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Abstract: Fe-Cr-C-B wear-resistant steels are widely used as wear-resistant alloys in harsh environ-
ments. The M3X (M = Fe, Cr; X = C, B) cementite-type material is a commonly used strengthening
phase in these alloys. This study investigated the mechanical properties of cementite (Fe, Cr)3(C, B)
using the first-principle density functional theory. We constructed crystal structures of (Fe, Cr)3(C,
B) with different concentrations of Cr and B. The bulk modulus, shear modulus, Young’s modulus,
Poisson’s ratio, and hardness of the material were calculated, and a comprehensive mechanical prop-
erty database based on CALPHAD modeling of the full composition was established. The optimal
concentrations of the (Fe, Cr)3(C, B) phase were systematically evaluated across its entire composition
range. The material exhibited the highest hardness, shear modulus, and Young’s modulus at Cr and
B concentrations in the range of 70–95 at% and 40 at%, respectively, rendering it difficult to compress
and relatively poor in machinability. When the B content exceeded 90 at%, and the Cr content
was zero, the shear modulus and hardness were low, resulting in poor resistance to deformation,
reduced stiffness, and ease of plastic processing. This study provides an effective alloying strategy
for balancing the brittleness and toughness of (Fe, Cr)3(C, B) phases.

Keywords: cementite; first-principle calculation; calculation of phase diagrams (CALPHAD); elastic
properties; brittleness–toughness

1. Introduction

Wear-resistant steel is typically alloyed with elements such as Si, Mn, Cr, Mo, W, V, Nb,
Ti, and B [1,2] to improve its overall performance. In general, these alloying elements are
introduced through two methods. In the first method, the solid solutions of these elements
are incorporated in the steel matrix for solid-solution strengthening. In the second method,
these elements are combined with other elements to create compound phases, primarily
borides and carbides, which serve as second-phase strengthening agents [3–6]. Cementite
is widely used to strengthen low-, medium-, and high-carbon steels. Specifically, cementite
(θ-Fe3C) is the most prevalent and pivotal strengthening phase, which plays a significant
role in the heat treatment and processing of steel [7].

In wear-resistant steel materials there are various types of carbides formed, and
the carbides exhibit certain metal bonding characteristics resulting in the dissolution of
other alloying elements through atomic substitution, forming complex multicomponent
solid solutions. This is the main difference between the strengthening phase in steel and
traditional compound phases [8]. The solubility of ca rbides is related to atomic radius, the
number of outer electrons, and lattice type. Based on experimental statistics, the types of
carbide strengthening phases in wear-resistant steel mainly include the following NaCl-
type (B1-type) face-centered cubic lattice structure MC phases, such as VC, NbC, TaC,
TiC, ZrC, HfC, etc. Non-metallic atoms in these phases often form vacancies, leading to
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a non-metal to metal ratio of less than 1. For example, the C content in VC ranges from
0.7 to 1, in NbC it ranges from 0.4 to 1, and in TiC it ranges from 0.5 to 1. Therefore, the
chemical compositions of commonly existing VC and NbC in steel are VC0.875 (VgC,) and
NbC0.875 (NbC,). Metal elements in MC phases can be completely mutually soluble, forming
compounds like (V,Ti)C [8,9]. Simple hexagonal lattice MC and M2C phases include MoC,
WC, Mo2C, and W2C, while complex hexagonal lattice M7C3 phases include Cr7C3 and
Mn7C3. Mo2C and W2C can be completely soluble with each other. Cr7C3 can dissolve
a considerable amount of Fe and Mn, and it can also dissolve certain amounts of W, Mo,
V, and other elements [10]. Complex cubic lattice M23C6 phases include Cr23C6, Mn23C6,
Fe21Mo2C6, and Fe21W2C6, etc. Cr23C6 can dissolve up to 25% Fe, and it can also dissolve
some Mn, Mo, W, V, Ni, and other elements [11]. Complex cubic lattice M6C phases include
Fe3Mo3C6 and Fe3W3C6, etc. In the M6C phase, W and Mo atoms can infinitely interchange
with each other. Complex orthorhombic lattice M3C phases include Fe3C and Mn3C, etc.,
and they can be completely mutually soluble, forming (Fe,Mn)3C. Fe3C can dissolve a
maximum of 28% Cr, 14% Mo, 2% W, or 3% V, forming alloy cementite [12].

