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Abstract: Several types of pollutants have acute adverse effects on living bodies, and the effective
removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a
topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few
reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and
EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from
simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants.
We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27%
(for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real
wastewater containing natural ions (Na+, K+, F−, Cl−, SO4

2−, PO4
3−, Mg2+, and Ca2+) and other

molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin
O and merbromin, respectively) because of the presence of other ions and molecules. A plausible
mechanism for the removal of these pollutants using MOF-5 was proposed.

Keywords: metal organic framework (MOF); wastewater management; natural ions; safranin O and
merbromin; dyes and pharmaceutical wastes; adsorption

1. Introduction

The amount of pure drinkable water decreases daily, for both natural and artificial
reasons. Industrial development is a major contributor to water pollution. Since the very
beginning of the industrial revolution, as the industrial sectors have expanded every year,
the amount of various hazardous chemicals contaminating groundwater has increased
rapidly [1,2]. Different types of dyes are pollutants that add up to a serious issue of water
pollution [3]. There are various types of dyes that are used in different industries, especially
in the textile industry, broadly divided according to the (a) method of application and
(b) chemical structure [4]. On the other hand, based on charge, dyes can be classified into
three classes: (a) cationic dyes (e.g., rhodamine B, methylene blue, and rhodamine 6G),
(b) anionic dyes (e.g., Congo red, methyl orange, and acid fuchsin), and (c) neutral dyes
(e.g., Giemsa stain) [5,6]. In general, anionic dyes tend to be acidic, whereas cationic dyes
are basic in nature [7]. Anionic dyes are utilized for the modification of acrylic, polyamide,
and polypropylene fibers, whereas cationic dyes are frequently used in the dyeing of
acrylic, wool, and silk fibers [5]. There are also different pharmaceutical pollutants, such as
staining dyes, antibiotics, antimicrobial medicines, and other harmful drugs, which are also
responsible for serious water pollution and severe negative impacts on the environment.
Safranin-O and merbromin (Figure 1) are hazardous pollutants [8]. Safranin O (or safranin)
is a well-known cationic dye that is frequently used to stain cells in laboratories and
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hospitals [9]. However, safranin O also has detrimental effects on the cardiovascular system
and other serious health problems, including methemoglobinemia, cyanosis, spasms, and
severe eye and skin irritation [10].
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On the other hand, merbromin, a mercury-ion containing pharmaceutical waste (which
is a sodium salt of 2,7-dibromo-4-hydroxymercurifluorescein), is typically used as an
antiseptic, mostly for external treatments of cuts and scrapes [11]. Although many of us
are unaware of its hazardous effects, we apply it to different injuries, minor wounds, and
burns [11]. It is responsible for gastrointestinal problems, such as nausea and vomiting
like some other drugs and pharmaceuticals [12]. Merbromin can result in high mercury
concentrations in the blood, urine, and other organs, as well as severe digestive system
damage, renal failure, and toxicity to other organs [11].

Therefore, it is necessary to eliminate safranin O and merbromin from water to prevent
their adverse effects on many living systems. Safranin O and merbromin were chosen as
the main hazardous pollutants for this investigation. Few methods have been reported for
removing these two compounds from water.

Currently, there are different methods for the removal of these contaminants, such
as osmosis [13], photocatalytic degradation [14], membrane filtration [15], electrochemical
process [16], electrolysis [17], organic processes [18], and adsorption [19,20]. However,
techniques other than adsorption are expensive, time-consuming, and complex, with poor
recycling efficiency. Adsorption is considered an effective, convenient, and reliable technol-
ogy because of its simple and straightforward method and operation and high proficiency,
even at extremely low concentrations. Several materials have been reported to remove these
toxic pollutants, including nanomaterials [21,22], minerals [23], quantum dots [24], metal
organic frameworks (MOFs) [25], and covalent organic frameworks (COFs) [26]. Various
MOFs employed for wastewater treatment have been reported in the literature. MOFs have
a variety of intriguing distinctive traits, including a large surface area, numerous adjustable
pores, and tunable surface properties [27]. These features make MOFs promising tools for
adsorption, separation, drug delivery, ion exchange, storage, and catalysis [28–30]. Various
adsorbents have been reported to remove organic/organometallic molecules. Among these,
some materials suffer from several drawbacks, such as complicated or costly synthesis. Like
zeolites, which require an inorganic or organic template for their preparation, solvents are
the major templating molecules for the synthesis of MOFs [31]. In addition, many materials,
such as different aerogels and nanomaterials, have been reported to be less efficient in
wastewater treatment compared with MOFs [32–37].

