CH3 MTES Density: 0.1 g/cm3;
porosity: 95.5% Unrecoverable strain loss: 10% Thermal conductivity: 0.038 W/m·K [83]

Aminopropyltrimethoxysilane H2N (CH2)3Si(OCH3)3 APTMS / / Young’s modulus: 14 MPa [84]
Aminopropyltriethoxysilane H2N (CH2)3Si(OC2H5)3 APTES Surface area: 150.9 m2/g Young’s modulus: 18 MPa Thermal conductivity: 0.037 W/m·K [85]

Propyltriethoxysilane C9H22O3Si PTES Density: 0.172 g/cm3;
porosity: >90% Elastic module: 0.35 MPa / [86]

Vinyltrimethoxysilane H2C=CHSi(OCH3)3 VTMS / Elongation at break: 40~50% Thermal conductivity: 0.06 W/m·K [87]
Vinyltriethoxysilane C8H18O3Si VTES Surface area: 321 m2/g Compressive stress: 0.571 MPa Thermal conductivity: 0.024 W/m·K [88]

3-glycidoxypropyltrimethoxysilane C9H20O5Si GPTMS / / Thermal conductivity: 0.032 W/m·K [89]

Bis [3-(triethoxysilyl)propyl]disulfide C18H42O6S2Si2 BTSPD Density: 0.21 g/cm3;
porosity: 85.5% Young’s modulus: 2.1 MPa / [90]

1,6-bis(trimethoxysilyl)hexane C12H30O6Si2 BTMSH / Strain: 50% / [91]

Bis(trimethoxysilylpropyl)amine C12H31NO6Si2 BTMSPA
Density: 0.308 g/cm3;
porosity: 78%; surface area:
325 m2/g

Shrink: 11%, compression
Modulus: 15 MPa / [92]

Dimethyldiethoxysilane C6H16O2Si DMDES
Density: 0.082 g/cm3;
surface area: 162.1 m2/g;
porosity: 94.2%

/ Maximum degradation rate: 150 ◦C [93]
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2.2. Aging

Aging is an important step in strengthening the mechanical properties of silica
aerogels [94]. The aging reaction principle is ascribed to accelerating the movement of
sol particles and increases the probability of collision, adding the number of siloxane con-
nections. In the aging process, the number of siloxane linkages between particles can be
increased using two different mechanisms simultaneously; thus, the mechanical properties
of silica aerogels will be strengthened [95]. These two different mechanisms mainly include
dissolution and re-precipitation [96]. Moreover, new monomers are transported to the neck
region between the particles and form the network [97]. As an important chemical bond
connecting the particles together, the O-Si bonds have a great relationship with the time
and temperature of the reaction. The number of the bonds affects the mechanical properties
of the silica aerogels. He et al. [98] reported that a controlled temperature and pressure can
enhance the mechanical properties during the process of dissolution and reprecipitation.

However, this process requires a lot of time, and the parameters of the aging process
are difficult to control. During the aging process, the silica aerogels occur different degrees
of shrinkage, leading to an increase in density.

2.3. Drying

Drying is the procedure that transports the wet silica gel to silica aerogel [99]. In this
process, gas replaces the liquid in silica wet gel, and ultimately, the solid consisting of
the silica network forms the aerogel. Due to differential shrinkage, warping and cracking
often occur. However, previous studies have shown that the phenomena can be prevented
by controlling the drying process. At present, there are three common drying methods
as follows: ambient pressure drying [100,101], freeze drying [102,103], and supercritical
drying [104].

Compared with the other two drying methods, the ambient pressure drying method
is widely used mainly due to its lower energy consumption and because it does not require
high pressure conditions [105–107]. However, there are still drawbacks to ambient pressure
drying. The most significant disadvantage is that ambient pressure drying may be affected
by capillary force, and thus, still result in collapsing or cracking [108]. Freeze drying is
the technology that freezes the liquid in the wet gel into a solid and then converts the
solid into a gas. In order to reduce the possibility of breakage caused by ambient pressure
drying, freeze drying is used to manufacture various types of aerogels. Compared with
the above methods, supercritical drying is considered as the most appropriate method
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to prepare aerogels. It minimizes the aerogel cracking caused by shrinkage. The liquid
in the pores is transformed into supercritical fluid via supercritical drying. In this state,
the surface tension of the liquid disappears completely and there is no capillary force.
Finally, the supercritical fluid can be separated from the solid at a temperature above the
critical temperature of the liquid [109]. At present, the more mature supercritical drying
technology is low temperature drying using carbon dioxide. However, this method has
high requirements for synthesis equipment and the operating environment [110].

