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Abstract: Heteroarene 1, n-zwitterions are powerful and versatile building blocks in the construction
of heterocycles and have received increasing attention in recent years. In particular, pyridinium and
quinolinium 1,4-zwitterions have been widely studied and used in a variety of cyclization reactions
due to their air stability, ease of use, and high efficiency. Sulfur- and nitrogen-based pyridinium
and quinolinium 1,4-zwitterions, types of emerging heteroatom-containing synthons, have attracted
much attention from chemists. These 1,4-zwitterions, which contain multiple reaction sites, have
been successfully used in the synthesis of three- to eight-membered cyclic compounds over the last
decade. In this review, we present the exciting progress made in the field of cyclization reactions of
sulfur- and nitrogen-based pyridinium and quinolinium 1,4-zwitterions. Moreover, the mechanistic
insights, the transition states, some synthetic applications, and the challenges and opportunities are
also discussed. We hope to provide an overview for synthetic chemists who are interested in the
heterocycle synthesis from cyclization reaction with pyridinium and quinolinium 1,4-zwitterions
pyridinium and quinolinium 1,4-zwitterions.
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1. Introduction

Heterocycles are ubiquitous cores in natural products, bioactive molecules, functional
materials, and therapeutic leads [1–4]. Chemists are becoming increasingly focused on
developing efficient synthetic approaches for heterocyclic frameworks, where minimizing
the number of synthetic steps, maximizing synthesis efficiency, and reducing side reactions
are important evaluation criteria [5–15]. Among various synthetic strategies, dipolar
cyclization reactions have become one of the most favored methods for the construction
of functionalized heterocyclic compounds [16–20]. The development of new types of
dipoles and the exploration of their potential applications in cyclization reactions are new
challenges in the field of modern organic chemistry [21–27].

The application of heteroarene 1,n-zwitterions as powerful and versatile building
blocks allows rapid synthesis of polyheterocyclic scaffolds that can be found in natural
products, biologically active synthetic substances, and clinical drugs [28–30]. In partic-
ular, pyridinium and (iso)quinolinium 1,n-zwitterions are an important class of highly
active species for constructing functionalized heterocycles. Great progress has been made
in recent decades regarding the development of pyridinium and (iso)quinolinium 1,n-
zwitterions, which are frequently classified into 1,2-, 1,3-, and 1,4-zwitterions based on
the distance between the cation and anion (Figure 1). 1,2-Zwitterions (Z1–Z4) typically
act as formal 1,3-dipoles in cyclization processes to generate a diverse range of polyhete-
rocyclic structures [31–33]. Isoquinolinium thiolates Z5, as representative 1,3-zwitterions,
are effective cycloaddition partners and provide access to sulfur-bridged cyclic polycy-
cles [34]. 1,4-Zwitterion Z6, summarized in this review, is known for its versatility in the
synthesis of heterocyclic skeletons such as thiophene, dithiole, thiazine, thiadiazepine, thi-
azepine, oxathiepine, indolizine, pyrido[1,2-a]pyrazine, and (di)azepine, which are widely
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distributed in various natural products, designed molecules, and drugs. Numerous natural
or designed molecules usually have pronounced bioactivities (Figure 2) [35–45]. The re-
maining 1,4-zwitterions (Z7 and Z8) have also been used as formal 1,3-dipoles to construct
nitrogen-containing frameworks, such as indolizines and bridged azacycles [46,47].
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Pyridinium and quinolinium 1,4-zwitterions (Z6) are highly valued building blocks in
the construction of heterocycles due to their air stability, ease of use, and efficiency. They are
divided into two categories based on the type of negative ion: sulfur-based 1,4-zwitterions
and nitrogen-based 1,4-zwitterions.

The synthesis of sulfur-based 1,4-zwitterions was first reported by Bazgir et al. in
2011 [48]. Despite this early report, their application in the construction of heterocycles has
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only been studied in recent years. At present, sulfur-based pyridinium and quinolinium 1,4-
zwitterions have been successfully used in a range of formal cyclization reactions, including
(2 + 3), (3 + n), (4 + n), (5 + n), and multistep cascade cyclization reactions (Scheme 1, left).
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The first report of nitrogen-based 1,4-zwitterions was by Yoo et al. in 2014, who
reported an Rh(II)-catalyzed reaction of 1-sulfonyl-1,2,3-triazole and pyridine to obtain
isolable nitrogen-based 1,4-zwitterions [49]. Since then, the transformations involving
dearomative cyclization have flourished (Scheme 1, right).

The aim of this review is to provide a comprehensive overview of the recent ad-
vancements in the transformation of pyridinium and quinolinium 1,4-zwitterions in the
synthesis of heterocycles. At present, partial reactions of pyridinium and quinolinium
1,4-zwitterions have been selected as particular aspects, appearing in several published
reviews and perspectives [20,31]. However, because of the explosive development of multi-
farious cyclization reactions involving pyridinium and quinolinium 1,4-zwitterions, these
summaries cannot cover the latest achievements. In this context, a comprehensive and
up-to-date overview of the application of pyridinium and quinolinium 1,4-zwitterions in
the synthesis of heterocycles is highly desired.

The review is organized based on the categories of negative ions in pyridinium and
quinolinium 1,4-zwitterions, which can be divided into sulfur-based and nitrogen-based types
(Scheme 1). The annulation process is further classified based on the number of atoms of the
final ring present in each fragment, designating the union of an m-atom fragment and an
n-atom fragment as an (m + n) cyclization reaction. The purpose of this formalism is to make
the skeletal analysis more convenient and it does not imply any mechanistic details.

2. Sulfur-Based Pyridinium and Quinolinium 1,4-Zwitterions

The sulfur-based pyridinium and quinolinium 1,4-zwitterions reviewed in this review
were discovered as early as 2011 by Bazgir et al. (Scheme 2) [48], though the applications
of these molecules in the synthesis of heterocyclic scaffolds were not studied until 2019.
The cyclization processes depicted in this paper are subdivided into formal (2 + 3), (3 + n),
(4 + n), (5 + n), and multistep cascade cyclization reactions.
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2.1. Formal (2 + 3) Cyclization

In 2020, Zhai et al. conducted the formal (2 + 3) cyclization reaction between pyri-
dinium 1,4-zwitterions 1 and hydrazonoyl chlorides 3 for the facile synthesis of fully
substituted pyrazoles 5 (Scheme 3) [50]. According to the proposed reaction mechanism,
the reaction proceeded via an unusual ((3 + 3) − 1) pathway. Hydrazonoyl chloride 3
reacted in situ with a base to generate the reactive nitrilimine 6, which immediately reacted
with pyridinium 1,4-zwitterion 1 following sequential S-nucleophilic addition, N-Michael
addition, and retro-Michael addition/pyridine extrusion via reaction pathways, furnishing
the key intermediate, 4H-1,3,4-thiadiazine 4. The subsequent intramolecular nucleophilic
addition of enamine to imine yielded intermediate 8. Intermediate 8 could be converted
into fully substituted pyrazole 5 via a desulfuration reaction. The developed method
features a broad substrate scope, mild reaction conditions, and high yields.
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2.2. Formal (3 + n) Cyclization
2.2.1. Formal (3 + 2) Cyclization