It is known that the addition of chromium imparts such valuable properties as strength,
hot hardness, and corrosion resistance. By dissolving in iron in the presence of car-
bon, chromium can form the carbides (FeCr)3C, (CrFe)3C2, (CrFe)7C3, and (CrFe)4C. The
strength of the alloys is predominantly determined by the presence of the carbide phase,
i.e., the cementite Fe3C, in which the solubility of chromium is as high as 18 at%. A further in-
crease in the chromium content leads to the transformation (Fe,Cr)3C→(Cr,Fe)7C3→Cr7C3 [13].
Steels with an increased chromium content (6–32 at%) have a high wear resistance and the
formation of the chromium carbide Cr7C3 plays a significant role in the improvement of
their strength. The carbide Cr7C3 is thermodynamically stable. Recently, the metastable car-
bide Cr3C with a cementite structure (Fe3C-type) has been produced via rapid quenching.
It is known that the chromium carbides exhibit unique properties, such as high hardness,
chemical stability, and oxidation resistance [14].

White cast iron has been widely used as a wear-resistant material for a long time in
many industrial applications. It is well known that the elastic properties of the alloy can
be greatly affected by reinforced particles or precipitated phases. For white cast iron, the
precipitated carbides usually refer to Fe3C. However, pure Fe3C is thermodynamically
unstable. In practice, a small amount of Cr is added into ordinary white cast iron in order to
stabilize Fe3C-type carbides, and as a result, the obtained carbides can be finally represented
as (Fe, Cr)3C [15]. In current studies on the effect of boron on the wear resistance of Fe-Cr-B
alloys containing different boron contents (0 wt%, 5 wt%, 7 wt% and 9 wt%), the boron
element greatly improves the wear resistance of specimens as compared with that of an
unreinforced specimen.

Cementite precipitates from either austenite or the liquid phase via eutectic reactions.
The morphology and kinetics of cementite precipitation significantly affect the mechanical
properties of steel. θ-Fe3C is a thermodynamically unstable metastable phase in Fe–C
alloys. To obtain stable Fe3C-type carbides, alloying elements such as Cr and B are typically
introduced into standard white cast iron. The resulting cementite alloy can be represented
as θ-M3X (M = Fe, Cr; X = C, B) [16].

Lv [17,18] employed first-principles calculations to investigate the electronic struc-
ture, magnetic properties, and phase stability of Cr and Mn doped cementite alloys. The
calculations revealed that the mixing enthalpies of Fe8Cr4C and Fe4Cr8C were negative.
Furthermore, the cementite alloys exhibited enhanced chemical and mechanical stability
when they were doped with Cr and Mn doping. Compared to θ-Fe3C, these alloys exhibited
superior thermodynamic stability. In particular, compared to θ-Fe3C, (Fe,Cr)3C exhibited
enhanced elasticity properties.

The inclusion of B as an alloying element in hard-phase tool steels offers several
advantages, including enhanced thermal stability, hardness, and modulus of elasticity.
Borides are formed through a direct reaction between Fe and B. Owing to the low solubility
of B in a Fe lattice (500 ppm), only minimal quantities of B are required to create hard
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phases within significant bulk contents [19]. Furthermore, B improves the hardenability of
the Fe matrix. Incorporating the alloying elements Cr and B further enhances the stability,
modulus of elasticity, and hardness of carburizers, achieving a suitable balance between
strength and toughness along with improved plasticity and machinability.

Cementite is a complex interstitial compound characterized by an orthorhombic
crystal structure (space group Pnma, No. 62). As shown in Figure 1, the crystal cell
contains 16 atoms, with metal atoms occupying two Wyckoff positions (4c and 8d) and
non-metal atoms occupying one Wyckoff position (4c) [12]. Owing to the complexity
of the structure and the inter-element interactions of carburized crystals, few studies
have systematically investigated the influence of the composition of alloying elements
on the mechanical properties of carburized hard phases. Therefore, this study aimed to
quantitatively evaluate the mechanical properties of (Fe,Cr)3(C,B) alloys with respect to
their compositional range using the CALPHAD method and first-principle calculations.
The structure of θ-M3X (M = Fe, Cr; X = C, B) was constructed for various compositions.
The positions of Fe and C atoms were replaced by Cr and B atoms, respectively, as shown
in Figure 2.
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2. Computational Methods