MOF-5 (chemical formula: Zn4O13(C8H4)3), also known as IRMOF-1, a well-known
MOF, has vast applications because of its high porosity, unique structure, and thermal
stability. It has a three-dimensional structure consisting of Zn4O clusters and terephtha-
late ligands [38]. The size and porosity (or pore volume) of an adsorbent determine its
adsorption efficiency.

In the present context, we prepared MOF-5 following a procedure reported in the
literature with slight modifications and characterized it by FT-IR, powder XRD (PXRD),
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FESEM, and EDS analysis. The as-prepared MOF-5 was used to remove safranin O and
merbromin from simulated and real wastewater via adsorption. This is the first time MOF-5
has been used to eliminate these two pollutants.

2. Results and Discussion
2.1. Characterizations of the Synthesized MOF-5
2.1.1. PXRD Analysis

Figure 2a shows the PXRD pattern of the synthesized MOF-5. All characteristic peaks
appear at 2θ values of 6.86◦, 9.71◦, 13.6◦, 15.3◦, 22.5◦, 24.9◦ and 26.3◦, which represent the
corresponding crystal planes of (200), (220), (400), (420), (442), (711), and (731), respectively.
These are very similar to the reported MOF-5 PXRD diffraction data in the literature [39,40]
and closely match the file number of the Joint Committee on Powder Diffraction Standards
(JCPDS) 36–1451 [41]. From these data, it can be concluded that MOF-5 has a cubic unit cell
crystal structure. The sharp and large intense peaks represent the high crystallinity of the
adsorbent, which is consistent with the FESEM image (Figure 2c).
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2.1.2. FT-IR Analysis

The skeletal arrangement of MOF-5 was validated using FT-IR spectroscopy. The
stretching vibrations of the -COO group in the terephthalic acid linker had symmetric and
asymmetric stretching peaks at 1380 cm−1 and 1584 cm−1 in the FT-IR spectra (Figure 2b).
This stretching vibration was different from the infrared spectrum of the terephthalic acid
ligand, which appeared at 1660 cm−1. The peaks corresponding to >C=O exhibited a
noticeable red shift. This is due to the formation of terephthalate and Zn2+ coordination of
the ligand -COO, that is, COO-Zn2+. This makes the carbonyl electron distribution relatively
uniform and lowers the electron cloud’s density [42]. The broad line at 3000–3500 cm−1

indicates the presence of water molecules coordinated to the metal center [43]. The sharp
peak at 1502 cm−1 represents the C=C vibration that is present in the linker [40]. Several
small peaks within the ranges of 1250–950 cm−1 and 800–650 cm−1 represent the in-plane
and out-of-plane vibrations of the aromatic C-H bonds [44]. When compared with the data
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mentioned in the literature, it can be justified that pristine MOF-5 crystals were formed in
the present synthesis.

2.1.3. FE-SEM Analysis

The morphology of MOF-5 was investigated by FESEM. In the present work, it was
found that the average size of the prepared MOF-5 ranged from 10 to 20 µm (Figure 2c)
of the prepared MOF-5. As shown in Figure 2c, all MOF-5 particles were cubic in shape.
Mirsoleimani-Azizi et al. synthesized cubic MOF-5 with an average diameter of approxi-
mately 550 nm using zinc acetate at room temperature [45]. Cubic MOF-5 with a crystal
size of 5–25 µm was synthesized by Son et al. using a rapid sonochemical method [46].
Uniform cubic MOF-5 crystals, 20–25 µm in size, were also prepared through a microwave
heating solvothermal route using 1-methyl-2-pyrrolidone as a solvent by SikChoi et al. [47].
Zhao et al. synthesized cubic MOF-5 monocrystals with diameters of 40–60 µm [48].