3. Polymer-Modified Silica Aerogel Composites

Based on existing reports, the polymer matrix is composed of thermoplastics and
thermosetting resins [111]. Polymers demonstrate excellent mechanical properties, gen-
erally with high elastic deformation and viscoelasticity [112]. In addition to preparing
polymer aerogels, polymers can also be combined with silica aerogels to prepare hybrid
aerogels [113]. The process of polymerization increases the chemical bonds of O–Si to
enhance their mechanical properties [114].

In the past two decades, researchers believed that combining polymer and silica is
an effective way to enhance the mechanical properties of aerogels [115–118]. Meanwhile,
the results indicate that the interfaces between silica gel particles and polymers also have
a great influence on aerogel properties [119]. In 1994, Novak et al. [120] prepared hybrid
aerogels via the method of pre-synthesized polymers or in situ polymerizing species,
achieving an enhanced flexibility and compressive strength through the adsorption of
energy with silica aerogels compounding the polymers [121,122]. As reported in the
previous research, polymer-crosslinked aerogels were studied via the following three
technical approaches: (a) modifying the surface of nanoparticles to enhance the aerogel
skeleton; (b) applying different types of crosslinking agents; (c) creating the network
morphology of the aerogels [123,124].

Using the method of chemical crosslinking, the polymer conformally coats the skeletal
framework of the aerogels and maintains the original shape of the mesopores to reinforce
their mechanical properties. As shown in Figure 5, with the addition of the polymer, the
density of the aerogel will show an increasing trend. Through the growth mechanism, the
number of connecting points between the secondary particles will increase, and finally
resulting in the polymer-reinforcement.
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Although the mechanical properties of aerogels have been improved, their density
and thermal conductivity have been increased as well, and the addition of the polymers
even reduce their resistance to high temperatures [126]. Using well-controlled polymeriza-
tion techniques, atom transfer radical polymerization can effectively enhance the perfor-
mance of aerogels without significantly increasing their density. Moreover, the aggregation
and poor interfacial interaction can be solved via the combination of silica aerogels and
polymer [127]. The reported polymer-reinforced aerogels are listed in Table 2, and the
contents are introduced in further detail.
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Table 2. Overview of reported mechanical properties of polymer-reinforced aerogels.

Precursor
Formulation Polymer Matrix Enhanced Properties Ref

GPTMS/VTMS Epoxide â Elastic deformation: 3~5% [128]
/ Epoxide â Elastic modulus: 35%, tensile strength: 62%, toughness: 126% [129]

/ Epoxide â (Hydrophobic aerogel) contact angles: 107◦, fracture toughness: improved by up
to ∼70%, impact strength: improved by up to ∼120% [130]

/ Epoxide
â Elastic modulus: 3770 ± 71 MPa, stress at yield point: 43.2 ± 1.8 MPa, strain at
yield point: 1.24 ± 0.03 MPa, ultimate tensile strength: 51.0 ± 2.1 MPa, strain at
break point: 3.3 ± 0.3%, toughness: 1.29 ± 0.08 J/m3

[131]

TEOS/APTES Epoxide â Strain: 80% (18 N) [132]

TEOS/APTES Epoxide â Tensile strength: 45.05± 4.56 MPa, modulus of elasticity: 4363.88± 209.57 MPa,
break strain: 1.19 ± 0.17% [133]

TEOS Epoxide â Density: 0.419 g/cm3, porosity: 89%, compressive strength: 0.438 MPa, thermal
conductivity: 0.0273 W/m·K [134]

/ Epoxide â (Warp direction) strength: 464.3 MPa, modulus: 1.76 GPa, (weft direction)
strength: 410.2 MPa, modulus: 1.68 GPa [135]

TMOS Polyurea â Shrinkage: 14.6 ± 0.7%, bulk density: 0.594 ± 0.026 g/cm3, skeletal density:
1.290 ± 0.003 g/cm3, porosity: 54%

[136]

TEOS/APTES Polyurea â Bulk density: 0.046 g/cm3, flexural modulus: 0.14 MPa [137]

TEOS/APTES Polyurea â Linear shrinkage: 15.73%, bulk density: 0.392 g/m3, average elastic modulus:
14.57 MPa [138]

TEOS /MTEOS Polyurethane â Density: 0.190 ± 0.006 g/m3, yield strength: 2.15 ± 0.04 MPa, Young’s modulus:
50 ± 0.09 MPa [139]