We employed first-principle calculations based on the pseudo-potential plane-wave
method using the CASTEP quantum mechanics module [20]. The crystal wave functions
were expanded using a plane-wave basis set, and the potential was represented using ultra-
soft pseudo-potentials in reciprocal space. The exchange-correlation energy was computed
within a generalized gradient approximation (GGA) framework using the Perdew–Burke–
Ernzerh surface and solid (PBEsol) functional [21]. Fine precision settings were adopted to
ensure the accuracy of the computational data and to maintain high efficiency. Periodic
boundary conditions were applied and the number of plane waves was determined using
the kinetic energy cutoff, which was set as 310 eV for all unit-cell models. The Brillouin
zone was discretized using the Monkhorst–Pack method using an 8 × 6 × 9 k-point grid
partition [22]. To ensure self-consistent convergence, the convergence thresholds for total
energy, maximum stress, and maximum displacement were set as 1.0−5 eV/atom, 0.05 GPa,
and 0.001, respectively, and a maximum iteration count of 500 was employed. Before each
calculation, the crystal structure was geometrically optimized using the BFGS method
to obtain the locally most stable structure. The valence electrons of Cr, Fe, C, and B are
3s23p63d54s14p, 3d64s2, 2s22p2, and 2s22p1, respectively [23].

2.1. Elastic Properties at 0 K

The Birch–Murnaghan equation of state (EOS) [24,25] was adopted to fit the energy vs.
volume (E–V) curve from the first-principles calculations at 0 K.

E0(V) = E(V) = E0 +
9V0B0

16


[(
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V

) 2
3
− 1

]3

B′
0 +
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V0 and E0 are the equilibrium volume per atom and the static total energy, respectively. B0

is the bulk modulus and B′
0 =

(
∂B
∂P

)
T

.
The stress–strain method was used to calculate the elastic constants of single crystals

and subsequently obtain the matrix of elastic coefficients of θ-M3X (M = Fe, Cr; X = C,
B) single crystals. The second-order tensor of the elastic constants was based on the
generalized Hooke’s law of elastic deformation [26]. Small strains were applied in different
directions to optimize the positions of atoms in the crystal cell, the stress tensor of the
deformed crystal cell was analyzed after deformation, and the elastic constants were
obtained based on the stress–strain relationship:

σi =
6

∑
j=1

Cijε j (2)

where Cij, σj, and εi are the elastic constant, stress tensor, and strain tensor, respectively. An
orthorhombic crystal has nine independent crystal elastic constants: C11, C22, C33, C12, C13,
C23, C44, C55, and C66. These constants can be determined by applying a small strain to the
equilibrium lattice and computing the resultant change in the total energy of the lattice.

σx
σy
σz
τyz
τzx
τxy


=



C11 C12 C13
C22 C23

C33
C44

C55
C66





εx
εy
εz
γyz
γzx
γxy


(3)

By treating polycrystalline materials as aggregates of single crystals with random
orientations, the isotropic polycrystalline elastic moduli can be computed as averages of
the anisotropic single-crystal elastic constants. The theoretical lower and upper bounds
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of the true polycrystalline bulk (B) and shear moduli (G) are given by Reuss and Voigt,
assuming uniform strain and stress throughout the polycrystal, respectively.

BR =
1

S11 + S22 + S33 + 2(S12 + S23 + S13)
(4)

BV =
C11 + C22 + C33 + 2(C12 + C23 + C13)

9
(5)

GR =
15

4(S11 + S22 + S33 − S12 − S23 − S13) + 3(S44 + S55 + S66)
(6)

GV =
C11 + C22 + C33 − C12 − C23 − C13

15
+

C44 + C55 + C66

5
(7)

where Sij are the elastic compliances, and their values can be obtained by inverting the
elastic constant matrix S = C−1. Based on the Voigt and Reuss models, BV (BR) and GV (GR)
are the bulk and shear moduli, respectively [27]. B and G, based on the Hill model, can be
calculated using their average values [28].

BH =
(BR + BV)

2
(8)

GH =
(GR + GV)

2
(9)

Young’s modulus (E) and Poisson’s ratio (v) were calculated as follows.

