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Abstract: Developing new organic reactions with excellent atom economy and high selectivity is
significant and urgent. Herein, by ingeniously regulating the reaction conditions, highly selective
transformations of propargylamines have been successfully implemented. The palladium-catalyzed
cyclization of propargylamines generates a series of functionalized quinoline heterocycles, while the
base-promoted isomerization of propargylamines affords diverse 1-azadienes. Both reactions have
good functional group tolerance, mild conditions, excellent atom economy and high yields of up to
93%. More importantly, these quinoline heterocycles and 1-azadienes could be flexibly transformed
into valuable compounds, illustrating the validity and practicability of the propargylamine-based
highly selective reactions.
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1. Introduction

Modern organic reactions utilizing simple precursors that result in the generation
of functional and structural diversity are highly attractive for the synthesis of specific
molecules, such as natural products, pharmaceuticals and materials. Moreover, the high
selectivity of organic reactions is still a subject of heightened concern, especially for multiple
possible reactive sites on one substance. Therefore, how to exquisitely control the reaction
activity to achieve a highly selective transformation is a significant challenge.

Propargylamines, a versatile class of compounds with unique chemical structures, con-
sist of amine groups and alkyne moieties on the same backbone (Scheme 1) [1]. Compounds
with a carbon−carbon triple bond have special reactivity, which can behave both as elec-
trophilic reagents and as a source of electrons in nucleophilic reactions [2]. In addition, the
amine moiety of the propargylamine can undergo nucleophilic reactions. This unique char-
acteristic allows propargylamine compounds to act as both electrophilic and nucleophilic
substrates in a variety of chemical transformations, such as metal-catalyzed coupling, addi-
tion, cycloaddition etc. [3–12]. It is well known that propargylamines feature wonderful
reaction activities and are used as building blocks in manufacturing different organic sub-
strates, natural products and drug candidates, showing broad applications in many fields
of chemistry [13–18]. Therefore, the development of novel propargylamine-based synthetic
methodologies and the construction of functionalized heterocycles or valuable synthetic
intermediates are highly desirable, despite significant progress in the functionalization
of propargylamines using Au, Ag, Cu, Fe, Hg, microwave, superbase, etc. As shown
in Scheme 1 [19–30], the development of novel, efficient and practical approaches using
mild reaction conditions from easily accessible precursors to enable the highly selective
transformation of propargylamines by ingeniously controlling the reaction activity is still a
challenging task.
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1-azadienes.

In this study, propargyalmine modules from the Cu-catalyzed A3-coupling of very
simple and easily available ingredients, amines, aldehydes and alkynes, are employed
for investigating new transformations [31–33]. By ingeniously modulating the reaction
conditions, the highly selective cyclization and isomerization of propargylamine have
been successfully implemented (Scheme 1). Using palladium catalyst, diverse quinolines
are obtained, which are widely applicable in drug discovery and material science [34–40].
Alternatively, in the presence of a base, a series of synthetically valuable 1-azadienes has
been smoothly prepared (Scheme 1) [41–44].

2. Results and Discussion

The Cu(I)-catalyzed A3-coupling of a rich variety of precursors, such as amines,
aldehydes and alkynes, was developed by Li and co-workers in 2002 and represents a
general and efficient strategy for the synthesis of propargylamines [31]. Herein, to assess
the reactivity, propargylamine 1a, which is easily obtained from the A3-coupling of aniline,
benzaldehyde and p-tolylacetylene, was selected as a model for selective transformation
under different conditions.

At the outset, several commonly used metal catalysts, including palladium, copper,
iron and nickel salts, were examined for this reaction, and Pd(OAc)2 exhibited the best
reaction activity to solely generate 2a with 65% yield (Table 1, entries 1–9). Subsequently,
by screening different solvents (DMSO, NMP, DCE, dioxane, CH3CN and toluene), toluene
found to be the most suitable choice, with 80% yield for 2a (Table 1, entries 10–15). Remark-
ably, the reaction yield of quinoline 2a was greatly reduced by adding TBAI or bases, and a
new compound, 1-azadiene 3a, was separated from the reaction system and characterized
by NMR and HRMS analyses (Table 1, entries 16–19). The unexpected behavior of the
reaction prompted us to deeply investigate the reaction conditions for 1-azadiene formation
from propargylamine isomerization. In the presence of Cs2CO3, a series of solvents was
evaluated. Notably, CH3CN exhibited a compelling advantage in this isomerization, with
a yield of 81% (Table 1, entries 20–24). Further screening of various bases illustrated that
Bu4NOAc is the most suitable additive for propargylamine isomerization, with a yield of
up to 91% (Table 1, entries 25–29). By systematically modulating the reaction conditions,
the rule for the highly selective cyclization and isomerization of propargylamine was suc-
cessfully mastered. From the palladium-catalyzed cyclization, quinolines were smoothly
obtained, whereas in the presence of Bu4NOAc, 1-azadienes could be ingeniously prepared
via an isomerization process.
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Table 1. Optimization of reaction conditions a.
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1 Pd(dppf)Cl2 DMF 20%/0
2 Pd(PPh3)2Cl2 DMF 10%/0
3 PdCl2 DMF 31%/0
4 Pd(OAc)2 DMF 65%/0
5 Pd(TFA)2 DMF 45%/0
6 CuCl DMF trace/0
7 Cu(OAc)2 DMF 15%/0
8 Fe(OTf)3 DMF NR/0
9 Ni(acac)2 DMF trace/0

10 Pd(OAc)2 DMSO 45%/0
11 Pd(OAc)2 NMP 60%/0
12 Pd(OAc)2 DCE 68%/0
13 Pd(OAc)2 dioxane 25%/0
14 Pd(OAc)2 CH3CN 58%/0
15 Pd(OAc)2 toluene 80%/0
16 Pd(OAc)2/TBAI toluene 20%/25%
17 Pd(OAc)2/KOAc toluene 41%/trace
18 Pd(OAc)2/Na2CO3 toluene 34%/trace
19 Pd(OAc)2/Cs2CO3 toluene 15%/30%
20 Cs2CO3 toluene 0/31%
21 Cs2CO3 DCE 0/11%
22 Cs2CO3 dioxane 0/35%
23 Cs2CO3 CH3CN 0/81%
24 Cs2CO3 DMF 0/79%
25 Na2CO3 CH3CN 0/21%
26 K2CO3 CH3CN 0/50%
27 KOAc CH3CN 0/40%
28 Bu4NOAc CH3CN 0/91%
29 DABCO CH3CN 0/61%

a Reaction condition: propargylamine 1a (0.1 mmol); catalyst (5 mol%); base (0.2 mmol); solvent (2.0 mL); 80 ◦C;
air; 12 h. b Isolated yield. TBAI = tetrabutylammonium iodide, Bu4NOAc = tetrabutylammonium acetate, and
DABCO = 1,4-diazabicyclo [2.2.2]octane.