/ Polyurethane â Heat resistance index: 193.6%, char yield: 31.6%, bulk density: 0.580 g/mL [140]
TEOS/APTES Polyurethane â BET surface area: 242.9 m2/g, BJH desorption average pore diameter: 10.8 nm [141]

TEOS Polyurethane â Density: 117.68 kg/m3, porosity: 92.3%, linear shrinkage: −8.38%, thermal
conductivity: 0.014 ± 0.00033 W/m·K [142]

MTMS Polyimide â Compressive strain: 50%, thermal conductivity: 0.0212 W/m·K [143]
/ Polyimide â Surface area: 609 m2/g, thermal conductivity: 0.017.5 W/m·K [144]

TEOS/APTES Polyimide â Compressive strength: 3.82 MPa, Young’s modulus: 44.16 MPa [145]
TEOS/APTES Polyimide â Density: 0.145 g/cm3, strain: 9%, strength: 0.29 MPa, Young’s modulus: 3.22 MPa [146]

TEOS Polyimide â Compressive modulus:1.96 MPa, thermal conductivity: 0.0311~0.0585 W/m·K [147]

TMOS/APTES Polystyrene â Density: 0.41~0.77 g/cm3, surface area: 213~393 m2/g, thermal conductivity:
0.041 W/m·K, contact angles: 120◦

[148]

TMOS Polystyrene â Density: 0.13~0.17 g/cm3, surface area: 350~780 m2/g, thermal conductivity:
0.03~0.04 W/m·K [149]

MTMS/VTMS/TMOS Polystyrene
â Bulk density: 163.1 ± 11.7 kg/cm3, porosity: 88%, surface area: 227 m2/g,
thermal conductivity: 0.072 ± 0.001 W/m·K, Young’s modulus: 91 kPa, compression
strength: 68 kPa

[87]

TMOS Polystyrene â Modulus: 3 MPa [150]

3.1. Epoxide

The mechanical properties of silica aerogels can be enhanced via epoxide. The func-
tional groups of the epoxide can react with the amino groups on the surface of the gel
skeleton. Thus, the addition of epoxide in the matrix of the silica aerogel can change its
fragile properties and enhance its mechanical properties [151]. Thus, researchers have
focused on applying epoxide to improve the mechanical properties of silica aerogels.

Rezaei et al. [128] have shown a new method to prepare the hybrid silica aerogel with
the insulative and flexible properties. As shown in Figure 6, the researchers applied an
epoxide ring containing the silica precursor and inserted flexible ether groups into the main
chain using the method of ring-opening polymerization. The brittleness properties of the
silica aerogels were enhanced due to the non-particulate structure. The results demonstrate
that the elastic deformation of the aerogel was increased to 15%, and the mechanical
properties were proportional to the density. Moreover, the aerogels have superinsulation
properties with a thermal conductivity of only 0.0159 W/m K.
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Salimian et al. [129] prepared the silica aerogel–epoxy nanocomposites and investi-
gated the fracture and toughening mechanisms. By analyzing the mechanical and thermal
properties, the results suggest that the viscosity of the nanocomposite suspension was
increased from 1% to 6% with the silica aerogel addition. In addition, the storage modulus,
Tg, Young’s modulus, tensile strength, and toughness were increased by 11%, 5 ◦C, 35%,
62%, and 126%, respectively. As Figure 7 shows, the epoxy polymers are infiltrated into the
mesopores of the silica aerogel. The fracture and toughening mechanisms are explained by
the (a) crack pinning and deflection and the (b) plastic deformation.
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permission from Ref. [129]: Copyright 2018, Elsevier.

Salimian et al. [130] prepared the epoxy nanocomposites using two different types
(hydrophobic and hydrophilic) of silica aerogels. As shown in Figure 8, the ≡Si−O−C≡
bonds are formed between the silica surface and the epoxy polymer network. Using this
method, the storage modulus, viscosity, Tg, fracture toughness, and impact strength were
enhanced. Moreover, the fracture toughness (Klc) and impact strength increased with the
increase in the hydrophobic aerogel content.