E =
9BG

3B + G
(10)

ν =
3B − 2G

2(3B + G)
(11)

θ-M3X is a highly crucial strengthening component in high boron wear-resistant alloys,
characterized by its exceptionally high hardness. Hardness, which is a pivotal parameter for
material wear resistance, was a central concern in this study. Hardness indicates the ability
of a material to resist plastic deformation and failure. The subscripts V and R represent
the Voigt and Reuss limits, respectively, and σ is Poisson’s ratio. In this study, we used the
semiempirical equation of hardness proposed by Tian [29]. The following equation was
defined to evaluate the hardness.

Hv = 0.92(B/G)1.137G0.708 (12)

In Tian’s article [29], a comparison of crystal structures, computed hardness, and
experimental hardness for BCX was provided. This comparison encompassed various
complex crystal structures, including orthorhombic structures such as BC3 and BC5. Ad-
ditionally, the calculated hardness for transition metal compounds such as FeC and FeC2
was also presented. These findings suggest that Tian’s computational model is applicable
to orthorhombic structures such as (Fe,Cr)3(C,B). In Wang et al.’s research article, they
investigated the relationship between the structural characteristics and mechanical behav-
ior of multi-component iron-containing phases using Tian et al.’s proposed model [30].
Furthermore, Zhang et al. also utilized Tian’s model to calculate the hardness of (Fe,
Cr)7C [31].

Anisotropic mechanical properties play an important role in material applications.
The elastic anisotropy of a crystal can be estimated from independent elastic constants
using anisotropic indices. In this study, the universal anisotropic index (AU) and percent
anisotropic indices (AB and AG) were calculated using the following equations [32].
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AU = 5 GV
G + BV

B − 6 ≥ 0
AB = BV−BR

BV+BR
, AG = GV−GR

GV+GR

(13)

Here, BV, BR, GV, and GR are the bulk and shear moduli estimated using the Voigt
and Reuss methods, respectively. For isotropic structures, the values of the anisotropic
indices are zero. Large discrepancies from zero indicate highly anisotropic mechanical
properties. The elastic coefficient matrix of a single crystal of θ-M3X (M = Fe, Cr; X = C,
B) phase was obtained using the stress–strain method based on the generalized Hooke’s
law. Subsequently, the elastic modulus (Cij), including the bulk modulus (B) of θ-M3X, was
obtained using the Voigt–Ruess–Hill approximation. The Born–Huang mechanical stability
criterion was satisfied, indicating that the θ-M3X phases are all mechanically stable. For
orthorhombic crystal systems, the mechanical stability criterion can be expressed as follows.

Ci=j > 0, C11 + C22 − 2C12 > 0,
C11 + C33 − 2C13 > 0, C22 + C33 − 2C23 > 0,
C11 + C12 + C33 + 2C12 + 2C13 + 2C23 > 0

(14)

2.2. CALPHAD Modeling of Elastic Constants

The CALPHAD method is one of the few approaches capable of directly construct-
ing a component–property relationship model from a multicomponent space. In 2010,
Liu [33] modeled the variations in the mechanical properties of (Fe,Cr)3(C,B) solid solutions
with concentration using the CALPHAD method. The CALPHAD method establishes
a performance model for a multicomponent system. The general form of the model is
shown below.

Clm = oClm + ∆Clm (15)

oClm = ∑ xo
i Ci

lm (16)

∆Clm = ∑
i

∑
j>i

xixj ∑
n=0

nLi,j
lm
(
xi − xj

)n (17)

Here, i and j denote pure elements. nLij
lm is the binary interaction parameter of the

elements i and j. n is the order. xi and xj are the molar percentages of elements i and j,
respectively. Clm is the elastic stiffness of the alloy. The variation in the elastic constants with
concentration calculated by fitting the first-principles calculations was obtained using nLij

lm.

3. Results and Discussion

The total energies of the substitutional elements M (Fe,Cr) and X (C,B) in their respec-
tive ground-state structures were calculated as functions of volume at 0 K and zero pressure
unless otherwise stated. The resulting EOS and lattice parameters are listed in Table 1.