2.1.4. EDS Analysis

The elemental composition of MOF-5 was analyzed using EDS. The elemental mapping
of the uniform distribution of C, O, and Zn in Figure S1 demonstrates how the skeleton
function of MOF materials can prevent the aggregation of metal particles and ensure that
the appropriate metal elements are equally dispersed, which is very similar to the data
reported in the literature [49].

2.2. Effect of pH

Figure 3a shows the variation in percentage removal under different pH conditions for
both safranin O and merbromin. The maximum removal efficiency was observed at pH 10
(53.27%) for safranin O and at pH 6 (41.49%) for merbromin. The point of zero charge (PZC)
for the MOF-5 was at pH 4.6, which matches well with the reported value [50]. Hence, the
surface of MOF-5 becomes negatively charged above pH 4.6 and positively charged below
this pH [50]. Safranin O is a cationic azo dye, while merbromin (disodium organomercuric
salt) contains a negatively charged exterior owing to the presence of –O− and –COO−

groups. This information is consistent with that observed in the current study on the effect
of pH on pollutant removal. Hence, for safranin O, removal increased as the surface became
increasingly negative. For merbromin, an increase was observed as the pH increased from
2 to 6, and above pH 6, the removal efficiency decreased because of the increasing repulsive
interaction between the negatively charged merbromin and MOF-5. Significant electrostatic
interactions between the adsorbent and adsorbate occurred during adsorption. In addition,
there may be a weak noncovalent force of attraction between merbromin and MOF-5, for
which it was adsorbed. There may be substantial H bonding between the OH and –COOH
groups of merbromin (at pH 6) and the adsorbed –OH on MOF-5 at low concentrations of
–OH groups on MOF-5 (at pH-6).

2.3. Effect of Adsorbent Dose

The mass of the adsorbent is also a determining factor, because it provides adsorption
sites for adsorbate molecules. Figure 3c shows the variation in the removal percentage
with the adsorbent dosage (W). The removal efficiency of the pollutants increased with
an increase in the amount of adsorbent (from 250 to 2000 mg/L) and was found to be
maximum (95.01% and 90.80% for safranin O and merbromin, respectively) at an adsorbent
concentration of 2000 mg/L. This result was obvious, as the increase in the amount of
adsorbent provided a greater number of adsorption sites for capturing the adsorbate
molecules during the adsorption process, which ultimately enhanced the adsorption [49].
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2.4. Effect of Contact Time and Adsorption Kinetics

As the adsorption time increased, the pollutant was increasingly adsorbed on MOF-5.
The equilibrium times for safranin O and merbromin were 180 min and 210 min, re-
spectively. After equilibrium was reached, the adsorption percentage remained almost
unchanged. When equilibrium was reached, the percentage removal was 53.27% and 41.49%
for safranin O and merbromin, respectively (Figure 3d). This result was obvious, because
when equilibrium was reached, all the adsorption sites were closed, and there were no
vacant adsorption sites.

For the kinetic study, the pollutants were adsorbed on MOF-5 for 180 min for safranin
O and 210 min for merbromin. The removal percentages in both cases were checked
periodically, and the data are plotted in Figure 4a,b. The kinetic data fit well to the linear
form of the pseudo-first-order model. All calculations and related figures are presented
in Supplementary Materials (Table S1 and Figure S2). Here, for safranin O, as the value
of R2 (=0.98) was close to unity and the value of the experimental adsorption capacity
(Qe(ex) = 7.99 mg/g) was well matched to the calculated value (Qe(cal) = 6.22 mg/g), it can
be concluded that in this case, a pseudo-first order should be the kinetic model. Meanwhile,
in the case of merbromin, R2 was 0.98, and here, Qe(ex) = 10.37 mg/g, which was matched
well with the theoretical one (Qe(cal) = 9.75 mg/g) for the pseudo-first order. Here, R2 is
the correlation coefficient, as reported in the literature [51]. According to the literature, our
experimental data fit well with the pseudo-first-order kinetic model, as evidenced by the
highest R2 value [51,52].
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2.5. Effect of Adsorbate Dosage and Isotherm Modeling