With the optimum reaction conditions established, the generality of the method was
investigated in detail. Initially, the scope of the palladium-catalyzed cyclization of propar-
gylamine was explored with respect to the different units of amine, aldehyde and alkyne
in the propargylamine structure. As shown in Scheme 2a, a wide range of substituents
on the aromatic rings displayed good tolerance under the optimized condition. Propar-
gylamines with either electron-donating (methyl, tert-butyl, methoxyl and phenyl) or
electron-withdrawing (fluorine, chlorine and trifluoromethyl) groups can smoothly gen-
erate the corresponding quinolines in moderate to good yields. Notably, the aliphatic
group (cyclohexyl, 1o) and heteroarene (2-thiophenyl, 1s)-substituted propargylamines are
also efficient for this Pd-catalyzed cyclization to afford the expected products in 81% and
72% yields, respectively. More importantly, the gram-scale reaction of propargylamine 1m
(4 mmol) efficiently proceeded to afford the quinoline compound 2m in a decent yield of
78% (Scheme 2).



Molecules 2023, 28, 6259 4 of 14

Molecules 2023, 28, x FOR PEER REVIEW 4 of 14 
 

 

mmol) efficiently proceeded to afford the quinoline compound 2m in a decent yield of 

78% (Scheme 2). 

As for Bu4NOAc-promoted isomerization, the scope of substrates was also evaluated 

using various propargylamines with different substitution patterns and electronic prop-

erties. As shown in Scheme 2b, both electron-donating (methyl, tert-butyl, phenyl, naph-

thyl and methoxyl) and electron-withdrawing (fluorine, chlorine and bromine) groups on 

the aromatic rings of propargylamines were well tolerated in this isomerization system, 

affording the corresponding 1-azadienes in excellent yields (81%~93%). It is noteworthy 

to mention that the halide and methoxyl groups on these products can be further func-

tionalization in preparing other complex and diverse molecules. 

 

  

Scheme 2. Scope of selective transformations for various propargylamines. (a) All reactions were 

carried out at the 1 0.1 mmol scale catalyzed by Pd(OAc)2 (5 mol%) in toluene (2.0 mL) at 80 °C for 

12 h. (b) All reactions were carried out at the 1 0.1 mmol scale promoted by Bu4NOAc (0.2 mmol) 

in CH3CN (2.0 mL) at 80 °C for 12 h. 

To further explore the synthetic utility of this protocol, we employed one of the quin-

oline 2m as the novel cyclometalated main ligand for constructing the highly efficient red 

phosphorescent iridium(III) complex Ir-2m, which shows bright red emission with a peak 

at 605 nm, high photoluminescence quantum yield (PLQY) of 70.12% and a small full 

Scheme 2. Scope of selective transformations for various propargylamines. (a) All reactions were
carried out at the 1 0.1 mmol scale catalyzed by Pd(OAc)2 (5 mol%) in toluene (2.0 mL) at 80 ◦C for
12 h. (b) All reactions were carried out at the 1 0.1 mmol scale promoted by Bu4NOAc (0.2 mmol) in
CH3CN (2.0 mL) at 80 ◦C for 12 h.

As for Bu4NOAc-promoted isomerization, the scope of substrates was also evalu-
ated using various propargylamines with different substitution patterns and electronic
properties. As shown in Scheme 2b, both electron-donating (methyl, tert-butyl, phenyl,
naphthyl and methoxyl) and electron-withdrawing (fluorine, chlorine and bromine) groups
on the aromatic rings of propargylamines were well tolerated in this isomerization system,
affording the corresponding 1-azadienes in excellent yields (81%~93%). It is notewor-
thy to mention that the halide and methoxyl groups on these products can be further
functionalization in preparing other complex and diverse molecules.

To further explore the synthetic utility of this protocol, we employed one of the quino-
line 2m as the novel cyclometalated main ligand for constructing the highly efficient red
phosphorescent iridium(III) complex Ir-2m, which shows bright red emission with a peak
at 605 nm, high photoluminescence quantum yield (PLQY) of 70.12% and a small full
width at half maximum (FWHM) value of 46 nm in CH2Cl2, illustrating the potential
application in pure red OLED (Figure 1a,b and S1) [45,46]. The application of various
isomerization products was also explored. Several functionalized 1-azadienes synthesized
in situ from propargylamines have been used to prepare a series of medicinally important
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dihydropyridin-2(1H)-ones (4a–4f) via a [4+2]-formal cycloaddition reaction with homoph-
thalic anhydride under very simple reaction conditions with excellent functional tolerance
and good yields (Figure 1c) [47,48].
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Figure 1. (a) Synthesis of Ir(III) complex from quinoline 2m as the main ligand. (b) The photo-
luminescence properties of Ir-2m. (c) Application of 1-azadienes for constructing functionalized
heterocycles.

Based on the above experimental results and previous studies on the functionalization
of propargylamines [19–30], we also proposed a plausible mechanism for the Pd or base
promoting highly selective cyclization and isomerization of propargylamines, as depicted
in Scheme 3. Initially, Pd(OAc)2 coordinates with the triple bond (A1) to enhance the
electrophilicity of the alkyne part of the propargylamine. The subsequent intramolecular
nucleophilic attack by the N-substituted aromatic ring generated intermediate A2. Protonol-
ysis of the resulting intermediate A2 gives dihydroquinoline A3 and releases the palladium
catalyst for a new cycle. Then, the generated dihydroquinoline was oxidized by O2 to afford
the corresponding quinoline product 2. In the presence of Bu4NOAc, propargylamine 1 first
forms allenic intermediate B1, which subsequently undergoes a prototropic isomerization
to obtain 1-azadiene 3.
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3. Materials and Methods
3.1. General Information

Commercially available reagents were used as received without purification. Raw
materials were purchased from Bidepharm and Energy-chemical. Column chromatography
was carried out using silica gel (200–300 mesh). Analytical thin–layer chromatography
was performed on glass plates of Silica Gel GF–254 using UV detection. 1H, 13C and 19F
NMR spectra were recorded on a Bruker AVANCE 400M spectrometer (Bruker, Billerica,
MA, USA). The chemical shift references were as follows: 1H NMR (CDCl3) 7.26 ppm;
13C NMR (CDCl3) 77.0 ppm. HRMS spectra were obtained using Micromass GCT (ESI).
The photoluminescence spectra were measured using a Hitachi F-4600 photoluminescence
spectrophotometer (Hitachi, Kyoto, Japan). The absolute photoluminescence quantum
yields (Φ) were measured using a HORIBA FL-3 fluorescence spectrometer (HORIBA,
Kyoto, Japan).