Typically, the total energy of the relevant phase is calculated as a function of volume.
The energy–volume relationship determines the equilibrium energy E(V0), equilibrium
volume (V0), and bulk modulus (B0), as defined in Equation (1). As an example, Figure 3
shows the energy–volume relationship of the cementite M3X (M = Fe, Cr; X = C, B). The
lattice parameters (a, b, and c) of the cementite at equilibrium volume were calculated by
optimizing the interatomic forces and stresses in the unit cell.

Table 2 lists the elastic stiffness of M3X (M = Fe, Cr; X = C, B) along with the calculated
elastic constants. Among the Fe3X (X = C, B) compounds, Fe3C exhibits the highest C11
value of 543 GPa, indicating the incompressibility of Fe3C. Compressing Fe3C under
uniaxial stress along the [001] direction is more difficult. This is because elastic deformation
induces a phase transformation from orthorhombic to monoclinic (space group P21/c),
reducing its symmetry. Simultaneously, the number of three-dimensional covalent bonds
increases which hardens the material. Fe8Cr4C4 exhibits the smallest value of C44 at
68 GPa. This indicates that, compared to other compounds, Fe8Cr4C4 is more susceptible
to shear strains at the crystal plane (100). C11, C22, and C33 represent the ability of the
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crystals to resist axial strain along the [001], [010] and [001] crystallographic directions.
C44, C55, and C66 indicate the ability to resist shear strain on the (100), (010) and (001)
crystal faces, and C12 denotes resistance of the crystal against shear deformation along the
[110] direction.

Table 1. Calculated equilibrium lattice parameters (Å3), equilibrium cell volume (Å3) and total cell
energy (unit in eV/Cell) of cementite-type M3X (M = Fe, Cr; X = C, B) at 0 K.

Phases
Lattice Constants (Å)

V/Å3 E0 (eV/Cell) B0 (GPa) B’
0a b c

Fe3C 4.811 6.521 4.31 154.258 −11,013.761 1.984 4.602
Fe3C a 5.092 6.748 4.520
Fe3C b 5.062 6.748 4.533

Fe8Cr4C4 4.884 6.543 4.373 139.612 −17,413.326 1.573 3.803
Fe6Cr6C4 4.967 6.746 4.44 148.753 −20,618.562 2.008 3.203
Fe4Cr8C4 5.119 6.573 4.467 150.277 −23,823.442 1.903 4.945

Cr3C 5.191 6.661 4.516 160.851 −30,234.414 1.675 3.923
Cr3C c 5.009 6.707 4.456
Cr3C d 5.120 6.800 4.580

Fe12C3B 5.273 6.498 4.256 145.852 −10,926.393 1.805 3.827
Fe12CB3 5.045 6.759 4.504 153.581 −10,771.459 1.983 4.653

Fe3B 5.473 6.711 4.387 160.055 −10,706.463 1.425 4.252
Fe3B e 5.397 6.648 4.380

Cr12C3B 5.198 6.675 4.536 157.377 −30,155.826 1.774 4.269
Cr12C2B2 5.216 6.697 4.551 158.964 −30,078.382 1.734 4.318
Cr12CB3 5.234 6.721 4.567 160.686 −30,000.972 1.696 4.146

Cr3B 5.253 6.744 4.583 162.381 −29,923.457 1.675 3.924
Fe8Cr4B4 5.011 6.714 4.474 150.521 −23,823.636 1.9141 4.905
Fe6Cr6B4 5.352 6.595 4.32 152.474 −20,309.882 1.800 4.499

a Expt. at 298 K: [34]. b Expt. at 298 K: [35]. c Expt. at 298 K: [15]. d Expt. at 298 K: [36]. e Expt. at 298 K: [37].

Table 2. Elastic constants of Cij from the first principles in the cementite-type M3X (M = Fe, Cr; X = C,
B) GPa).