The variation in the initial concentration (Co) of waste contaminants is another impor-
tant factor in the sorption process. The equilibrium adsorption capacity (Qe) was found
to be maximum (8.19 mg/g) at the 15 mg/L concentration and minimum (1.61 mg/g) for
the 2 mg/L solution of safranin O. Meanwhile, in the case of merbromin, the equilibrium
adsorption capacity (Qe) was found to be maximum (12.22 mg/g) at a higher concentration
(25 mg/L) and minimum (0.09 mg/g) at a lower concentration (1 mg/L) (Figure 3b). This
occurs because at higher concentrations of pollutant molecules, there is a higher probability
of collisions with adsorption sites on the adsorbent surface. Again, the mass transfer
improves during adsorption, which can decrease the mass transfer resistance and hence
increase the adsorption capacity [53,54].

Isotherm modeling is important for this analysis, as it provides information regard-
ing the isotherm adsorption behavior for the removal process of these contaminants.
Five isotherm models (Langmuir isotherm, Freundlich isotherm, Temkin isotherm, Elovich
isotherm, and Dubinin–Radushkevich isotherm models) were investigated to determine the
adsorption process. The results of the experiment are shown in Figures 4c,d, S3 and S4 and
Table S2. From the data, it can be concluded that the best-fitting model for both cases was
the Freundlich isotherm. Thus, the adsorption was multilayered, with KF = 1.24 [mg. g−1

(mg L−1)−0.6214] (for safranin O) and 2.04 [mg. g−1 (mg L−1)−0.6919] (for merbromin), and
n values were 1.60 (for safranin O) and 1.44 (for merbromin). Linear fitting was performed
using the R2.

Different Qmax values for dye removal by MOF-5 are reported in Table 1 (if we assume
that the removal follows the Langmuir isotherm model, then only the Qmax values were
8.19 mg/g and 22.22 mg/g for safranin O and merbromin, respectively (Table S2)). From
the table, it can be concluded that our prepared MOF-5 also works as well as the other
reported MOF-5s, and that it is even superior to some other MOF-5s.
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Table 1. Comparison of Qmax for different dye removals by MOF-5.

Adsorbate Type of Dye Qmax (mg/g) References

Aniline blue Cationic 55.34 [49]

Methylene blue Cationic 51.81 [55]

Malachite green Cationic 50.69 [56]

Methylene blue Cationic 2.632 [49]

Safranin O Cationic 8.19 This study

Congo Red Anionic 769.23 [57]

Orange II Anionic 10.01 [49]

Merbromin Anionic 22.22 This study

Overall, it can be concluded that MOF-5 had certain advantages over other different
adsorbents. It has also been found that MOFs are more or similarly efficient in comparison
to other kinds of adsorbents (e.g., nanomaterials, bio adsorbents, graphene oxide, carbon
nanotubes, and aerogels) that are used for wastewater treatment. Comparisons between
the Qmax values of different adsorbents for the removal of different dyes are reported in
Table 2 (to the best of our knowledge, merbromin removal has not yet been reported).

Table 2. Comparison of Qmax for different dyes with MOFs and other adsorbents.

Adsorbent Adsorbate Qmax (mg/g) References

Coconut coir Methylene blue 15.59 [32]

Egg shell Methylene blue 16.43 [33]

Activated carbon from waste biomass Methylene blue 10.21 [34]

ZnO hydrid beads Basic blue 41 1.0–8.0 [35]

Polylactide/spent grain Malachite green 1.48 [36]

ZnO nanoparticles Methylene blue 0.3428 [37]

Coir pith carbon Methylene blue 5.87 [58]

ZnO@ananas comosus waste biomass Celestine blue 6.52 [37]

Ananas comosus waste biomass Celestine blue 5.42 [37]

Brewery spent grain Malachite green 2.55 [36]

Poultry feathers Malachite green 3.55 [36]

Ananas comosus waste biomass Celestine blue 5.42 [37]