3.2. Experimental Section
3.2.1. Synthesis of Propargylamines following Reported Procedures (J. Org. Chem. 2006,
71, 2064–2070; Org. Lett. 2006, 8, 2405–2408; Tetrahedron 2014, 70, 3134–3140)

In a solution of amine (1.0 mmol), aldehyde (1.0 mmo) and alkyne (1.0 mmol) in DCM
(10.0 mL), the reaction mixture was stirred at room temperature under nitrogen for 12 h.
After removing the solvent using vacuum distillation, the crude mixture was purified via
flash column chromatography to obtain the target product propargylamine.

3.2.2. General Procedure for the Preparation of Quinolines through Palladium-Catalyzed
Cyclization

In a solution of propargylamine (0.1 mmol) and Pd(OAc)2 (5 mol%) in toluene (2 mL),
the reaction mixture was stirred at 80 ◦C under air for 12 h. After removing the solvent
using vacuum distillation, the crude mixture was purified via flash column chromatography
to obtain the target product.

3.2.3. General Procedure for the Preparation of 1-Azadienes via Bu4NOAc-Promoted
Isomerization

In a solution of propargylamine (0.1 mmol) and Bu4NOAc (0.2 mmol) in CH3CN
(2 mL), the reaction mixture was stirred at 80 ◦C under air for 12 h. After removing
the solvent using vacuum distillation, the crude mixture was purified via flash column
chromatography to obtain the target product.
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3.2.4. General Procedure for the Preparation of Ir-2m

The mixture of 2m (1.0 mmol) and IrCl3 (0.4 mmol) in 2-ethoxyethanol and water
(20 mL, 3:1, v/v) was stirred at 130 ◦C for 24 h under argon. After cooling, the solid
precipitate was filtered to obtain a crude cyclometalated Ir(III) chloro-bridged dimer. Then,
the slurry of crude chloro-bridged dimer, Na2CO3 (5.0 mmol) and TMHD (5.0 mmol) in
2-ethoxyethanol (30 mL) was reacted at 120 ◦C for 24 h. The solvent was evaporated at low
pressure, and the mixture was poured into water. Next, the mixture was extracted using
CH2Cl2 and chromatographed to obtain the complex Ir-2m with a 66% yield.

3.2.5. General Procedure for the Preparation of Dihydropyridin-2(1H)-Ones via
Cycloaddition Reaction with 1-Azadienes and Homophthalic Anhydride

In a solution of propargylamine (1.0 mmol) and Bu4NOAc (2.0 mmol) in CH3CN
(10 mL), the reaction mixture was stirred at 80 ◦C under air for 12 h. After cooling to
room temperature, homophthalic anhydride (1.0 mmol) was added, and the mixture was
stirred at room temperature under air for 12 h. After removing the solvent using vacuum
distillation, the crude mixture was purified via flash column chromatography to obtain the
target product.

3.3. Characterization of Products

phenyl-4-(p-tolyl)quinoline (2a): White solid, 23.7 mg, 81% yield (Eluent: petroleum
ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.4 Hz, 1H), 8.22–8.15
(m, 2H), 7.97–7.84 (m, 1H), 7.81 (s, 1H), 7.73 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.57–7.39 (m,
6H), 7.36 (d, J = 7.8 Hz, 2H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.9, 149.3, 148.8,
139.7, 138.4, 135.5, 130.1, 129.5, 129.5, 129.3, 128.9, 128.2, 127.6, 126.3, 125.9, 125.7, 119.4, 21.3.
HRMS (ESI) m/z calcd for C22H17N [M+H]: 296.1439, found: 296.1439.

2,4-diphenylquinoline (2b): Light yellow solid, 19.7 mg, 72% yield (Eluent: petroleum
ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.25 (dd, J = 8.6, 1.3 Hz, 1H),
8.22–8.16 (m, 2H), 7.91 (dd, J = 8.5, 1.4 Hz, 1H), 7.82 (s, 1H), 7.74 (ddd, J = 8.4, 6.8, 1.5 Hz,
1H), 7.61–7.51 (m, 7H), 7.52–7.46 (m, 1H), 7.49–7.42 (m, 1H). 13C NMR (101 MHz, CDCl3)
δ 156.9, 149.2, 148.8, 139.7, 138.4, 130.1, 129.6, 129.5, 129.3, 128.8, 128.6, 128.4, 127.6, 126.3,
125.8, 125.6, 123.5, 119.4, 115.9. HRMS (ESI) m/z calcd for C21H15N [M+H]: 282.1283, found:
282.1283.

methyl-2,4-diphenylquinoline (2c): Faint yellow solid, 23.4 mg, 78% yield (Eluent:
petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.21–8.10 (m, 3H),
7.78 (s, 1H), 7.65 (s, 1H), 7.56 (d, J = 4.4 Hz, 5H), 7.52 (dd, J = 8.2, 6.3 Hz, 3H), 7.49–7.40 (m,
1H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.0, 148.5, 147.4, 139.8, 138.6, 136.3, 131.8,
129.8, 129.6, 129.2, 128.8, 128.6, 128.3, 127.5, 125.7, 124.4, 119.4, 21.8. HRMS (ESI) m/z calcd
for C22H17N [M+H]: 296.1439, found: 296.1439.

6-(tert-butyl)-2,4-diphenylquinoline (2d): Light yellow solid, 23.6 mg, 70% yield (Elu-
ent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.23–8.13 (m,
3H), 7.90–7.76 (m, 3H), 7.63–7.39 (m, 8H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 156.3,
149.2, 149.0, 138.6, 129.6, 129.6, 129.2, 128.8, 128.6, 128.4, 128.4, 127.5, 125.3, 120.5, 119.5, 35.1,
31.2. HRMS (ESI) m/z calcd for C25H23N [M+H]: 338.1909, found: 338.1910.

6-methoxy-2,4-diphenylquinoline (2e): Light yellow solid, 24.8 mg, 79% yield (Eluent:
petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.19–8.11 (m, 3H),
7.77 (s, 1H), 7.58 (s, 1H), 7.59–7.52 (m, 2H), 7.55–7.43 (m, 4H), 7.47–7.33 (m, 2H), 7.19 (d, J
= 2.8 Hz, 1H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 157.8, 154.7, 147.8, 144.9, 139.8,
138.7, 131.6, 129.4, 129.0, 128.8, 128.7, 128.4, 127.3, 126.7, 121.8, 119.7, 103.7, 55.5. HRMS
(ESI) m/z calcd for C22H17NO [M+H]: 312.1388, found: 312.1388.