Albooyeh et al. [131] studied the influences of silica aerogel on the mechanical, vibra-
tional, and morphological properties of epoxy. The tensile, bending, compressive, dynamic
mechanical thermal analyses, and a series of tests were conducted to verify the Euler–
Bernoulli beam theory. The results indicate that silica aerogels can effectively reduce the
density of materials. Meanwhile, the tensile, flexural, compressive modulus and hardness
of the materials significantly increased when the addition of silica aerogel was 4%.
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According to the experimental data, the researchers found that the flexibility and
robustness of the pore structure can be enhanced via the combination with polymers.
Domènech et al. [132] synthesized a porous organic–inorganic hybrid material composed
of silica and epoxy resin via a one-pot sol–gel process and subsequent supercritical drying.
These results prove that controlling the bridged alkoxide proportions to enhance the
mechanical properties of the silica aerogel is feasible and that the strain at 18 N can
achieve 80%.

Selay et al. [133] applied silica aerogel powders with ionic liquid as a nanofiller to
prepare the nanocomposite. The silica aerogels with ionic liquid possessed a lower density
(0.16 g/cm3), higher porosity (93%), and higher thermal stability (400 ◦C). Moreover,
the composites (silica aerogel with 1wt% ionic liquid) demonstrated better mechanical
properties, such as modulus of elasticity (4156.27 MPa) and tensile strength (51.96 MPa).

Epoxide is also a common gelation initiator. He et al. [134] applied epoxides as gelation
accelerators to prepare the ZrO2–SiO2 aerogels via aging and supercritical drying. The
results demonstrate that the epoxides can accelerate the gelation of sol. Considering that
the decomposition of the polymer leads to a decrease in the high temperature resistance of
aerogels, mullite fibers were introduced as the skeletons for the aerogels. The compressive
strength of the M/ZrO2–SiO2 aerogel reached 0.438 MPa and the thermal conductivity was
only 0.027 W/m·K. Selver et al. [135] investigated the influences of epoxy on the mechanical,
nondestructive, and thermal properties of silica aerogel composites. The results show that
the epoxy composites with a 1% addition of silica aerogel exhibited better flexural strength,
impact, and energy absorption. However, the thermal conductivity of the 1% silica aerogel
composites increased due to the void inside of the epoxy resin being filled up.
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3.2. Polyurea

Polyurea consists of aromatic isocyanate segments and soft polyamine chains, which
are synthesized via the reaction of the amino compound with the isocyanate compo-
nent. This material has excellent anti-corrosion, waterproof, and mechanical properties.
Polyurea-crosslinked silica-based aerogels have the characteristics of being nano-porous
and mesoporous, so they can exhibit unique thermal management behavior.

Fu et al. [152] used the material point method (MPM) to study the mechanical behav-
ior of the silica aerogels whose skeletal framework was coated by the polyurea at high
strain rates. The researchers found that the MPM can model the compression of complex
mesoporous structures and that the conformal polymer coating has a reinforcing function.
The histograms of the distribution of material points versus the stress level at 19% strains is
shown in Figure 9; the data show that the model with a 50% porosity has a wider range
and exhibits more material points when under stress.

Churu et al. [136] also investigated the mechanical properties of the polymer-crosslinked
templated silica aerogel (CTSA). The results show that the 1,3,5-trimethylbenzene (TMB)
and triblock copolymer both have influences on the morphology of the aerogels, resulting
in a change in the mechanical properties. The researchers further revealed the intrinsic
relationship between the morphology and mechanical properties.
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Capadona et al. [137] reinforced the silica skeleton via the polymerization of the
di-isocyanate using the amine-modified surface of a sol–gel-derived mesoporous silica
network. Through the reaction with amines and urea linkages, the polymer was coated to
the surface of the aerogel skeleton, which is shown in Figure 10. The results reveal that the
highest density crosslinked aerogel had the highest stress at failure, exhibiting the highest
modulus and crosslink.

As Figure 11 shows, Yang et al. [138] prepared the modified silica gels using the method
of copolymerizing tetraethylorthosilicate with 3-aminopropyltriethoxy-silane. During the
ambient pressure, the researchers successfully controlled the shrinkage of the silica aerogels.
The experimental data demonstrate that the elastic modulus of the silica aerogel skeleton
increases because of the incorporated polymers.
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with permission from Ref. [138]: Copyright 2011, Elsevier.

3.3. Polyurethane

Polyurethane (PU) is a typical foaming material, and its high thermal conductivity
is an important issue that restricts sustainable development [153]. Based on the previous
reports, the polyurethane-based hybrids prepared using the sol–gel approach showed
excellent thermal insulating effectiveness and mechanical properties due to the inorganic
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and organic co-networks [154]. In general, there are a certain amount of hydroxyl groups
remaining on the surface of the solid skeleton of the silica wet gel. Therefore, polyurea can
form covalent bonds with silica wet gel and enhance the adhesion on the surface of the
solid skeleton.