MOF-5 Merbromin 22.22 This study

MOF-5 Safranin O 8.19 This study

2.6. Thermodynamics of Adsorption

The adsorption removal efficiency with respect to temperature is shown in Figure 5a,
and the data are represented in Table S3. The removal efficiency increased with increasing
temperature in both cases. The data were plotted as [ln (1/Ce) vs. temperature (1/T)]
(Figure 5b), and the thermodynamics of adsorption were modeled using linear regression
curves. The R2 value was higher than 0.98, which proved that the curves were well
fitted. ∆H values were calculated to be 18.77 kJ/mol and 11.16 kJ/mol for safranin O
and merbromin, respectively, from Figure 5b (overall results are displayed in Table S3). A
positive ∆H value indicates that both adsorptions are endothermic in nature, and a negative
∆G value implies that the adsorption is spontaneous [59]. The ∆G value is important
because it indicates whether the adsorption is physisorption or chemisorption. If the ∆G
value is negative and ranging from 0 to 20 kJ/mol, then it is physisorption, and if it
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is negative within the range of 80 kJ/mol to 400 kJ/mol, then it is chemisorption [60];
however, the ∆G◦ value varied from −3.8 to −4.2 kJ/mol for safranin O and from −3.4
to −3.8 kJ/mol for merbromin, and in both cases, the negative ∆G value was lower than
20 kJ/mol; hence, the adsorption process was physisorption [49,61]. Here, ∆S was highly
positive, indicating that during the adsorption process, the degrees of freedom increased at
the solid–liquid interface [45].
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2.7. Effect of Natural Ions and Molecules Present in Real Water

To determine the impact of other metal ions, anions, small molecules, and other
microorganisms on the adsorption behavior of the two organic pollutants, an adsorption
study in lake water was performed. The removal of various ions (Na+, K+, F−, Cl−, SO4

2−,
PO4

3−, Mg2+, and Ca2+) from contaminated real water was performed using the same
concentrations of the two pollutants. At room temperature and neutral pH, the adsorption
percentages of safranin O and merbromin were 34.00% and 26.28%, respectively. These
values are lower than those in the simulated wastewater. These changes were due to
several ions and other molecules being present in the real wastewater sample, which
competed with these pollutants and reduced their adsorption capacity. Table S4 presents
their amounts, and a comparison of the percentages of adsorption of the pollutants in the
simulated wastewater and lake water is presented in Figure 6a.
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2.8. Regeneration of Adsorbent

Figure 6b shows the desorption percentages of both dyes in the different solvents
after a single desorption cycle. It was found that after 180 min, the maximum desorption
percentage for safranin O was 45.4% in HCl, for merbromin, it was 21.6% in NaOH, and
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it then remained constant after further exposure. The desorption percentages of safranin
O were found to be 13.6% for NaOH, 11.7% for NaCl, and 9.2% for methanol. This is
acceptable, as safranin O is a cationic dye, and H3O+ can effectively replace safranin O,
because it can form a stronger interaction with MOF-5 than with safranin O. Furthermore,
NaOH and NaCl both form the same cation Na+, so their desorption ability is comparable
because of their poor charge density due to their larger size compared to H3O+.

However, for merbromin, the desorption percentages were 6.3% in HCl, 1.7% in NaCl,
and 5.6% in methanol. In the presence of NaOH, owing to the high pH of the eluent, the
surface of MOF-5 became highly negatively charged (PZC for MOF-5 was 4.6), along with
the formation of more OH− ions within the solution. Therefore, OH− ions can effectively
replace the anionic merbromin from the MOF-5 surface compared to other conditions. As
the desorption percentage was lower than 50%, further cycles were not performed.

2.9. Plausible Mechanism of Adsorption

MOFs can have both positive and negative charges on their surface depending on the
pH, while safranin O is a positively charged dye, and merbromin is anionic in nature [62].
If MOFs have a positive charge, they can attract negative or anionic dyes, and if MOFs are
negatively charged, they can attract positively charged dyes electrostatically. Therefore,
electrostatic attraction is the predominant factor in the adsorption of MOFs [63]. Dyes can
also be adsorbed via π-π interaction [64], hydrogen bonding [65–67], ion exchange [68,69],
Lewis acid–base interactions [70–72], etc.