6-chloro-2,4-diphenylquinoline (2f): White solid, 22.3 mg, 73% yield (Eluent: petroleum
ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.22–8.14 (m, 3H), 7.89–7.82 (m,
2H), 7.67 (dd, J = 9.0, 2.3 Hz, 1H), 7.62–7.48 (m, 7H), 7.52–7.40 (m, 1H). 13C NMR (101 MHz,
CDCl3) δ 157.1, 148.5, 147.2, 139.2, 137.8, 132.2, 131.7, 130.5, 129.6, 129.4, 128.9, 128.8, 128.7,
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127.5, 126.5, 124.5, 120.1. HRMS (ESI) m/z calcd for C21H14ClN [M+H]: 316.0893, found:
316.0893.

2,4-diphenylbenzo[g]quinoline (2g): Light yellow solid, 23.2 mg, 71% yield (Eluent:
petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.27–8.19 (m, 2H),
8.13 (d, J = 9.0 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.88 (dd, J = 7.9, 1.5 Hz, 1H), 7.81 (s, 1H),
7.67 (d, J = 8.6 Hz, 1H), 7.60–7.42 (m, 9H), 7.16 (ddd, J = 8.6, 7.0, 1.5 Hz, 1H). 13C NMR (101
MHz, CDCl3) δ 155.5, 149.8, 149.2, 143.0, 139.1, 132.9, 131.5, 129.8, 129.3, 129.3, 129.2, 128.9,
128.6, 128.4, 128.1, 128.1, 127.4, 126.5, 125.5, 122.8, 121.8. HRMS (ESI) m/z calcd for C25H17N
[M+H]: 332.1439, found: 332.1439.

4-phenyl-2-(p-tolyl)quinoline (2h): Faint yellow solid, 20.9 mg, 73% yield (Eluent:
petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.23 (dd, J = 8.6, 1.2
Hz, 1H), 8.13–8.06 (m, 2H), 7.89 (dd, J = 8.4, 1.4 Hz, 1H), 7.82–7.68 (m, 2H), 7.60–7.40 (m,
6H), 7.33 (d, J = 8.1 Hz, 2H), 2.43 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 156.9, 149.1, 148.8,
139.5, 138.5, 136.9, 130.1, 129.6, 129.5, 128.6, 128.4, 128.1, 127.5, 126.2, 125.7, 125.6, 119.2, 21.4.
HRMS (ESI) m/z calcd for C22H17N [M+H]: 296.1439, found: 296.1438.

2-([1,1′-biphenyl]-4-yl)-4-phenylquinoline (2i): Light yellow solid, 28.7 mg, 81% yield
(Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.32–8.23
(m, 3H), 7.99–7.85 (m, 2H), 7.83–7.65 (m, 5H), 7.58 (s, 2H), 7.57–7.51 (m, 2H), 7.53–7.44 (m,
3H), 7.50–7.31 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 156.5, 149.2, 148.9, 142.1, 140.6, 138.5,
138.4, 130.1, 129.6, 128.8, 128.6, 128.5, 128.0, 127.6, 127.6, 127.2, 126.4, 125.8, 125.7, 119.3.
HRMS (ESI) m/z calcd for C27H19N [M+H]: 358.1596, found: 358.1596.

(naphthalen-2-yl)-4-phenylquinoline (2j): Light yellow solid, 23.6 mg, 74% yield
(Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.65 (d, J =
1.7 Hz, 1H), 8.41 (dd, J = 8.6, 1.8 Hz, 1H), 8.30 (dd, J = 8.6, 1.2 Hz, 1H), 8.04–7.84 (m, 5H),
7.76 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.67–7.45 (m, 8H). 13C NMR (101 MHz, CDCl3) δ 156.7,
149.3, 148.9, 138.5, 136.9, 133.9, 133.5, 130.1, 129.6, 129.5, 128.8, 128.6, 128.6, 128.5, 127.7,
127.2, 126.7, 126.4, 126.3, 125.8, 125.7, 125.1, 124.5, 119.5. HRMS (ESI) m/z calcd for C25H17N
[M+H]: 332.1439, found: 332.1439.

(4-fluorophenyl)-4-phenylquinoline (2k): Faint yellow solid, 23.7 mg, 78% yield (Elu-
ent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.25–8.15 (m, 3H),
7.91 (dd, J = 8.4, 1.4 Hz, 1H), 7.80–7.70 (m, 2H), 7.56 (s, 3H), 7.60–7.50 (m, 2H), 7.48 (ddd, J =
8.3, 6.8, 1.3 Hz, 1H), 7.26–7.16 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 155.8, 149.4, 148.8,
138.3, 135.8, 130.0, 129.7, 129.6, 129.5, 129.4, 128.7, 128.5, 126.4, 125.7, 119.0, 115.9, 115.7. 19F
NMR (376 MHz, CDCl3) δ -112.45. HRMS (ESI) m/z calcd for C21H14FN [M+H]: 300.1189,
found: 300.1190.

3-phenyl-2-(4-(trifluoromethyl)phenyl)quinoline (2l): Light yellow solid, 24.6 mg, 72%
yield (Eluent: petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.36–
8.30 (m, 2H), 8.27 (d, J = 8.4 Hz, 1H), 7.94 (dd, J = 8.5, 1.4 Hz, 1H), 7.84 (s, 1H), 7.78 (dd,
J = 8.5, 6.8 Hz, 3H), 7.60–7.45 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 138.1, 130.2, 129.9,
129.6, 128.7, 128.6, 127.9, 127.0, 126.1, 125.8, 125.8, 119.2, 29.7. 19F NMR (376 MHz, CDCl3) δ
-62.56. HRMS (ESI) m/z calcd for C22H14F3N [M+H]: 350.1157, found: 350.1156.

6-(tert-butyl)-4-phenyl-2-(p-tolyl)quinoline (2m): Light yellow solid, 28.3 mg, 82%
yield (Eluent: petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.16
(d, J = 8.8 Hz, 1H), 8.11–8.04 (m, 2H), 7.88–7.79 (m, 2H), 7.77 (s, 1H), 7.62–7.55 (m, 3H),
7.58–7.46 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz,
CDCl3) δ 156.3, 149.0, 148.8, 147.4, 139.2, 138.7, 137.1, 129.6, 129.6, 128.6, 128.3, 127.4, 125.2,
120.5, 119.3, 35.1, 31.2, 21.4. HRMS (ESI) m/z calcd for C26H25N [M+H]: 352.2065, found:
352.2065.