Cho et al. [140] prepared fabricated foldable silica aerogel/polyurethane compos-
ites (APCs), and the properties of the composites were theoretically verified via the pro-
posed model. Figure 12 summarizes the morphological analysis of the PU1000 series, the
schematic of the PU synthesis, and the fabrication process of the APCs. In Figure 12, the
isocyanate-terminated prepolymers were synthesized by reacting with poly(tetramethylene
ether glycol) (PTMG) and 2,4-diphenylmethane diisocyanate (MDI). Then, the prepared
isocyanate-terminated PTMGs were chain-extended using 1–4 butanediol (BD). The re-
sults show that with an aerogel addition of 30%, the thermal conductivity of the APCs
decreased by 72%, and the PU with a longer soft segment length demonstrated no breakage
after bending.

Verdolotti et al. [139] synthesized organic–inorganic polyurethane-based hybrids,
leading to an enhancement of the mechanical properties and thermal insulation via the
isocyanate functional groups of IPTS reacted with OH of polyol under urethane bonds, as
shown in Figure 13a. The researchers investigated the influences of mechanical behaviors
on the aerogel-like siloxane domains. Figure 13b demonstrates the stress–strain curves of
the foams (HPURca1 and HPURca2) compared to the pristine PUR. The Young’s modulus of
the foams (HPURca1 and HPURca2) achieved 30.17 MPa and 50 MPa. Moreover, the yield
strength of these materials achieved 0.093 MPa and 2.15 MPa, respectively.
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The researchers found that the flexibility of the hybrid aerogels are enhanced by the
long-chain polymer molecules. Based on this theory, Duan et al. [141] prepared the me-
chanically reinforced hybrid silica aerogels using silane-end-capped urethane prepolymer
and chain-extended polyurethane. The synthesis of prepolymer I, II, and polymer I, II are
shown in Figures 14 and 15, respectively. The figures mainly explain the silane end groups
participating in the silica network formation and the method that controls the amounts
of polyurethane added to the aerogel network. The results show that the mechanical
properties were enhanced via chain-extended polyurethane and the aerogels can suffer a
70% compressive strain with the addition of polymers.

The PU foams not only have lightness properties, but also demonstrate a continuous
solid network, which can be used as reinforcements. Merillas et al. [142] reinforced the
silica aerogel composites using reticulated polyurethane (PU) foams via ambient pressure
drying and supercritical drying. Hexamethyldisilazane (HMDZ) was used to modify the
surface of silica aerogels and the continuous network hybrid aerogel was formed using
polyurethane. The results show that the elastic modulus increased from 130 to 450 kPa and
the thermal conductivity was as low as 0.014 W/m·K.
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3.4. Polyimide

Compared with other organic constituents, the imide ring demonstrates a higher
initial decomposition temperature [155]. Moreover, the chain structure constructed by
the imide rings also create a polyimide (PI) with superior mechanical properties and a
favorable chemical resistance [156]. Therefore, it is feasible to use polyimide to enhance the
mechanical properties of silica aerogels.

Tian et al. [143] designed polyimide/silica composite aerogels using an integrated
binary network via the in-situ synthesis. As shown in Figure 16a, the polyimide nanofiber
aerogel (PINA) is used for the growth of the polymethylsilsesquioxane (PMSQ) network to
synthesize the polyimide/silica (PSi) composite aerogel. The composite aerogels demon-
strate excellent compressibility and flexibility, recovering from large compression (ε = 60%)
and showing no collapsing. Meanwhile, the stress–strain curves (Figure 16b) demonstrate
excellent compression recovery properties from 15%, 30%, 45% and 60% strain, respec-
tively. In addition, the thermal conductivity of the polyimide/silica aerogel is as low as
0.0212 W/m·K and shows excellent resistance under 1200 ◦C.