In early 2020, annulations of pyridinium 1,4-zwitterions, and activated allenes were
reported by Zhai, Wang, and Cheng et al. [51], who used pyridinium 1,4-zwitterions as
three-carbon synthons to construct five-membered heterocyclic compounds. As illustrated
in Scheme 4, the type of substituent presented a remarkable effect on the regioselectivity.
When the reaction was conducted with γ-aryl-substituted allenoates 9, a low level of
regioselectivity was observed and major isomer 10 could be obtained in 19–68% yields.
In contrast, when γ-alkyl-substituted allenoates 11 were used as the substrates, a highly
regioselective cycloaddition reaction proceeded to yield the fully substituted thiophenes
12 in yields of up to 89%. Using this mechanism, it has been proposed that the S-Michael
addition of pyridinium 1 to allenoates 9 results in the formation of intermediates 13 and
13′ (Scheme 5). This is followed by the intramolecular C-Michael addition of the carbanion
located at the α-position of ester or benzyl position, yielding 14 and 14′. The retro-Michael
reaction results in the release of 4-MeO-pyridine, and this reaction is followed by a double
bond isomerization reaction that yields two isomers (10 and 10′).
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In the same year, Zhai et al. used sulfur-based pyridinium 1,4-zwitterion as a versatile
building block to synthesize polysubstituted thiophenes [52]. The reactions between pyri-
dinium 1,4-zwitterions 1 and activated alkynes 16 were accomplished in 1, 2-dichloroethane
(DCE) at 85 ◦C via a (3 + 2) process, affording tri- and tetra-substituted thiophenes 17 in
25–99% yields (Scheme 6, top). The limitations in the substrate scope were explored, and it
was observed that some modified alkynes were not compatible with the developed protocol.
In the following year, an extension of this strategy was reported by Zhai et al. (Scheme 6,
bottom) [53]. Various modified and activated alkynes 18 bearing aryl, alkenyl, alkyl, or silyl
groups were used to conduct (3 + 2) annulation reactions with pyridinium 1,4-zwitterions 1.
The reaction proceeded smoothly to afford tetrasubstituted thiophenes 19 in 40–97% yields un-
der the same reaction conditions. The developed approach has the features of being metal-free
and catalyst-free.
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activated alkynes.

In 2020, Zhai’s group used o-(trimethylsilyl)phenyl triflate 20 and pyridinium 1,4-
zwitterions 1 as substrates to conduct cyclization reactions. They reported that the reactions
could follow two pathways (Scheme 7) [54]. The formal (5 + 2) cyclization reaction produced
benzopyridothiazepines 22 as its major products. Although the (3 + 2) cyclization reaction
was considered a side reaction, the results revealed that pyridinium 1,4-zwitterions could
be used as powerful potential synthons to construct benzothiophenes 21. In the developed
protocol, benzothiophenes 21 could be obtained in up to 43% isolated yield.
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In comparison to the numerous studies on the annulation of C=C and C≡C bonds,
there are a limited number of examples of the (3 + 2) cyclization reaction between sulfur-
based pyridinium 1,4-zwitterions and C=X or C≡X bonds (X = S, N). In 2020, Zhai et al.
described the synthesis of 3H-1,2-dithiole 2,2-dioxides 26 through the (3 + 2) cyclization of
pyridinium 1,4-zwitterions 1 with alkanesulfonyl chlorides 25 (as depicted in Scheme 8) [55].
The use of alkanesulfonyl chlorides 25 as precursors of sulfenes 27 allowed for the smooth
transformation of the reaction in the presence of N,N-diisopropylethylamine (DIPEA),
resulting in 3H-1,2-dithiole 2,2-dioxides 26 with yields ranging from 48% to 98%.
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The reaction mechanism involves the transformation of alkanesulfonyl chloride 25
into sulfene 27 through the promotion of a selected base, which was attacked by sulfur
anion of pyridinium 1,4-zwitterion to form sulfur–sulfur bonds. This is followed by a
domino Michael/retro-Michael reaction that releases the pyridine group and yields the
product 26. In this paper, the authors also found that arylmethanesulfonyl chloride could
react with pyridinium 1,4-zwitterions through a stepwise ((5 + 2) − 1) pathway.
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More recently, Wen et al. investigated the (3 + 2) cycloaddition of pyridinium
1,4-zwitterion with trifluoroacetaldehyde O-(aryl)oxime (Scheme 9) [56]. The reaction,
performed in N-methylpyrrolidone (NMP) at 95 ◦C, afforded the 2-trifluoromethyl 4,5-
disubstituted thiazoles 31 in good-to-perfect yields (30–92% yield). The reaction mechanism
was proposed. It was hypothesized that the treatment of oxime 30 with pyridine yielded
CF3CN 32. This reaction was followed by sequential S-nucleophilic addition and N-Michael
reaction cascade that resulted in the formation of intermediate 33. Finally, the retro-Michael
reaction led to pyridine extrusion, and simultaneously furnished the desired products.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 45 
 

 

More recently, Wen et al. investigated the (3 + 2) cycloaddition of pyridinium 1,4-
zwitterion with trifluoroacetaldehyde O-(aryl)oxime (Scheme 9) [56]. The reaction, per-
formed in N-methylpyrrolidone (NMP) at 95 °C, afforded the 2-trifluoromethyl 4,5-disub-
stituted thiazoles 31 in good-to-perfect yields (30–92% yield). The reaction mechanism was 
proposed. It was hypothesized that the treatment of oxime 30 with pyridine yielded 
CF3CN 32. This reaction was followed by sequential S-nucleophilic addition and N-Mi-
chael reaction cascade that resulted in the formation of intermediate 33. Finally, the retro-
Michael reaction led to pyridine extrusion, and simultaneously furnished the desired 
products. 

 
Scheme 9. (3 + 2) Cyclization reaction between sulfur-based pyridinium 1,4-zwitterions and tri-
fluoroacetaldehyde oxime. 

2.2.2. Formal (3 + 3) Cyclization 
Formal (3 + 3) cyclization reactions belong to a class of important and powerful reac-

tions that help synthesize six-membered heterocyclic rings. Li et al. devised a catalyst-free 
(3 + 3) cyclization strategy using pyridinium 1,4-zwitterions 1 to synthesize 1,4-thiazine 
derivatives 35 (Scheme 10) [57]. The reactions with 4-NPhth substituted triazoles 34 were 
carried out in CHCl3 under conditions of reflux, and moderate-to-good yields were ob-
served. A possible mechanism was postulated to explain the selective formation of the 1,4-
thiazine skeleton (Scheme 10, middle). Under optimal reaction conditions, 4-NPhth sub-
stituted triazoles 34 transformed into intermediate 36, followed by the sequential S-nucle-
ophilic addition and N-Michael reactions to yield thiazole intermediate 38. Ring expan-
sion resulted in the formation of intermediate 40 following retro-S-Michael reaction/S-
Michael reaction. Finally, the corresponding product 35 was delivered through the elimi-
nation of the pyridine group. 

Scheme 9. (3 + 2) Cyclization reaction between sulfur-based pyridinium 1,4-zwitterions and trifluo-
roacetaldehyde oxime.

2.2.2. Formal (3 + 3) Cyclization

Formal (3 + 3) cyclization reactions belong to a class of important and powerful reac-
tions that help synthesize six-membered heterocyclic rings. Li et al. devised a catalyst-free
(3 + 3) cyclization strategy using pyridinium 1,4-zwitterions 1 to synthesize 1,4-thiazine
derivatives 35 (Scheme 10) [57]. The reactions with 4-NPhth substituted triazoles 34 were
carried out in CHCl3 under conditions of reflux, and moderate-to-good yields were ob-
served. A possible mechanism was postulated to explain the selective formation of the
1,4-thiazine skeleton (Scheme 10, middle). Under optimal reaction conditions, 4-NPhth
substituted triazoles 34 transformed into intermediate 36, followed by the sequential S-
nucleophilic addition and N-Michael reactions to yield thiazole intermediate 38. Ring
expansion resulted in the formation of intermediate 40 following retro-S-Michael reac-
tion/S-Michael reaction. Finally, the corresponding product 35 was delivered through the
elimination of the pyridine group.