For electrostatic interactions, the MOF surface and the adsorbate should have opposite
charges, so that they can easily be attracted to each other and hence adsorbed through a pure
Coulombic attraction force. In the case of π–π-type interactions, noncovalent interactions
occur between the two aromatic rings. Hazrati and Safari [73] reported that the sorption
of reactive black 5 on a Cd-based MOF (TMU-8) is due to π–π interaction between the
aromatic ring of reactive black 5 and the framework of the MOF. Again, an exchange of
ligands or ions between the two intricate structures is found for the sorption of dyes onto
MOFs via the ion exchange process. According to Yao et al. [68], adsorption occurs via
ion exchange between the [(CH3)2NH2]+ ions that are present in JLU-Liu 39 and cationic
dyes (methyl violet, methylene blue, and rhodamine B) [68]. According to Zhao et al.,
the presence of Ni2+ as a Lewis acid enhances the removal of Congo red onto GO/MOFs
through a Lewis acid–base interaction [72]. There is also a mechanism called adsorption
through hydrogen bonding, which has rarely been reported.

According to the adsorption kinetics in the present context, MOF-5 is more useful
and has a better adsorption capacity for cationic dyes (safranin O) than for merbromin.
This may be explained by the electrostatic interactions between the negatively charged
MOF-5 surface and the cationic dye (Figure 7). The carboxylate moiety of MOF-5 forms
a negatively charged framework. At pH 10, the framework becomes negatively charged
(PZC for MOF-5 was 4.6), thus enhancing the adsorption of safranin O.

In contrast, merbromin is electronically anionic, and at a lower pH, it becomes proto-
nated and remains mostly neutral. Thus, at a lower pH, there might be a weak π-π-type
interaction, but as the pH of the medium increases, there will be electrostatic repulsion
between the merbromin molecule and the MOF-5 surface. Furthermore, there may be a
major chance in the interaction between the aromatic ring of the ligand that is present in
the MOF and the lone pairs of oxygen that are present in the merbromin dye at a lower pH.
This π-π-type interaction was reported by Elsherbiny et al. [49] and was the main cause for
the adsorption of merbromin onto MOF-5. As the π-π-type interaction is weaker than the
pure electrostatic interaction, the removal percentage of merbromin is comparatively lower
than that of safranin O.
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3. Materials and Methods
3.1. Chemicals and Reagents

Safranin was purchased from Sigma-Aldrich, India, merbromin from Loba Chemie,
Mumbai, India, and other common reagents were purchased from a local chemical com-
pany. All chemicals used in this study were of analytical grade and used without further
purification. All solutions used in the adsorption experiments were prepared using Milli-Q
water. The adsorption of these pollutants onto MOF-5 was also evaluated in a real wastew-
ater sample, collected from Kochbihar Lake (Sagar Dighi), Cooch Behar, West Bengal, India,
on 12 June 2023.

3.2. Preparation of MOF-5

MOF-5 was synthesized following a previously reported procedure [74] with some
modifications. First, terephthalic acid (0.033 g, 0.2 mmol) was dissolved in 20 mL of DMF in
a conical flask, and then, the zinc nitrate tetrahydrate (0.156 g, 0.6 mmol) solution (in 20 mL
of DMF) was added with continuous stirring. The reaction mixture was heated in an oil
bath at 110 ◦C for 24 h, cooled to room temperature, repeatedly washed with DMF followed
by anhydrous chloroform, soaked for 24 h in chloroform, filtered, and vacuum-dried for
24 h. MOF-5 was then kept under vacuum for 2 h, while being activated at 105 ◦C.