6-(tert-butyl)-2-(4-fluorophenyl)-4-phenylquinoline (2n): Light yellow solid, 24.9 mg,
71% yield (Eluent: petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ
8.21–8.12 (m, 3H), 7.88–7.80 (m, 2H), 7.73 (s, 1H), 7.62–7.52 (m, 4H), 7.52 (ddd, J = 6.6, 5.3,
2.6 Hz, 1H), 7.25–7.14 (m, 2H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 165.0, 162.5, 155.3,
149.3, 149.2, 147.3, 138.6, 136.0, 136.0, 129.5, 129.4, 129.3, 128.6, 128.6, 128.4, 125.2, 120.6,
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119.1, 115.9, 115.6, 35.1, 31.2. 19F NMR (376 MHz, CDCl3) δ -112.78. HRMS (ESI) m/z calcd
for C25H22FN [M+H]: 356.1815, found: 356.1815.

2-cyclohexyl-4-phenylquinoline (2o): White solid, 20.2 mg, 81% yield (Eluent: petroleum
ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.10–8.01 (m, 1H), 7.79 (dd, J
= 8.4, 1.4 Hz, 1H), 7.50–7.38 (m, 6H), 7.19 (d, J = 4.8 Hz, 2H), 2.04–1.95 (m, 3H), 1.85–1.80
(m, 3H), 1.58 (dd, J = 12.4, 3.4 Hz, 2H), 1.42–1.37 (m, 2H), 1.18 (s, 1H). 13C NMR (101 MHz,
CDCl3) δ 166.4, 148.7, 148.2, 138.5, 129.6, 129.3, 129.2, 128.5, 128.3, 125.7, 125.6, 125.6, 119.9,
47.7, 32.9, 29.7, 26.6, 26.1. HRMS (ESI) m/z calcd for C21H21N [M+H]: 288.1752, found:
288.1752.

4-(4-methoxyphenyl)-2-phenylquinoline (2p): Light yellow solid, 23.3 mg, 75% yield
(Eluent: petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.5
Hz, 1H), 8.22–8.15 (m, 2H), 7.96 (dd, J = 8.4, 1.4 Hz, 1H), 7.80 (s, 1H), 7.73 (ddd, J = 8.4, 6.8,
1.5 Hz, 1H), 7.58–7.46 (m, 6H), 7.13–7.05 (m, 2H), 3.92 (s, 3H). 13C NMR (101 MHz, CDCl3)
δ 159.9, 156.9, 148.9, 139.7, 130.8, 130.7, 130.1, 129.5, 129.3, 128.8, 127.6, 126.2, 126.0, 125.7,
119.3, 114.1, 55.4. HRMS (ESI) m/z calcd for C22H17NO [M+H]: 312.1388, found: 312.1388.

4-(4-fluorophenyl)-2-phenylquinoline (2q): Light yellow solid, 20.9 mg, 71% yield
(Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.26 (dd, J =
8.5, 1.2 Hz, 1H), 8.25–8.15 (m, 2H), 7.88 (dd, J = 8.3, 1.4 Hz, 1H), 7.81 (s, 1H), 7.75 (ddd, J
= 8.4, 6.8, 1.4 Hz, 1H), 7.58–7.41 (m, 5H), 7.35 (dt, J = 7.6, 1.3 Hz, 1H), 7.29 (dt, J = 9.4, 2.1
Hz, 1H), 7.26–7.12 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 164.0, 161.6, 156.9, 148.8, 147.8,
147.8, 140.6, 140.5, 139.5, 130.3, 130.2, 129.8, 129.5, 128.9, 127.6, 126.6, 125.4, 125.4, 125.4,
125.3, 119.3, 116.8, 116.6, 115.5, 115.3. 19F NMR (376 MHz, CDCl3) δ -112.48. HRMS (ESI)
m/z calcd for C21H14FN [M+H]: 300.1189, found: 300.1189.

4-(4-chlorophenyl)-2-phenylquinoline (2r): Light yellow solid, 22.2 mg, 71% yield
(Eluent: petroleum ether/ethyl acetate = 50/1). 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J =
8.4 Hz, 1H), 8.22–8.15 (m, 2H), 7.85 (dd, J = 8.4, 1.4 Hz, 1H), 7.81–7.65 (m, 2H), 7.58–7.43 (m,
8H). 13C NMR (101 MHz, CDCl3) δ 156.9, 148.8, 147.9, 139.5, 136.8, 134.7, 130.9, 130.3, 129.7,
129.5, 128.9, 127.6, 126.6, 125.5, 125.3, 119.3. HRMS (ESI) m/z calcd for C21H14ClN [M+H]:
316.0893, found: 316.0893.

2-phenyl-4-(thiophen-2-yl)quinoline (2s): Light yellow solid, 20.3 mg, 72% yield (Elu-
ent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 8.26 (ddd, J =
14.2, 8.5, 1.4 Hz, 2H), 8.21–8.14 (m, 2H), 7.92 (s, 1H), 7.75 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H),
7.59–7.40 (m, 6H), 7.25 (t, J = 4.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 156.9, 149.0, 141.5,
139.4, 139.2, 130.2, 129.7, 129.4, 128.9, 128.5, 127.8, 127.6, 127.2, 126.7, 125.4, 125.3, 119.8.
HRMS (ESI) m/z calcd for C19H13NS [M+H]: 288.0847, found: 288.0847.

(2E)-N,1-diphenyl-3-(p-tolyl)prop-2-en-1-imine (3a): Light yellow solid, 26.8 mg, 91%
yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 7.78–
7.69 (m, 2H), 7.47 (dd, J = 4.1, 1.8 Hz, 2H), 7.38–7.34 (m, 2H), 7.22–7.08 (m, 6H), 6.93–6.85
(m, 2H), 2.34 (d, J = 11.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 167.3 (C=N), 151.0, 141.7,
132.9, 129.8, 129.5, 129.5, 129.4, 128.8, 128.3, 127.5, 127.5, 123.8, 120.8, 21.4. HRMS (ESI) m/z
calcd for C22H19N [M+H]: 298.1596, found: 298.1594.