Another example of the formal (3 + 3) cyclization of pyridinium 1,4-zwitterions 1 was
reported by Chen et al. in 2022 (Scheme 11) [58]. The reaction with both alkyl- and aryl-
substituted aziridines provided a wide range of functionalized 3,4-dihydro-2H-1,4-thiazines
(42 and 43) in good-to-high yields with excellent levels of regioselectivity. Substrate scope
was studied, and it was observed that the type of substituents on aziridines significantly
affected the regioselectivity of the reaction. The authors proposed a mechanism to illustrate
the origin of regioselectivity (Scheme 12). For 2-arylaziridine, the S-nucleophilic addition
to the more sterically hindered site of the aziridine ring via a loose SN2 ring-opening
process [59,60] lead to the formation of intermediate 44. This reaction was followed by
an N-Michael/retro-Michael reaction that yielded 1,4-thiazine 42. In contrast, the ring-
opening reaction of 2-alkylaziridine occurred at the less sterically hindered site via an SN2
pathway to yield intermediate 46. This resulted in the formation of the corresponding
product 43. The protocol’s features include being catalyst- and base-free and having
high regioselectivity.
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2.2.3. Formal (3 + 4) Cyclization

Seven-membered rings as integral subunits are ubiquitous in a wide variety of clinical
drugs and bioactive natural products [61–63], and selectively synthesizing structurally
diverse seven-membered rings remains an important pursuit in the field of organic synthetic
chemistry [64–67]. The (3 + 4) cycloaddition reaction has attracted more and more attention
for its diversity and high efficiency [68–71]. Formal (3 + 4) cyclization involving sulfur-
based pyridinium 1,4-zwitterions has been used in the synthesis of seven-membered
heterocyclic skeletons such as thiadiazepine, thiazepine, and oxathiepine.

Zhai and Cheng et al. were the first to report a clever strategy for (3 + 4) cycloaddition
reactions involving pyridinium 1,4-zwitterions (Scheme 13). Pyridinium 1,4-zwitterions
1 were selected as three-atom synthons to react with α-halo hydrazones 48, leading to
the formation of 1,4,5-thiadiazepine derivatives 49 in generally good-to-excellent yields
(51–98%) [72]. For the reaction mechanism, azoalkenes 50 were generated in situ from
α-halo hydrazones 48 in the presence of a base. The S-Michael addition, N-Michael addition,
and retro-Michael addition reactions proceeded sequentially, resulting in the formation of
2,5-dihydro-1,4,5-thiadiazepines 49. It is of note that the selective oxidation of 49 was also
successfully established, in which sulfone 53 and sulfoxide 54 analogs could be produced
in good, isolated yields (Scheme 13, bottom).

In 2021, both Chen et al. and Wang et al. independently implemented (3 + 4) cy-
cloaddition reactions between aza-o-quinone methides 57 (in situ generated from 55)
and pyridinium 1,4-zwitterions 1 (Scheme 14, top) [73,74]. Chen et al. selected K2CO3
as the optimal base to promote the reaction, and the reaction yielded functionalized
benzo[e][1,4]thiazepines 56 in 57–99% yields [73]. In contrast, Wang et al. carried out
the reaction between N-(o-chloromethyl)aryl amides 55 and pyridinium 1,4-zwitterions 1
in the presence of tBuOK in CH2Cl2 to obtain the corresponding products 56 in yields of up
to 96% [74]. They proposed a similar reaction mechanism for the [4 + 3] annulation reaction.
Treatment of N-(o-chloromethyl)aryl amide 55 with optimal base furnished aza-o-quinone
methide 57, which reacted with pyridinium 1,4-zwitterions 1 to yield intermediate 58. The
intramolecular S-Michael addition of 58 produced intermediate 59. Finally, retro-Michael
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addition led to the formation of the desired product 56. The selective oxidation of products
was achieved by both research groups (Scheme 14, bottom).
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A clever strategy for the synthesis of benzooxathiepines was devised by Cheng et al.,
who used Et3N as the base to enable (3 + 4) cycloaddition using pyridinium 1,4-zwitterions
1 and ortho-alkynyl aromatic phenols 62. The reaction yielded aryl-fused 1,4-oxathiepines
63 in 65–99% yields (Scheme 15) [75]. In the proposed mechanism, ortho-alkynyl aromatic
phenol 62 converted into vinylidene ortho-quinone methide 64 in the presence of an op-
timal base, and the intermediate 64 reacted with pyridinium 1,4-zwitterion 1 to produce
intermediate 65 through S-nucleophilic addition. The intramolecular O-Michael addition
of 65 could readily yield the intermediate 66. Finally, the retro-Michael addition/pyridine
extrusion cascade delivered the desired benzooxathiepine products. Moreover, the cat-
alytic asymmetric version of the (3 + 4) cycloaddition reaction was explored to construct
atropisomeric styrenes (Scheme 15, bottom). A series of bifunctional organocatalysts
(not shown) were screened, and the researchers found that asymmetric (3 + 4) cycloaddi-
tion proceeded smoothly in the presence of a hydroquinine-based thiourea C1 (10 mol%;
catalyst) in dichloromethane (DCM) at room temperature, allowing the formation of the
chiral compound 63a′ with good yield (82%) with moderate stereoselectivity (67% ee).
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alkynylnaphthalen-2-ols.

2.3. Formal (4 + n) Cyclization

Due to the existence of the unique sulfur atom extrusion process, the exploitation of
sulfur-based pyridinium and quinolinium 1,4-zwitterions goes well beyond the conven-
tional pyridinium ylide and 1,5-dipole concept. It was found that they can be regarded as
four atom synthons participating in formal [4 + n] cyclization, allowing the facile synthesis
of five- and six-membered rings. Building upon the reaction mechanism, the dearomati-
zation of the heteroarenium ring and the desulfuration reaction always could have been
observed in disclosed reports.
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2.3.1. Formal (4 + 1) Cyclization

In 2020, Zhai et al. demonstrated the viability of a (4 + 1) cyclization reaction using
pyridinium 1,4-zwitterions (Table 1) [76]. In the devised reaction, Et3N enabled the (4 + 1)
cyclization of pyridinium 1,4-zwitterions 1 and propiolic acid derivatives 67 in DCM at 30 ◦C
to furnish various indolizines 68 in yields ranging from 15% to 75%. According to the authors,
the reaction mechanism involved the nucleophilic attack of an acetylide anion 69 on the
pyridinium 1,4-zwitterion 1, leading to the 1,2-dearomatization of the pyridine group and the
formation of the intermediate 70. An intramolecular S-Michael addition/protonation process
gave birth to intermediate 72, which underwent double bond isomerization to form the key
intermediate 73. A nitrogen-triggered intramolecular ring-contraction reaction produced
intermediate 74, which underwent a spontaneous sulfur atom extrusion process to yield
intermediate 75. Finally, the aromatization of intermediate 75 yielded the desired indolizine
derivatives (Scheme 16).