Kantor et al. [144] synthesized heterogeneous polyimide–silica aerogels with low
shrinkage by adding silica aerogel particles into a polyimide sol. The polyimide–silica
aerogels exhibited heterogeneous structures and have properties of a high surface area
over 609 m2/g and a low thermal conductivity of 0.0175 W/m·K. Compared with gen-
eral polyimide materials, the composite aerogels demonstrated potential commercial
value. As shown in Figure 17, the BTC solution and silica aerogel powders occurred
gelation in the polypropylene container, and the samples were obtained through aging and
supercritical drying.
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Fei et al. [145] prepared the polyimide-crosslinked silica aerogels using different
weight percentages of polyimide via the condensation reaction. The thermal conductivity
of the aerogel is as low as 0.0306~0.0347 W/m·K, and the relatively high compressive
strength can achieve a 1.03~3.82 MPa. Besides using polyimide to crosslink with silica
aerogels to enhance their mechanical properties, using polyimide as a reinforcing phase
is an efficient technical approach to improve the mechanical properties of silica aerogels.
Fei et al. [146] used glass fiber and polyimide (PI) to reinforce the silica aerogel.

Zhang et al. [147] applied the “co-gel” strategy to fabricate the novel silica/polyimide
(SiO2/PI) nanocomposites. The SiO2/PI nanocomposite aerogels exhibited excellent me-
chanical properties due to the hierarchically porous structure, such as a compressive
modulus (1.96 MPa) and specific modulus (52.7 m2/s2). Moreover, the materials exhibited
excellent flame resistance and low thermal conductivities between 25 ◦C and 300 ◦C.

3.5. Polystyrene

Polystyrene (PS) is a non-polar material that can improve the hydrophobic properties
of silica aerogels. The silica precursors modified via amine, vinyl, and AIBN were also used
to crosslink with PS to prepare the PS-reinforced silica aerogels.

Ilhan et al. [148] designed a new three-dimensional core–shell structure in which the
PS was applied as the shell via the method of the free-radical polymerization process. Com-
pared to the composite material prepared via polyurea and epoxy, the PS-crosslinked silica
aerogels demonstrate a better hydrophobicity. Moreover, the silica aerogels showed excel-
lent mechanical properties and maintained their integrity, while the thermal conductivity
was as low as 0.041 W/m·K.

Maleki et al. [149] applied the growth of grafted polymers from the surface of sil-
ica gel to prepare the mechanically reinforced polymer–silica aerogels. The method of
surface-initiated reversible addition–fragmentation chain transfer polymerization can sig-
nificantly improve the compression strength of silica aerogels. Matias et al. [87] used
polybutylacrylate (PBA) and polystyrene (PS) to prepare crosslinked flexible, monolithic,
and superhydrophobic silica aerogels. Compared with the non-reinforced aerogel, the
PBA-reinforced aerogel, MTMS-derived aerogel, and PS-reinforced aerogel demonstrated
excellent Young’s modulus values and compression strength, which can reach 91 kPa and
68 kPa, respectively. DeFriend et al. [150] used polystyrene beads to prepare mesoporous
silica aerogel to investigate the influences of the surface area and pore volume on mechani-
cal compression. These results demonstrate that the templating agents had a great effect on
the compressive strength of the aerogels and that the concentrations were a great factor.

4. Conclusions

In this review, the synthesis chemistry and three main stages were introduced. Then,
the process of sol–gel chemistry and the role of aging were also described in detail. The
advantages and disadvantages of the three drying methods listed were also carefully
analyzed and compared.

The five common polymers used to enhance the mechanical properties of silica aerogels
were summarized. In the process of modification, the crosslinking agent has an important
function. More importantly, the improvement in the mechanical properties is significantly
influenced by process parameters such as time, temperature, and ratio. The linear density
and shrinkage of the material increases significantly when the process parameters are
not well controlled. This inevitably makes the aerogel lose the original advantages and
causes a reduction in the mechanical properties. The silica aerogels’ crosslinked polymers
demonstrated good mechanical properties. In particular, polystyrene demonstrated a better
performance of hydrophobicity due to its characteristics.

5. Outlook and Prospects

Compared with physical strengthening, the bonding tightness of silica aerogel particles
strengthened via polymer crosslinking has the advantages of firmness and reliability. How-
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ever, some problems still need to be further studied in the field of polymer reinforcement.
Researchers should not only focus on the influence of polymers on the thermo-mechanical
properties of aerogels during the research process, but should also carefully consider the
effects of crosslinked polymers on other aspects of silica aerogels, such as the increase
in density due to the addition of polymers, the poor flame retardancy of some polymers,
and the difficult aging resistance of hybrid aerogels. The technology of eliminating the
negative effects of polymers should be carefully studied. The functional role of silica in
various fields should also be given more attention. Polymer crosslinked silica aerogels
fully demonstrate the lightweight porous properties of aerogels and the related proper-
ties of polymers. Thus, this work will lay a solid and reliable foundation for the future
development of multifunctional hybrid aerogels.
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