(2E)-N,1,3-triphenylprop-2-en-1-imine(3b): Light yellow solid, 25.3 mg, 88% yield
(Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3) δ 7.75 (t, J = 2.0
Hz, 1H), 7.49 (q, J = 1.4 Hz, 3H), 7.37 (s, 1H), 7.30 (d, J = 9.6 Hz, 7H), 7.13–7.11 (m, 1H), 6.97
(d, J = 1.3 Hz, 1H), 6.92 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 167.2 (C=N), 150.9, 141.7,
139.4, 135.7, 131.6, 129.4, 129.4, 128.9, 128.8, 128.4, 127.5, 124.0, 121.9, 120.8. HRMS (ESI) m/z
calcd for C21H17N [M+H]: 284.1439, found: 284.1441.

(2E)-N-(4-(tert-butyl)phenyl)-1,3-diphenylprop-2-en-1-imine (3c): Light yellow solid,
28.3 mg, 85% yield (Eluent: petroleum ether/ethyl acetate = 30/1). 1H NMR (400 MHz,
CDCl3) δ 7.74 (t, J = 2.0 Hz, 1H), 7.48 (t, J = 1.7 Hz, 2H), 7.39–7.30 (m, 8H), 6.98–6.92 (m,
3H), 1.36 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.9 (C=N), 148.1, 146.9, 141.3, 139.7, 135.9,
132.0, 129.8, 129.4, 128.8, 128.3, 127.5, 125.7, 122.3, 120.8, 34.4, 31.5. HRMS (ESI) m/z calcd
for C25H25N [M+H]: 340.2065, found: 340.2063.
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(2E)-N-(3-bromophenyl)-1,3-diphenylprop-2-en-1-imine (3d): Light yellow solid, 32.7
mg, 92% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.71 (d, J = 2.0 Hz, 2H), 7.50 (s, 3H), 7.34–7.29 (m, 2H), 7.14 (t, J = 2.1 Hz, 2H), 6.94 (s, 2H),
6.86 (d, J = 2.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 168.0 (C=N), 152.4, 142.7, 138.9, 135.4,
131.1, 130.3, 129.3, 128.9, 128.4, 127.6, 126.8, 124.1, 123.6, 122.7, 121.3, 119.3. HRMS (ESI) m/z
calcd for C21H16BrN [M+H]: 362.0544, found: 362.0546.

(2E)-N-(2-bromo-4-fluorophenyl)-1,3-diphenylprop-2-en-1-imine (3e): Light yellow
solid, 34.2 mg, 91% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400
MHz, CDCl3) δ 7.80 (t, J = 1.6 Hz, 2H), 7.50 (d, J = 7.0 Hz, 5H), 7.32 (d, J = 11.7 Hz, 1H),
7.24 (d, J = 11.8 Hz, 2H), 6.95 (s, 1H), 6.87–6.84 (m, 1H), 6.73 (s, 1H). 13C NMR (101 MHz,
CDCl3) δ 169.3 (C=N), 157.6, 142.9, 138.5, 135.4, 130.7, 130.2, 129.8, 129.3, 128.9, 128.4, 128.2,
127.7, 121.5, 121.1, 119.9, 115.1, 114.9. 19F NMR (376 MHz, CDCl3) δ -118.89. HRMS (ESI)
m/z calcd for C21H15BrFN [M+H]: 380.0450, found: 380.0453.

(2E)-1-([1,1′-biphenyl]-4-yl)-N,3-diphenylprop-2-en-1-imine (3f): Light yellow solid,
32.1mg, 87% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz,
CDCl3) δ 7.90–7.80 (m, 1H), 7.77–7.57 (m, 4H), 7.59–7.48 (m, 1H), 7.50–7.38 (m, 3H), 7.42–
7.32 (m, 3H), 7.35–7.28 (m, 3H), 7.21–7.12 (m, 1H), 7.06–6.88 (m, 3H). 13C NMR (101 MHz,
CDCl3) δ 166.8 (C=N), 150.9, 144.8, 142.8, 141.6, 140.5, 139.9, 135.7, 129.9, 129.4, 128.9, 128.8,
128.2, 127.5, 127.2, 127.1, 124.0, 122.0, 120.9. HRMS (ESI) m/z calcd for C27H21N [M+H]:
360.1752, found: 360.1754.

(2E)-1-(naphthalen-2-yl)-N,3-diphenylprop-2-en-1-imine (3g): Light yellow solid, 28.2
mg, 84% yield (Eluent: petroleum ether/ethyl acetate = 30/1). 1H NMR (400 MHz, CDCl3)
δ 8.24 (d, J = 1.7 Hz, 1H), 7.96–7.91 (m, 3H), 7.71–7.68 (m, 1H), 7.40–7.24 (m, 9H), 6.99 (d, J
= 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 167.1 (C=N), 151.0, 144.8, 141.7, 136.8, 135.7,
134.1, 129.4, 128.9, 128.8, 128.8, 127.7, 127.5, 126.4, 124.0, 122.2, 120.8. HRMS (ESI) m/z calcd
for C25H19N [M+H]: 334.1596, found: 334.1593.

(2E)-1-(4-fluorophenyl)-N,3-diphenylprop-2-en-1-imine (3h): Light yellow solid,27.4
mg, 93% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.76 (d, J = 3.4 Hz, 1H), 7.37–7.24 (m, 6H), 7.16 (d, J = 1.7 Hz, 3H), 6.94 (t, J = 1.1 Hz, 2H),
6.89 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 166.0 (C=N), 150.8, 141.6, 135.5, 131.4, 131.3,
129.5, 128.9, 128.9, 127.5, 124.1, 121.9, 120.8, 115.5, 115.3. 19F NMR (376 MHz, CDCl3) δ
-110.92. HRMS (ESI) m/z calcd for C21H16FN [M+H]: 302.1345, found: 302.1347.

(2E)-1-(4-chlorophenyl)-N,3-diphenylprop-2-en-1-imine (3i): Light yellow solid, 28.5
mg, 90% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.65–7.59 (m, 2H), 7.46–7.23 (m, 6H), 7.21–7.15 (m, 1H), 7.07 (dt, J = 6.0, 2.6 Hz, 1H),
6.91–6.79 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 165.0 (C=N), 149.6, 140.6, 136.8, 135.0,
134.4, 129.7, 129.4, 128.6, 127.9, 127.8, 127.6, 126.5, 123.1, 119.7. HRMS (ESI) m/z calcd for
C21H16ClN [M+H]: 318.1050, found: 318.1046.