Table 1. Formal (4 + 1) cyclization reaction of pyridinium 1,4-zwitterions with propiolic acid derivatives.
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Zhai et al. developed a one-pot formal (4 + 1) cyclization reaction involving sulfur-
based pyridinium 1,4-zwitterions 1 and α-functionalized bromoalkanes 76 [77]. Initially,
they achieved a (5 + 1) cyclization to access pyridothiazine 77a with poor diastereose-
lectivity, and the inherent instability of pyridothiazine resulted in a low, isolated yield.
Fortunately, they solved the issue using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
as an oxidant and successfully carried out the oxidation of pyridothiazine (Scheme 17).
Further investigation indicated that a two-step, one-pot formal (4 + 1) cyclization could
be achieved, resulting in the formation of indolizines with acceptable results (Table 2).
They reported that substituents had an obvious influence on the course of the reaction.
The authors proposed a mechanism for the formation of pyridothiazine and indolizines
(Scheme 18). The S-nucleophilic substitution of pyridinium 1,4-zwitterion 1 with bro-
moalkene 76 yielded an intermediate 80. Then, an intramolecular nucleophilic addition
performed on pyridinium delivered pyridothiazine 77, which subsequently underwent
oxidation to afford an intermediate 82. An intramolecular Michael reaction resulted in the
formation of a key intermediate 83. The intermediate 83 could react following two plausible
pathways under the influence of the substituent. The first pathway involved the forma-
tion of a spiro-thiirane 84. A sequential desulfuration reaction/tautomerization reaction
afforded indolizine 78 as the major product. A ring-opening reaction of the intermediate 84
delivered an S-(indolizin-1-yl)benzothioate 78′ as a byproduct. In the second pathway, the
intermediate 83 directly underwent desulfuration and tautomerization to yield indolizine
79 as the sole product.
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2.3.2. Formal (4 + 2) Cyclization

There is only one example of using pyridinium 1,4-zwitterions as four-atom synthons
in formal (4 + 2) cyclization for the synthesis of six-membered ring compounds. In 2021,
Li et al. achieved a (4 + 2) cyclization between 1-sulfonyl-1,2,3-triazoles 87 and pyridinium
1,4-zwitterions 1 through an addition/elimination process, accessing pyrido[1,2-a]pyrazine
derivatives 88. The products were formed in yields of up to 70% (Scheme 19) [57]. The
authors proposed a mechanism to explain the observed results. Under thermal conditions,
a key intermediate 89 was generated from the 1,2,3-triazole 87 with the release of nitrogen.
Following this, a sequential S-nucleophilic addition/N-Michael reaction proceeded to yield a
thiazole intermediate 91. A retro-S-Michael reaction resulted in the formation of intermediates
92 and 93, which underwent an intramolecular nucleophilic attack from the carbon atom
to access the final product, 88. The key features of the developed procedure are that it is
catalyst-free and easy to operate.

Molecules 2023, 28, x FOR PEER REVIEW 17 of 45 
 

 

 
Scheme 19. The formal (4 + 2) cyclization reaction between pyridinium 1,4-zwitterions and 1-sul-
fonyl-1,2,3-triazoles. 

2.4. Formal (5 + n) Cyclization 
Formal (5 + n) cyclization of sulfur-based pyridinium and quinolinium 1,4-zwitteri-

ons has been proven to be a straightforward and powerful tactic for the construction of 
N/S-containing polyheterocyclic skeletons, but this has not been studied in detail. In this 
section, the newly reported (5 + 1) and (5 + 2) cyclization processes will be presented and 
discussed in detail. 

2.4.1. Formal (5 + 1) Cyclization 
In 2020, Zhai, Cheng, et al. reported the (5 + 1) cyclization of pyridinium and quino-

linium 1,4-zwitterions with arylmethanesulfonyl chlorides 94 using N,N-diisopro-
pylethylamine (DIPEA) as a promoter (Scheme 20) [55]. The reaction proceeded smoothly, 
yielding the corresponding dihydropyrido[2,1-c][1,4]thiazines 95 in generally high yields 
(up to 96%). The authors discovered that due to the inherent instability of product 95, an 
intramolecular ring-contraction reaction could occur in the presence of an oxidant. A pre-
liminary study showed that using DDQ as the oxidant could achieve the transformation 
in a short time. As a result, a two-step one-pot conversion reaction of 1,4-zwitterions and 
arylmethanesulfonyl chlorides 94 was performed, furnishing indolizines 96 in good yields 
(36–74%) through a step-wise ((5 + 2) − 1) pathway. The mechanism is shown in Scheme 
21. The reaction started with the in-situ generation of sulfene 97, which was attacked by 
the sulfur anion of pyridinium 1,4-zwitterion 1 to produce intermediate 98. The α-carbon 
of the sulfonyl group was then added to the pyridine ring, and this was followed by the 
transformation of 1,2,5-dithiazepane 99 to product 95 via an SO2 extrusion reaction. Prod-
uct 95 underwent oxidation/ring contraction to yield indolizines 96 in the presence of 
DDQ. 

Scheme 19. The formal (4 + 2) cyclization reaction between pyridinium 1,4-zwitterions and 1-sulfonyl-
1,2,3-triazoles.



Molecules 2023, 28, 3059 16 of 40

2.4. Formal (5 + n) Cyclization

Formal (5 + n) cyclization of sulfur-based pyridinium and quinolinium 1,4-zwitterions
has been proven to be a straightforward and powerful tactic for the construction of N/S-
containing polyheterocyclic skeletons, but this has not been studied in detail. In this section,
the newly reported (5 + 1) and (5 + 2) cyclization processes will be presented and discussed
in detail.

2.4.1. Formal (5 + 1) Cyclization

In 2020, Zhai, Cheng, et al. reported the (5 + 1) cyclization of pyridinium and quinolinium
1,4-zwitterions with arylmethanesulfonyl chlorides 94 using N,N-diisopropylethylamine
(DIPEA) as a promoter (Scheme 20) [55]. The reaction proceeded smoothly, yielding the
corresponding dihydropyrido[2,1-c][1,4]thiazines 95 in generally high yields (up to 96%). The
authors discovered that due to the inherent instability of product 95, an intramolecular ring-
contraction reaction could occur in the presence of an oxidant. A preliminary study showed
that using DDQ as the oxidant could achieve the transformation in a short time. As a result, a
two-step one-pot conversion reaction of 1,4-zwitterions and arylmethanesulfonyl chlorides 94
was performed, furnishing indolizines 96 in good yields (36–74%) through a step-wise ((5 + 2)
− 1) pathway. The mechanism is shown in Scheme 21. The reaction started with the in-situ
generation of sulfene 97, which was attacked by the sulfur anion of pyridinium 1,4-zwitterion
1 to produce intermediate 98. The α-carbon of the sulfonyl group was then added to the
pyridine ring, and this was followed by the transformation of 1,2,5-dithiazepane 99 to product
95 via an SO2 extrusion reaction. Product 95 underwent oxidation/ring contraction to yield
indolizines 96 in the presence of DDQ.
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In 2021, Zhang, Jin, et al. reported a metal-free cascade (2 + 1)/(5 + 1) cyclization
reaction involving quinolinium 1,4-zwitterions 1′ and sulfur ylide salts (102 and 103) for
the synthesis of cyclopropa[c][1,4]thiazino-[4,3-a]quinolines 104 with excellent diastere-
oselectivity (Scheme 22) [78]. To overcome the difficulties in separation and purification,
they explored the process of selective oxidation of product 104 and found that a one-pot
step-wise reaction smoothly produced sulfone analogs 105 in excellent isolated yields with
perfect diastereoselectivities. The scope of the reaction was investigated, but the protocol
was not applied to quinolinium 1,4-zwitterions 1′ that bear the electron-deficient groups
at the fifth or sixth position of the quinolinium ring (Scheme 22, bottom). The authors
proposed the mechanism with sulfur ylide salt 102 as an example. They hypothesized that
the reaction involved the in-situ formation of sulfoxonium ylide 106, which underwent
nucleophilic attack on the quinolinium zwitterion to form intermediate 107. This was
followed by an intramolecular nucleophilic substitution reaction that yielded 108. The
(5 + 1) cyclization reaction between intermediate 108 and another sulfoxonium ylide 106
gave rise to the final product 104. DMSO was released during the process (Scheme 23).
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Visible-light photocatalysis is an environmentally friendly strategy that has been used
for the synthesis of various organic compounds over the past decade [79–84]. In 2022, Xu et al.
made a significant breakthrough by introducing the first blue-light-induced annulation of
pyridinium 1,4-zwitterions (Scheme 24) [85]. In their developed methodology, the phosphoryl
diazo compound 110 was selected as the precursor of an electron-deficient carbene, and the
compound was excited under conditions of blue-light irradiation to produce carbene interme-
diate 112, which then reacted with pyridinium 1,4-zwitterion 1 through a (5 + 1) cyclization
reaction. The reactions resulted in the production of phosphoryl-1,9a-dihydropyrido[2,1-
c][1,4]thiazine derivatives 111 in generally good yields (15–99%) and diastereomeric ratios
(60:40–>99:1 dr). It is worth noting that steric hindrance and electronic effects significantly
impacted the reactivity of the molecules, and the developed method could not be applied to
some substrates.
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2.4.2. Formal (5 + 2) Cyclization