3.3. Characterization Techniques

The common instruments used to perform the experiments were a Remi R-8C cen-
trifuge, Remi orbital shaker (Model RS-36BL, Remi, Mumbai, India), Fisher Scientific
Accumet pH meter (Model AB 250, Fisher Scientific, Loughborough LE11 5RG, UK), and
Milli-Q Plant from Labconco Water Pro/Ro, Labconco, Kansas City, MO, USA. Skeletal
analysis of MOF-5 was performed using Fourier transform infrared (FTIR) spectroscopy
on a Benchtop Labtronics LT-4100, Labtronics, Welwyn Garden City AL7 1TW, UK, and
crystallinity was investigated by powder X-ray diffraction (PXRD) on a Thermo Scientific
ARL Equinox 1000, ThermoFisher Scientific, Waltham, MA, USA. Morphology, size, and
elemental analyses were performed using field-emission scanning electron microscopy
(FESEM) and energy-dispersive spectroscopy (EDS) (Zeiss EVO 18 from IIT Palakkad, Ker-
ala, India). The experimental analysis was performed using a UV-vis spectrophotometer
(Thermo Scientific Evolution 201, Fisher Scientific, Loughborough LE11 5RG, UK).
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3.4. Adsorption Isotherm Model

Adsorption isotherm modeling is an important parameter. Numerous adsorption
isotherm models have been developed to fit the experimental adsorption equilibrium
data. This study utilized commonly used solid–liquid adsorption isotherm models. The
different adsorption isotherm models with their equations and other statistical parameters
are plotted in Table S2 [61,75–77].

3.5. Adsorption Thermodynamics

For the thermodynamic study of adsorption, different authors have reported different
techniques for calculating adsorption thermodynamic parameters [78–81]. In this regard,
as adsorption follows the Freundlich model, we consider the equations reported in the
literature [76,82].

ln
1

Ce
= ln Ko−

∆H
RT

(1)

∆Go = −nRT (2)

∆So =
∆Ho − ∆Go

T
(3)

where Ce is the equilibrium adsorbate concentration (mg/L) in the solution, n is the fitting
constant of the Freundlich exponent, KF is the Freundlich empirical constant. R is the
universal gas constant (8.314 J/(mol K)) and T is the temperature (K). From the slope of the
plot of ln 1/Ce versus 1/T, the enthalpy change in adsorption (∆H◦) was calculated.

4. Experimental
4.1. Batch Adsorption Experiments

A comparative study of the adsorption behavior of MOF-5 towards safranin O and
merbromin was performed using the batch method. To study the effect of the initial
adsorbate concentration, different concentrations of safranin O (2–15 mg/L) and merbromin
(1–25 mg/L) were prepared from 100 mg/L stock solutions of the two pollutants. The
removal percentages of pollutants were also studied using different amounts of adsorbent,
ranging from 250 to 2000 mg/L. Adsorption was studied in the pH range of 2–12 to
determine the effect of pH on removal. The pH of the solution was adjusted using 0.1 M
NaOH and 0.1 M HCl. Adsorption experiments were conducted at different temperatures
(289, 299, 309, and 319 K) to determine the thermodynamic parameters of the process, such
as the Gibbs free energy change (∆G), enthalpy change (∆H), and entropy change (∆S).

Except where otherwise stated, the sorption experiment was carried out at room
temperature (r.t.) using 15 mg/L of safranin O at pH 10 and 25 mg/L of merbromin at pH
6; the volume of the solution was 10 mL. In all the cases, the amount of MOF-5 was 10 mg,
which remained the same unless otherwise stated. Safranin O and merbromin were mixed
with MOF-5 separately for 180 min and 210 min, respectively, and shaken at 250 rpm in
an orbital shaker from Remi (model number: RS-36BL, Remi, Mumbai, India). Aliquots
were periodically collected, centrifuged, and monitored using a UV-Vis spectrophotometer
(519 nm for safranin O and 505 nm for merbromin) to evaluate the progress of the reaction.
Before the UV-Vis spectral scanning for the determination of the pollutant concentrations,
centrifugation was performed every time on a Remi centrifugation (Remi R-8C, Remi,
Mumbai, India) at 1200 rpm for 10 min to extract MOF-5 from the solution.

The adsorption percentage and capacity (qt) were calculated using Equations (4) and (5),
respectively.