(2E)-N,1-bis(4-fluorophenyl)-3-phenylprop-2-en-1-imine (3j): Light yellow solid, 25.5
mg, 81% yield (Eluent: petroleum ether/ethyl acetate = 30/1). 1H NMR (400 MHz, CDCl3)
δ 8.11–8.02 (m, 1H), 7.76–7.73 (m, 1H), 7.42 (d, J = 3.0 Hz, 1H), 7.33 (s, 4H), 7.22–7.15 (m,
2H), 7.10–6.99 (m, 2H), 6.90 (t, J = 6.1 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 166.7 (C=N),
146.8, 141.9, 135.4, 134.8, 131.3, 130.7, 129.7, 128.9, 127.5, 122.2, 121.7, 115.8, 115.5, 115.3. 19F
NMR (376 MHz, CDCl3) δ -110.63, -119.57. HRMS (ESI) m/z calcd for C21H15F2N [M+H]:
320.1251, found: 320.1253.

(2E)-3-(4-methoxyphenyl)-N,1-diphenylprop-2-en-1-imine (3k): Light yellow solid,
28.3 mg, 92% yield (Eluent: petroleum ether/ethyl acetate = 30/1). 1H NMR (400 MHz,
CDCl3) δ 7.74–7.69 (m, 2H), 7.52–7.47 (m, 3H), 7.36 (t, J = 7.8 Hz, 2H), 7.28–7.24 (m, 2H),
7.16–7.11 (m, 2H), 6.87–6.80 (m, 3H), 3.79 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.5
(C=N), 160.7, 151.0, 141.5, 139.5, 129.7, 129.4, 129.0, 128.8, 128.6, 128.3, 123.8, 120.8, 119.7,
114.2, 55.3. HRMS (ESI) m/z calcd for C22H19NO [M+H]: 314.1545, found: 313.2672.

(2E)-3-(2-fluorophenyl)-N,1-diphenylprop-2-en-1-imine (3l): Light yellow solid, 27.0
mg, 89% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.78–7.70 (m, 1H), 7.54–7.46 (m, 2H), 7.42–7.35 (m, 2H), 7.27 (dq, J = 13.9, 3.2 Hz, 2H),
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7.19–7.04 (m, 3H), 6.98 (ddd, J = 16.0, 8.7, 1.2 Hz, 3H), 6.88 (s, 1H). 13C NMR (101 MHz,
CDCl3) δ 166.7 (C=N), 150.7, 140.2, 137.9, 133.0, 130.3, 130.3, 129.3, 128.9, 128.4, 124.2, 123.1,
120.7, 116.3, 116.1, 113.9, 113.7. HRMS (ESI) m/z calcd for C21H16FN [M+H]: 302.1345,
found: 302.1342.

(2E)-3-(4-fluorophenyl)-N,1-diphenylprop-2-en-1-imine (3m): Light yellow solid, 26.8
mg, 86% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.76–7.70 (m, 1H), 7.56–7.44 (m, 2H), 7.41–7.21 (m, 4H), 7.20–7.04 (m, 3H), 7.02–6.86 (m,
4H). 13C NMR (101 MHz, CDCl3) δ 166.7 (C=N), 161.8, 150.7, 140.2, 137.9, 132.9, 130.0, 129.3,
128.9, 128.9, 128.4, 123.1, 120.7, 116.1, 113.7. 19F NMR (376 MHz, CDCl3) δ -112.69. HRMS
(ESI) m/z calcd for C21H16FN [M+H]: 302.1345, found: 302.1348.

(2E)-3-(2-chlorophenyl)-N,1-diphenylprop-2-en-1-imine (3n): Light yellow solid, 28.1
mg, 86% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.83–7.72 (m, 2H), 7.51–7.49 (m, 2H), 7.38–7.35 (m, 3H), 7.29–7.23 (m, 2H), 7.17–7.12 (m,
2H), 7.00–6.94 (m, 2H), 6.84 (d, J = 16.5 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 166.8 (C=N),
150.9, 139.0, 137.5, 134.3, 134.1, 130.2, 129.9, 129.4, 128.9, 128.6, 128.4, 127.3, 127.0, 124.4,
124.1, 120.7. HRMS (ESI) m/z calcd for C21H16ClN [M+H]: 318.1050, found: 318.1042.

(2E)-N,1-diphenyl-3-(thiophen-2-yl)prop-2-en-1-imine (3o): Light yellow solid, 24.6
mg, 85% yield (Eluent: petroleum ether/ethyl acetate = 40/1). 1H NMR (400 MHz, CDCl3)
δ 7.76–7.66 (m, 1H), 7.52–7.43 (m, 2H), 7.41–7.23 (m, 3H), 7.18–6.83 (m, 6H), 6.74–6.62 (m,
1H). 13C NMR (101 MHz, CDCl3) δ 166.8 (C=N), 150.8, 141.0, 139.2, 137.2, 134.4, 132.8, 132.1,
129.3, 128.8, 128.4, 124.0, 121.0, 120.8. HRMS (ESI) m/z calcd for C19H15NS [M+H]: 290.1003,
found: 290.1001.

Ir-2m: Red solid, 710.4 mg, 66% yield (Eluent: petroleum ether/dichloromethane =
10/1). 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 9.2 Hz, 2H), 7.84 (s, 2H), 7.68–7.59 (m, 4H),
7.58–7.45 (m, 10H), 7.29 (dd, J = 9.2, 2.3 Hz, 2H), 6.68 (d, J = 7.9 Hz, 2H), 6.55 (s, 2H), 4.75
(s, 1H), 1.96 (s, 6H), 1.18 (s, 18H), 0.56 (s, 18H). 13C NMR (101 MHz, CDCl3) δ 192.5, 167.7,
150.9, 148.2, 146.8, 146.8, 143.9, 137.5, 137.0, 136.5, 128.6, 127.6, 127.6, 127.4, 125.9, 123.8,
123.7, 120.7, 119.2, 115.7, 39.5, 33.7, 30.0, 26.8, 20.6. HRMS (ESI) m/z calcd for C63H67IrN2O2
[M+H]: 1077.4910, found: 1077.4910.

4a: Light yellow solid, 358.1 mg, 78% yield (Eluent: dichloromethane/methyl alcohol
= 100/1). 1H NMR (400 MHz, DMSO) δ 13.07 (s, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.43 (t, J = 7.5
Hz, 1H), 7.38 (s, 1H), 7.34–7.16 (m, 10H), 7.15 (d, J = 4.2 Hz, 2H), 7.15–7.07 (m, 1H), 7.06
(d, J = 7.6 Hz, 2H), 5.58 (d, J = 4.3 Hz, 1H), 5.11 (d, J = 8.9 Hz, 1H), 4.35 (dd, J = 8.7, 4.2 Hz,
1H), 2.23 (s, 3H). 13C NMR (101 MHz, DMSO) δ 170.4, 169.3, 141.9, 139.4, 139.3, 136.4, 136.2,
132.0, 131.4, 131.1, 129.5, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.4, 126.8, 115.2, 44.5, 21.0.
HRMS (ESI) m/z calcd for C31H25NO3 [M+H]: 460.1913, found: 460.1914.