In 2020, Zhai et al. reported one of the only two instances of (5 + 2) cyclization of
pyridinium 1,4-zwitterions to construct seven-membered sulfur-containing heterocyclic
rings (Scheme 25) [54]. In this example, the in situ-generated benzyne 23 underwent
1,5-dipolar cycloaddition with pyridinium 1,4-zwitterions 1, resulting in the formation of
benzopyridothiazepines 22 as the major product. However, due to regioselectivity, a (3 + 2)
cascade cyclization reaction also produced benzo[b]thiophenes 21 as a side product.
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Another example of a (5 + 2) cyclization is the synthesis of pyridothiazepines 115 via
the reaction between pyridinium 1,4-zwitterions 1 and activated allenes 114 (Scheme 26) [86].
The corresponding pyridothiazepine derivatives 115 were obtained in good yields with
acceptable Z/E configuration when the reaction was conducted at 65 ◦C in DCM. A
ring-contraction reaction of 115a could also be achieved in an air atmosphere, furnishing
indolizine 116a as the final product. The authors proposed a possible mechanism for the
(5 + 2) cyclization and subsequent ring-contraction reaction. First, a highly regioselective
(5 + 2) cyclization resulted in the formation of pyridothiazepine 115. Due to its instability,
the aerobic oxidation of pyridothiazepine 115 yielded a conjugated double bond, and this
was followed by an intramolecular nucleophilic addition that yielded intermediate 118.
An extrusion reaction of intermediate 118 produced 119, which underwent an efficient
isomerization process to synthesize indolizine 116. The authors noted that the electronic
nature of the R1 group could dictate the pathway of the reaction.
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activated allenes.

2.5. Multistep Cascade Cyclization

The transition-metal-catalyzed decarboxylative cyclization of alkyne-substituted carbon-
ates has emerged as an effective strategy for the construction of various heterocycles [87–90].
In 2022, Yuan et al. described a copper-catalyzed decarboxylative cascade cyclization of propar-
gylic cyclic carbonates 120/carbamates 121 with pyridinium 1,4-zwitterions 1 (Scheme 27) [91].
(CuOTf)2·toluene catalyzed the cascade cyclization in the presence of Et3N, and the reaction
afforded fused polyheterocycles 122 and 123 in comparable yields with excellent diastereose-
lectivities. The reaction proceeded under mild reaction conditions and four new bonds (two
C−C, one C−O/N, and one C−S) were formed efficiently in a single step. The mechanism of
the reaction was elucidated, as shown in Scheme 28. At first, the copper catalyst activated
the alkyne fragment of 120 to form the π–alkyne copper intermediate 124, and this was fol-
lowed by a deprotonation reaction that resulted in the generation of the copper–acetylide
intermediate 125. Subsequently, the nucleophilic addition of intermediate 125 to pyridinium
1,4-zwitterion 1 led to the 1,2-dearomatization of the pyridine ring, resulting in the formation
of the intermediate 126, which underwent a 6-exo-cyclization reaction to yield intermediate 127.
The sequential carbonate ring opening and decarboxylation of 127 resulted in the formation of
the heterocyclic tetrasubstituted allenolated copper species 128. Thereafter, intermediate 129,
formed following the protonation of 128, underwent an intramolecular cyclization reaction to
furnish the tricyclic intermediate 130. This was followed by an intramolecular oxa-conjugate
addition reaction to promote the formation of the tetracyclic vinylcopper intermediate 132.
Finally, the protodemetalation of 132 delivered the target product 122.
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3. Nitrogen-Based Pyridinium and Quinolinium 1,4-Zwitterions

Nitrogen-based pyridinium 1,4-zwitterions 2 were first reported by Yoo et al. in 2014
(Table 3) [49]. It was found that conducting a Rh2(esp)2-catalyzed reaction between 1-
sulfonyl-1,2,3-triazole 133a and 2-phenylpyridine 134a could afford isolable pyridinium
1,4-zwitterion 2a. A wide range of isolable pyridinium 1,4-zwitterions 2 was success-
fully synthesized in excellent yields when optimized reaction conditions were used to
conduct the studies. The use of nitrogen-based pyridinium 1,4-zwitterions has increased
over the years as the compounds are highly reactive and contain multiple reaction sites.
The reactions are centered upon formal (3 + 2) cyclization, (5 + n) cyclization, cascade
dearomative (2 + n) cycloaddition/intramolecular cyclization, and 1,4-dearomative ring
expansion/intramolecular cyclization reactions. These reactions have been discussed in
the above sequence and in the following sections.

Table 3. Reactions for the synthesis of nitrogen-based pyridinium 1,4-zwitterions.
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Rh2(esp)2 (1 mol %), 1,2-DCE Rh2(esp)2 (1.5 mol %), Benzene

Entry R1 R2 Yield (%) Entry R1 R2 Yield (%)

1 H Ph 82 5 Ph Ph 94
2 Br Ph 79 6 Ph 4-BrPh 93
3 Me Ph 88 7 4-FPh Ph 91
4 Ph Ph 79 8 3-MePh Ph 87

3.1. Formal (3 + 2) Cyclization

Studies on (3 + 2) cyclization reactions involving nitrogen-based pyridinium or quino-
linium 1,4-zwitterions have been almost completely absent since 2014. The sole example
was reported by Yoo et al. in 2021. As shown in Scheme 29, Cu(I) was selected as the cata-
lyst to react with terminal alkyne 138 to generate copper acetylide 140. Copper acetylide
140 regioselectively attacked the 2-position of quinolinium to achieve 1,2-dearomatization
and yield intermediate 141. Intermediate 141 could convert to 1,4-diazepine intermedi-
ate 142 via the process of 7-endo-dig cyclization. This was followed by detosylation to
yield 143. The unstable 8π-electron of 143 participated in the reaction and allowed the
sequential 4π-electro-cyclization reaction to proceed smoothly, affording intermediate 144.
The retro-(2 + 2) cycloaddition reaction resulted in the release of HCN gas, delivering
the desired pyrrolo[1,2-a]quinoline 139 in the presence of Ag2CO3 [92]. The developed
(3 + 2) cyclization reaction worked well in moderate-to-good yields (42–89%). Of note, the
stable valence tautomer 145 was also formed under special conditions, and this could be
attributed to the dynamic equilibrium between 143, 144, and 145. The silver, salt-mediated
HCN gas release process functioned as a driving force to facilitate the formation of the final
product 139.
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terminal alkynes.