Adsorption (%) =
(C0 − Ct)

C0
× 100 (4)

qt =
(C0 − Ct)

m
× V (5)

where Co and Ct are the dye concentrations (mg/L) initially and after adsorption, respec-
tively, and V and m are the volume (L) of the solution and mass (g) of MOF-5, respectively.
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Because the adsorption process was performed in an aqueous medium, the aqueous
stability of MOF-5 was an important issue. In many studies, it was mentioned that MOF-5
showed considerable stability in aqueous media even after 24 h, and as the equilibrium of
adsorption was reached within 24 h in the present study, in the presence of water, the sta-
bility and the adsorption procedure were not hampered. For example, Elsherbiny et al. [49]
concluded from the TGA data that Zn-BDC (MOF-5) is considerably stable upto 425 ◦C,
which could be advantageous for the removal of pollutants at high temperatures. They
also performed a test of stability in water, and the results were satisfactory. Therefore,
MOF-5 could be used to treat wastewater. There are other examples too, such as Moham-
madi et al. [56] used MOF-5 to remove malachite green from simulated wastewater.

4.2. Regeneration of Adsorbent

In addition to adsorption, regeneration (or desorption) is an important mechanism by
which MOF can be recovered and reused. This was studied after the adsorption process for
both safranin O and merbromin was completed. In this regard, MOF-5 was initially well
saturated with the adsorbate solutions (15 mg/L at pH 10 for safranin O and 25 mg/L at pH
6 for merbromin; volume in each case = 10 mL); thereafter, centrifugation and decantation
were performed, followed by washing with Milli-Q water. For the regeneration step, the
adsorbate-loaded MOF-5 was then mixed with 0.01 M HCl, 0.01 M NaOH, 0.01 M NaCl,
and 99.8% MeOH separately and shaken till equilibrium [83].

The percentage of desorption was determined by the following equation (Equation (6)):

Desorption (%) =
amount of dye desorbed
amount of dye adsorbed

× 100 (6)

5. Conclusions

In general, MOF-5 was effectively synthesized and characterized by FT-IR, PXRD,
FESEM, and EDS using the reported data. The MOF-5 particles were cubic. Two organic
pollutants, safranin O and merbromin, were removed successfully using MOF-5 from
the simulated wastewater. The pollutant removal followed pseudo-first-order kinetics
and the Freundlich adsorption isotherm model. Moreover, thermodynamic parameters
demonstrated that adsorption occurs naturally as physisorption and is thermodynamically
favorable (∆G = − ve for both safranin O and merbromin). A reduction in the percentage
of adsorption occurred when real wastewater containing various ions (Na+, K+, F−, Cl−,
SO4

2−, PO4
3−, Mg2+, and Ca2+) was used. Safranin O and merbromin are widely used in

biological staining and pharmaceuticals despite their hazardous effects. We hope that this
removal study will be helpful in controlling water pollution that is caused by industrial and
pharmaceutical issues as much as possible by adding this new method for the improvement
of the environment.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules29040886/s1, Figure S1: (a). EDS spectra of as synthesized
MOF-5 and (b). elemental mapping of MOF-5; Figure S2: (a) pseudo second order plot of merbromin
removal, (b) pseudo second order plot of safranin O removal, (c) intra-particle diffusion of merbromin
removal, (d) intra particle diffusion of safranin O removal; Table S1: Statistical data for different
Adsorption Kinetics; Figure S3: Different Adsorption Isotherms for Merbromin adsorption onto
MOF-5 (a) Langmuir isotherm, (b) Temkin isotherm, (c) Elovich isotherm, (d) Dubinin-Radushkevich
isotherm; Figure S4: Different Adsorption Isotherms for Safranin O adsorption onto MOF-5 (a)
Langmuir isotherm, (b) Temkin isotherm, (c) Elovich isotherm, (d) Dubinin-Radushkevich isotherm;
Table S2: Statistical data for different adsorption isotherm; Table S3: Thermodynamic parameters for
dye adsorption onto MOF-5; Table S4: Various parameters in Kochbihar lake water.

https://www.mdpi.com/article/10.3390/molecules29040886/s1
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