4b: Light yellow solid, 364.4 mg, 80% yield (Eluent: dichloromethane/methyl alcohol
= 100/1). 1H NMR (400 MHz, DMSO) δ 12.90 (s, 1H), 7.83 (dd, J = 7.7, 1.5 Hz, 1H), 7.42
(d, J = 1.6 Hz, 1H), 7.35–7.27 (m, 5H), 7.30–7.21 (m, 5H), 7.23–7.12 (m, 4H), 7.14–7.07 (m,
2H), 5.61 (d, J = 4.3 Hz, 1H), 5.12 (d, J = 9.1 Hz, 1H), 4.39 (dd, J = 9.2, 4.3 Hz, 1H), 1.19 (s,
9H). 13C NMR (101 MHz, DMSO) δ 170.5, 169.3, 149.0, 142.4, 142.0, 139.4, 136.7, 136.5, 132.0,
131.1, 131.1, 128.9, 128.5, 128.3, 128.2, 128.2, 127.9, 127.4, 127.2, 125.3, 115.1, 45.0, 34.6, 31.5.
HRMS (ESI) m/z calcd for C34H31NO3 [M+H]: 502.2382, found: 502.2381.

4c: Light yellow solid, 403.7 mg, 77% yield (Eluent: dichloromethane/methyl alcohol
= 100/1). 1H NMR (400 MHz, DMSO) δ 13.05 (s, 1H), 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.47–7.36
(m, 3H), 7.34–7.27 (m, 4H), 7.30–7.19 (m, 6H), 7.22–7.11 (m, 4H), 5.63 (d, J = 4.0 Hz, 1H),
5.11 (d, J = 9.7 Hz, 1H), 4.44 (dd, J = 9.7, 4.0 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 170.4,
169.2, 142.4, 141.4, 139.3, 138.8, 136.2, 132.0, 131.6, 131.2, 131.1, 130.9, 128.9, 128.6, 128.4,
128.3, 128.1, 127.4, 127.3, 119.5, 115.6, 45.0. HRMS (ESI) m/z calcd for C30H22BrNO3 [M+H]:
524.0861, found: 524.0860.

4d: White solid, 374.7 mg, 74% yield (Eluent: dichloromethane/methyl alcohol =
100/1). 1H NMR (400 MHz, DMSO) δ 13.10 (s, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.43–7.33 (m,
3H), 7.28 (dd, J = 14.6, 8.5 Hz, 8H), 7.18 (t, J = 7.1 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.02 (t, J
= 8.6 Hz, 2H), 5.61 (d, J = 4.2 Hz, 1H), 5.10 (d, J = 9.2 Hz, 1H), 4.45–4.37 (m, 1H), 1.20 (s,
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9H). 13C NMR (101 MHz, DMSO) δ 170.3, 169.3, 163.0, 160.6, 149.2, 142.4, 141.0, 139.4, 136.6,
133.0, 132.9, 132.0, 131.2, 131.1, 130.2, 130.1, 128.9, 128.3, 128.2, 127.4, 127.2, 125.4, 115.5,
115.3, 115.1, 45.0, 34.7, 31.5. 19F NMR (376 MHz, DMSO) δ -113.86. HRMS (ESI) m/z calcd
for C34H30FNO3 [M+H]: 520.2288, found: 520.2286.

4e: Light yellow solid, 408.1 mg, 79% yield (Eluent: dichloromethane/methyl alcohol
= 100/1). 1H NMR (400 MHz, DMSO) δ 13.07 (s, 1H), 7.83 (dd, J = 7.8, 1.4 Hz, 1H), 7.46–7.23
(m, 9H), 7.19 (dd, J = 10.5, 7.6 Hz, 3H), 7.10 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 7.9 Hz, 2H), 5.57
(d, J = 4.4 Hz, 1H), 5.11 (d, J = 8.9 Hz, 1H), 4.35 (dd, J = 9.0, 4.4 Hz, 1H), 2.18 (s, 3H), 1.20 (s,
9H). 13C NMR (101 MHz, DMSO) δ 170.5, 169.3, 149.0, 141.9, 139.4, 137.5, 136.8, 133.6, 132.0,
131.2, 129.1, 128.9, 128.2, 128.1, 127.8, 127.4, 127.2, 125.4, 114.6, 44.9, 34.7, 31.5, 21.1. HRMS
(ESI) m/z calcd for C35H33NO3 [M+H]: 516.2539, found: 516.2541.

4f: Light yellow solid, 384.3 mg, 78% yield (Eluent: dichloromethane/methyl alcohol
= 100/1). 1H NMR (400 MHz, DMSO) δ 13.12 (s, 1H), 7.95 (s, 1H), 7.84 (dd, J = 12.0, 6.7 Hz,
2H), 7.81–7.75 (m, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.50–7.15 (m, 15H), 7.04 (t, J = 7.3 Hz, 1H),
5.76 (d, J = 4.2 Hz, 1H), 5.20 (d, J = 9.5 Hz, 1H), 4.49 (dd, J = 9.6, 4.2 Hz, 1H). 13C NMR (101
MHz, DMSO) δ 170.4, 169.3, 142.5, 141.9, 139.4, 139.4, 134.0, 133.0, 132.6, 132.0, 131.2, 131.1,
129.0, 128.8, 128.6, 128.4, 128.3, 127.8, 127.7, 127.4, 127.3, 127.1, 126.9, 126.8, 125.8, 115.7, 45.1.
HRMS (ESI) m/z calcd for C34H25NO3 [M+H]: 496.1913, found: 496.1916.

4. Conclusions

In summary, we developed two efficient transformations of versatile propargyalmines
by regulating the reaction conditions. Highly selective cyclization catalyzed via Pd(OAc)2
and isomerization promoted by Bu4NOAc from propargylamines was successfully imple-
mented. The strategy characterized by readily available starting materials, operational
simplicity, mild conditions, broad functional group tolerance, excellent atom economy and
high yields is an important advancement in the development of propargylamine-based
synthetic methodology. In addition, we believe that this study reveals a new way to prepare
nitrogen-containing heterocycles from simple building blocks of amine, aldehyde and
alkyne. Further applications of these diverse quinolines and 1-azadienes are underway in
our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28176259/s1, Figure S1: The photoluminescence quantum
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