3.2. (5 + n) Cyclization

Nitrogen-based pyridinium and quinolinium 1,4-zwitterions that function as 1,5-
dipoles could be used as five-atom synthons in (5 + n) cyclization reactions to access six-,
seven-, and eight-membered dinitrogen-fused heterocycles.

3.2.1. (5 + 1) Cyclization

The cascade 1,4-dearomative (2 + 1) and (5 + 1) cycloaddition reactions of quinolinium
1,4-zwitterions 2′ with trimethylsulfoxonium iodide 102 were studied by Yoo et al. in 2020
(Scheme 30) [93]. The reaction proceeded smoothly in the presence of NaH in DMF to
give rise to cyclopropane-fused pyrazino[1,2-a]quinolines 146 in good yields, and high
levels of diastereocontrol could be achieved under these conditions. Based on the control
experiments, the authors concluded that the (2 + 1) cycloaddition reaction of 1,4-zwitterion
2′ and sulfoxonium ylide 106 led to the generation of the key intermediate 148. This reaction
was followed by the (5 + 1) cyclization reaction in the presence of another sulfoxonium
ylide 106, yielding the corresponding product 146.
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Scheme 30. Cascade (2 + 1)/(5 + 1) cycloaddition reaction of nitrogen-based quinolinium 1,4-
zwitterions with trimethylsulfoxonium iodide.

The (5 + 1) cycloaddition reaction with quinolinium 1,4-zwitterions 2′ and sulfo-
nium ylide salt 150 was conducted by Yoo et al. in 2021 following the success of cascade
1,4-dearomative (2 + 1) and (5 + 1) cycloaddition reactions (Scheme 31) [94]. When the sulfo-
nium ylide 152 was used as a simple nucleophile, the quinolinium ring of the 1,4-zwitterion
underwent a highly regioselective 1,2-dearomative addition reaction to deliver intermediate
153. Subsequently, the classical nucleophilic substitution reaction involving intermediate
153 afforded cycloadduct 151 in moderate-to-good yields (27–67%). In mechanistic analysis,
the authors were much more likely to conclude that the chelation between the nitrogen
anion of the 1,4-zwitterion and the sulfur cation of sulfonium ylide resulted in excellent
regioselectivity (as seen in 152).
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sulfoxonium iodide.

Activated terminal alkynes 67 functioned as one-carbon synthons in the (5 + 1) cycliza-
tion of quinolinium 1,4-zwitterions 2′ in 2020 (Scheme 32) [95]. The reaction began with
the formation of nucleophilic copper acetylide 155, which then attacked the C2 position
of the quinolinium ring to form intermediate 156. Subsequently, intermediate 156 under-



Molecules 2023, 28, 3059 25 of 40

went a 6-exo-cyclization reaction, resulting in the formation of the heterocyclic intermedi-
ate 157. Finally, protonation of 157 resulted in the formation of pyrazino[1,2-a]quinoline
compound 154 in good yields with excellent regioselectivities. Density functional theory
(DFT) calculations indicated that the binding of the copper catalyst to the amide-nitrogen
was responsible for the observed excellent regioselectivity (as seen in 156). Additionally,
an enantioselective version of the (5 + 1) cyclization reaction between quinolinium 1,4-
zwitterions and activated terminal alkynes was also conducted (as shown at the bottom
of Scheme 32). The chiral pyrazino[1,2-a]quinoline derivatives (S)-154 were produced in
excellent yields (up to 98%) with high enantioselectivities (up to 99% ee) in the presence of
Cu(MeCN)4BF4 and the S-(−)DM-SegPhos (L1) complex.
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and activated terminal alkynes.

3.2.2. (5 + 2) Cyclization

In 2014, Yoo et al. conducted the first (5 + 2) cyclization reaction for nitrogen-based pyri-
dinium 1,4-zwitterions. As shown in Table 4, dimethyl acetylenedicarboxylates (DMADs)
were used as reactants in the (5 + 2) cyclization process under thermal conditions. The
1,4-diazepine compounds 158 could be isolated in excellent yields (following Path a) [49].
Furthermore, a two-step, one-pot (5 + 2) cyclization reaction could also be performed at
120 ◦C to yield a wide range of desired products 158 in good yields (following Path b).
Additionally, a four-component annulation reaction was also investigated and carried
out successfully, producing 1,4-diazepines in acceptable yields (following Path c). The
broad substrate scope, good tolerance of functional groups, and unique reaction pathways
demonstrated the versatility of the developed methodology.
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Table 4. Rh(III)-catalyzed (5 + 2) cyclization of nitrogen-based pyridinium 1,4-zwitterions with alkynes.
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Yield (%)

Path a Path b Path c

1 C6H5 C6H5 4-MeC6H4 CH3 92 82 50
2 C6H5 4-MeOC6H4 4-MeC6H4 CH3 90 79 47
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A metal-free cascade (5 + 2)/(2 + 2) cyclization reaction between pyridinium 1,4-
zwitterions 2 and in situ-generated arynes 23 was described in 2017 [96]. As illustrated in
Scheme 33, fluoronium promoted the in-situ formation of arynes 23 from silylaryl triflate 22,
followed by a (5 + 2) cyclization reaction with pyridinium 1,4-zwitterion 2, resulting in the
formation of the 1,2-dearomative intermediate 162. Finally, (2 + 2) cyclization of intermedi-
ate 162 with another molecule of benzyne 23 produced pentacyclic 1,4-benzodiazepine 161
in acceptable yields (36–54%). This reaction was characterized by the recovery of pyri-
dinium 1,4-zwitterions, a broad substrate scope, and mild reaction conditions.

Gold(I)-catalyzed cyclization reactions are some of the most powerful and widely
used synthetic methods for the synthesis of cyclic compounds [97–99]. In the context
of a gold catalysis, the transformation of compounds based on the (5 + 2) cyclization of
allenamides 163 and 1,4-zwitterions 2′ was reported in 2018 (Scheme 34) [100]. Quinolinium
1,4-zwitterions 2′ smoothly took part in the reaction and transformed into polycyclic 1,4-
diazepines 164. The maximum yield of the products was recorded to be 98%. For the
reaction mechanism, in the presence of a gold catalyst, allenamide could convert into an
Au-bound allylic cation 165, which was attracted by the nitrogen anion of quinolinium 1,4-
zwitterion to generate intermediate 166. Finally, intramolecular 1,2-dearomative cyclization
delivered the target compound 164.
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In 2018, Yoo et al. prepared a series of N-heteroaromatic rings derived 1,4-zwitterions [101].
Nuclear independent chemical shift (NICS(0)) values and structural calculations revealed that
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the aromaticity of the heteroaromatic ring strongly influenced the stability of 1,4-zwitterions
(not shown). In their report, the (5 + 2) cyclization of N-heteroarenium 1,4-zwitterions with
acetyl chloride 167 was also carried out with DIPEA as the base. 1,5-diazepinone derivatives
168 could be synthesized in 39–99% yields (Scheme 35). The reaction between acetyl chloride
167 with DIPEA was conducted smoothly in situ-generated ketene 167′, which was attracted
the nitrogen anion of 1,4-zwitterions to give intermediate 168′. Then, the final product 168 was
delivered through the intramolecular 1,2-dearomative cyclization of intermediate 168′. It is of
note that the cyclization reaction provided the desired product when alkyl chloride was used
under the current conditions. On the contrary, the developed (5 + 2) cyclization reaction could
not be conducted with the in situ-formed aryl ketene.
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1,4-zwitterions with in situ-generated ketenes.

3.2.3. (5 + 3) Cyclization

(5 + 3) cyclization is one of the most effective methods to construct eight-membered
heterocycles [102–107]. However, it is challenging to conduct the asymmetric version of
the reaction, and this problem needs to be addressed. Nitrogen-based pyridinium and
quinolinium 1,4-zwitterions, as the most representative 1,5-dipoles, can be used to readily
synthesize chiral eight-membered heterocycles. In 2015, Yoo et al. developed the Rh(II)-
catalyzed (5 + 3) cyclization of pyridinium 1,4-zwitterions 2 and enol diazoacetates 169a
(Scheme 36) [108]. Modest yields of products 170 were observed (maximum yield: 71%).
The mechanism consisted of three steps, as outlined in the middle of Scheme 36. The
first step involved the reaction between enol diazoacetate and Rh(II), and this reaction
yielded the Rh(II)-enolcarbene 171. Next, Rh(II)-enolcarbene interacted with pyridinium
1,4-zwitterions to form intermediate 172. Finally, intramolecular cyclization yielded the
corresponding compound 170 while regenerating the active Rh(II) catalyst for the next
cycle. Additionally, a chiral Rh(II) catalyst was used to promote the stereoselective (5 + 3)
cyclization of pyridinium 1,4-zwitterion 2a with TBS-protected enol diazoacetate 169a. The
stereoselective synthesis of chiral 170a was achieved in a 60% yield with 90% ee when chiral
Rh(II) catalyst C4 was used to conduct the reaction (Table 5, entry 3).
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Entry [Rh] Yield (%) ee (%)

1 C2/R = iPr 47 62
2 C3/R = tBu 23 67
3 C4/R = 1-adamantyl 63 90

Yoo et al. also described a stereoselective (5 + 3) cyclization between quinolinium 1,4-
zwitterions 2′ and enol diazoacetates 169, catalyzed by Cu(I), as shown in Scheme 37 [109].
The desired diazocine derivatives (S)-173 could be synthesized in excellent yields (up to
97%) with perfect ee values (up to 97%) using a Cu(I)/bisoxazoline ligand L2 complex
as a catalyst and a catalytic amount of NaBArF as an additive. The authors proposed
that the non-coordinating anion of NaBArF enhanced the electrophilicity of the carbenoid
intermediate during the reaction process. A transition state 174 was proposed, where the
bisoxazoline ligand L2 binds with the central Cu(I) to guide intramolecular 1,2-dearomative
cyclization, thereby ensuring the observed enantioselectivities. It is worth noting that the
reactions failed when either the enol diazoamide derivative or the pyridinium 1,4-zwitterion
was used as a partner under the specified reaction conditions.
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3.3. Cascade 1,4-Dearomative (2 + n) Cycloaddition/Intramolecular Cyclization

One remarkable feature of nitrogen-based pyridinium and quinolinium 1,4-zwitterions
is their stability, which can be attributed to the aromaticity of the heteroarenium core. The
selective dearomatization of the heteroarenium core intrigues many chemists. In 2018,
Yoo et al. discovered that the charge delocalization property of the pyridinium zwitterion
could be exploited for the selective 1,2- or 1,4-dearomatization of pyridinium [110]. Based
on this discovery, various cascade 1,4-dearomative (2 + n) cycloaddition/intramolecular
cyclization reactions have been developed in recent years.

3.3.1. Cascade 1,4-Dearomative (2 + 1) Cycloaddition/Intramolecular Cyclization

The sole example of a cascade dearomative (2 + 1) cycloaddition/intramolecular
cyclization was reported by Yoo in 2020 (Scheme 38) [93]. In this study, NaOMe (2.0 equiv.
in DMF at 40 ◦C) was used as a base. Trimethylsulfoxonium iodide 102 or sulfonium
ylide salt 103 was used to synthesize the corresponding product 175 in good-to-excellent
yields (up to 98%). The mechanism (using 102 as an example) involved the nucleophilic
addition of the in situ-generated sulfoxonium ylide 106 to the 4-position of quinolinium,
resulting in 1,4-dearomatization and the formation of intermediate 176. This was followed
by cyclopropanation to form a cyclopropane ring and the smooth intramolecular cyclization
of intermediate 177 to yield the tetrahydroimidazo[1,2-a]quinoline 178. The rearomatization
of 178 was achieved by extracting TolSO2H to give the final desired product 175. Chiral
benzyl sulfonium salts 179 could also be effectively used to conduct the reactions. Good,
isolated yields, variable levels of diastereoselectivity, and excellent enantioselectivity were
achieved when the reactions were conducted in the presence of NaH in acetonitrile at 40 ◦C
(Table 6).
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7). In the absence of substituents (R = H), compounds 183 were obtained in generally good 
yields. In contrast, C3-substituted pyridinium zwitterions were compatible with the de-
veloped strategy, but a totally different regioselectivity was observed. Compound 184 was 
smoothly generated in the absence of acetic acid. The authors hypothesized that the Pd(II)-
TMM species 185 was initially generated when Pd(PPh3)4 reacted with TMM (Scheme 40, 
top). Following this, the Pd(II)-TMM species attracted pyridinium zwitterions to yield the 

Scheme 38. Cascade 1,4-dearomative (2 + 1) cycloaddition/intramolecular cyclization of nitrogen-
based quinolinium 1,4-zwitterions and sulfur-based ylides.

Table 6. Enantioselective cascade cyclization of nitrogen-based quinolinium 1,4-zwitterions with
chiral sulfonium ylide salts.
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Entry R1 R2 R3 Yield (%) dr ee (%)

1 H C6H5 C6H5 65 3.0:1 95
2 Me C6H5 C6H5 66 3.7:1 96
3 H 3-MeC6H4 C6H5 65 3.3:1 95
4 H C6H5 4-CF3C6H4 88 >20:1 95
5 H C6H5 2-MeC6H4 81 1.6:1 97

3.3.2. Cascade 1,4-Dearomative (2 + 3) Cycloaddition/Intramolecular Cyclization

The 1,4-Dearomative (2 + 3) cycloaddition-triggered intramolecular cyclization of pyri-
dinium 1,4-zwitterions was first disclosed in 2019 [111]. Pd(PPh3)4 was used to catalyze the
dearomative (2 + 3) cycloaddition between trimethylenemethane (TMM) and pyridinium
1,4-zwitterion 2a, resulting in the production of the unstable cycloadduct 182a. Fortunately, the
use of acidic additives promoted the elimination of sulfinic acid and the isomerization of the
compound to furnish 183a as the major product (Scheme 39). Evaluation of the substrate scope
indicated that the efficiency and selectivity of the cycloadditions depended upon the nature
of the substituent at the C3-position of pyridinium (Table 7). In the absence of substituents
(R = H), compounds 183 were obtained in generally good yields. In contrast, C3-substituted
pyridinium zwitterions were compatible with the developed strategy, but a totally different
regioselectivity was observed. Compound 184 was smoothly generated in the absence of
acetic acid. The authors hypothesized that the Pd(II)-TMM species 185 was initially generated
when Pd(PPh3)4 reacted with TMM (Scheme 40, top). Following this, the Pd(II)-TMM species
attracted pyridinium zwitterions to yield the key intermediate 186. Next, the steric hindrance
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at the C3-position of pyridinium led to two pathways (Paths a and b) that could be followed
to obtain the corresponding products. Furthermore, DFT calculations were conducted, and
the computational results demonstrated that pyridinium 1,4-zwitterions were more likely to
undergo C−C bond formation reactions, resulting in 1,4-dearomation and the formation of
the intermediate 186 (Scheme 40, bottom).
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3 H C6H5 4-tBuC6H4 52 -
4 Cl C6H5 C6H5 - 99
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A strategy for multicomponent dipolar cycloaddition that involves the participation
of in situ-formed azomethine ylides has been widely applied in the generation of nitrogen
heterocyclic structures with a high level of functionality [112–116]. Yoo et al. have reported
a catalyst-free multicomponent 1,3-dipolar cycloaddition/intramolecular cyclization re-
action involving N-heteroarenium 1,4-zwitterions, aldehydes 194 and amino acids 195
(Scheme 41) [117]. The reaction was carried out in CH3CN at 80 ◦C and involved the de-
carboxylation of the aldehydes with amino acids to generate azomethine ylide 197, which
underwent a (2 + 3) cycloaddition reaction with pyridinium to give intermediate 199. Inter-
mediate 200 was then produced via intramolecular cyclization, and this was followed by the
elimination of sulfinic acid, resulting in the formation of the desired product 196. It is impor-
tant to note that a strong electron-withdrawing group should be present at the para-position
of the phenyl ring in aromatic aldehydes to achieve a high level of regioselectivity.
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3.3.3. Cascade 1,4-Dearomative (2 + 4) Cycloaddition/Intramolecular Cyclization

The only example of cascade 1,4-dearomative (2 + 4) cycloaddition/intramolecular
cyclization was reported by Yoo et al. in 2018 (Scheme 42) [110]. The decarboxylative
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cycloadditions of γ-methylidene-δ-valerolactone 201 with pyridinium 1,4-zwitterions 2
were catalyzed by Pd(PPh3)4 (2 mol%) and PBu3 (20 mol%) in tetrahydrofuran, producing
various tetrahydroimidazo[1,2-a]pyridine derivatives 202 in excellent yields with perfect di-
astereoselectivities. The nucleophilic attack of the carbanion of Pd(II)-zwitterion species 203
on the C4 position of the pyridinium produced species 204, which underwent intramolecu-
lar cyclization to form a six-membered ring. Finally, an intramolecular nucleophilic addition
within intermediate 205 resulted in cyclization and produced the target compounds 202
(Scheme 43, top). DFT-based calculations indicated that the 1,4-dearomatization of the
pyridinium moiety was thermodynamically favored (Scheme 43, bottom). The frontier
molecular orbital (FMO) energy difference between the HOMO of the Pd(II)-zwitterion
species 203 and the LUMO of the pyridinium zwitterion 2 was only 0.36 eV. This promoted
efficient electronic coupling with a remarkably low barrier (not shown).
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3.4. 1,4-Dearomative Ring Expansion/Intramolecular Cyclization

Diazoacetate- and diazomethane-derived Grignard can achieve the 1,2-dearomative ring
expansion of quinolinium to produce azepine derivatives [118]. In contrast, Yoo and Kim
documented the 1,4-dearomative ring expansion of quinolinium using silver as a catalyst in
2021 (Scheme 44) [119]. They found that a broad range of functional groups were tolerated, and
a high degree of regioselectivity, leading to the formation of multifused azepine derivatives
210 in good yields, could be achieved. Under optimized conditions, the in situ-generated
diazoacetate anion 211 selectively attacked the C4 position of the quinolinium to effect 1,4-
dearomatization and form intermediate 212. The silver-carbenoid 213 was generated smoothly
when a silver catalyst reacted with intermediate 212 via the release of nitrogen gas. The
intramolecular cyclization of 213 resulted in the formation of cyclopropane intermediate 214,
followed by ring expansion to produce compound 215. Finally, compound 215 converted into
the desired azepine 210 following the process of intramolecular hydroamination. It is worth
noting that a separable byproduct 216 was formed during the process, which might have been
generated from intermediates 212 or 213.
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multistep cascade cyclization. With respect to nitrogen-based 1,4-zwitterions, different 
types of cyclization, such as (3 + 2) cyclization, (5 + n) cyclization, cascade 1,4-dearomative 
cycloaddition/intramolecular cyclization, and 1,4-dearomative ring expansion/intramo-
lecular cyclization have been reported. The disclosed strategies have allowed the synthesis 
of a wide range of structurally diverse cyclic compounds, ranging from three- to eight-
membered rings. However, there is still much room for improvement in this field. For 
example, the 1,4-dearomatization of sulfur-based, 1,4-zwitterion-triggered cyclization is 
limited, and only one report has been reported to date. Additionally, the use of nitrogen-
based 1,4-zwitterions as pyridinium ylide-type synthons for the construction of nitrogen-

Scheme 44. Ag(I)-catalyzed 1,4-dearomative ring expansion/intramolecular cyclization of quinolin-
ium 1,4-zwitterions with diazoacetates.

4. Summary and Outlook

In this review, we have summarized recent progress in the application of pyridinium
and quinolinium 1,4-zwitterions for the efficient synthesis of heterocycles. The reported
pyridinium and quinolinium 1,4-zwitterions can be classified into sulfur-based and nitrogen-
based 1,4-zwitterions according to the types of anions. As to the study of sulfur-based
1,4-zwitterions, the known cyclization reactions include (2 + 3), (3 + n), (4 + n), (5 + n),
and multistep cascade cyclization. With respect to nitrogen-based 1,4-zwitterions, dif-
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ferent types of cyclization, such as (3 + 2) cyclization, (5 + n) cyclization, cascade 1,4-
dearomative cycloaddition/intramolecular cyclization, and 1,4-dearomative ring expan-
sion/intramolecular cyclization have been reported. The disclosed strategies have allowed
the synthesis of a wide range of structurally diverse cyclic compounds, ranging from
three- to eight-membered rings. However, there is still much room for improvement in
this field. For example, the 1,4-dearomatization of sulfur-based, 1,4-zwitterion-triggered
cyclization is limited, and only one report has been reported to date. Additionally, the use
of nitrogen-based 1,4-zwitterions as pyridinium ylide-type synthons for the construction of
nitrogen-containing heterocyclic compounds has not been reported to date. Some progress
on the stereoselective reaction involving 1,4-zwitterions has also been made. However,
the authors firmly believe that the exploration of asymmetric transformation is always
worth pursuing. Additionally, photochemical catalysis is worth exploring in the field of
transformations involving pyridinium and quinolinium 1,4-zwitterions.

We believe that this review will provide a useful reference for synthetic chemists who
are interested in this area of work. The authors expect to see more progress and advances
in the applications and scope of pyridinium and quinolinium 1,4-zwitterions in the near
future. The authors also would like to apologize in advance for any unintentional omission
of any literature report.
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