Phases C11 C22 C33 C44 C55 C66 C12 C13 C23

Fe3C 383.89 553.09 495.72 174.78 69.11 180.73 236.57 179.14 235.47
Fe3B 358.02 323.17 302.63 177.70 132.41 131.72 132.07 155.72 120.11
Cr3B 363.43 478.06 415.49 199.81 167.33 167.33 184.81 190.09 175.17
Cr3C 552.84 523.00 484.03 205.90 141.68 192.73 176.02 203.86 167.68

Cr3C a 518.7 445.6 401.6 193.9 148 202.3 195.3 208.4 212.2
Cr12CB3 365.67 507.48 440.30 199.06 156.98 161.40 163.76 197.80 167.40
Cr12C2B2 334.73 494.08 434.24 171.43 124.81 167.14 185.09 195.06 195.06
Cr12C3B 385.06 506.36 467.07 204.31 146.90 186.74 178.32 200.36 173.13
Fe4Cr8C4 517.04 480.47 464.22 186.61 129.33 185.14 225.15 197.31 209.36
Fe6Cr6C4 483.26 534.05 416.59 188.57 91.67 205.01 206.17 195.43 196.12
Fe12CB3 522.47 397.16 493.26 183.40 137.31 157.18 212.92 188.03 242.54
Fe12C2B2 345.52 343.59 370.37 175.13 118.42 143.31 115.48 154.30 141.29
Fe12C3B 373.59 356.57 345.10 135.29 83.880 130.90 143.94 108.47 149.03
Fe8Cr4B4 394.02 441.99 452.59 199.04 123.98 138.24 138.24 183.50 209.86
Fe6Cr6B4 489.09 367.81 451.08 206.99 170.29 123.45 201.51 181.61 223.84
Fe4Cr8B4 418.64 401.33 406.39 237.73 195.15 161.14 189.51 181.71 212.32
Fe8Cr4C4 573.47 565.26 587.48 223.45 68.11 226.46 250.64 287.25 288.58

a Cal. at 298 K: [38].
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Figure 3. Calculated total energy at zero temperature and without zero point motion as a function of
volume of M3X (M = Fe, Cr; X = C, B). The filled circles represent calculated points, and the line is a
fit to EOS in Equation (1).

In the field of alloy design, this method has been successfully applied to many metal
systems, e.g., the Nb single-bond Zr binary system [39], Ni-based alloys [40], Ti-Nb-Zr [41],
the Zr-Nb-Mo ternary system [42], and even and intermetallic compounds. It is found
that the crystal structure of Ti(Cu,Pt)2 is of the orthorhombic cell space group Amm2 (No.
38) with the structural prototype of VAu2. The resolved structure of Ti(Cu,Pt)3 is of the
tetragonal AlPt3 type, belonging to the space group P4/mmm (No. 123) [43]. Ti(Cu,Pt)3
alloys of full composition were predicted and are in agreement with experimental data.

The recently developed performance-based CALPHAD modeling technique facilitates
the rapid design of performance-oriented alloy compositions. This is founded on the
ability of the technique to construct data models directly for material composition and
properties [44]. Expanding the scope of alloy designing across the entire composition
space opens up possibilities for obtaining various desired properties and combinations.
Furthermore, it provides a rapid method for designing and optimizing alloys [40,45,46].
Figure 4 shows the elastic constants and CALPHAD model of the binary systems in the M3X
(M = Fe, Cr; X = C, B) cementite. Table 3 lists the parameters fitted to the CALPHAD model.
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Table 3. Fitted parameters of the current CALPHAD model in the cementite-type M3X (M = Fe, Cr;
X = C, B).

Phases nLij
lm

∆C11 ∆C22 ∆C33 ∆C44 ∆C55 ∆C66 ∆C12 ∆C13 ∆C23 ∆G ∆B ∆E

(Fe,Cr)3B

0L −156 −26 −62 −125 −118 −6 19 −8 94.5 −31 −67 −150
1L 18 126 40 13 −15 −6 −101 23 −51 −20 9 15
2L 525 239 332 526 526 140 −274 75 −403 110 312 693

(Fe,Cr)3C

0L 78 16 −293 −7 −55 73 −1 16 −22 −29 −12 −27
1L −13 −496 −793 −315 243 −302 −53 −645 −373 −381 −18 −91
2L 2513 −732 3943 636 214 113 1183 1851 2043 1855 165 657

Fe3(C,B)

0L −422 −378 −115 −4 71 −51 −275 −53 −146 −45 −11 −62
1L 1290 830 1305 249 116 271 646 487 806 807 203 599
2L 1625 206 888 −343 −73 −54 976 −199 968 51 −26 100

(Fe,Cr)3B

0L 513 −131 368 73 92 −104 172 35 305 197 26 98
1L 152 −621 −563 739 394 72 222 −90 −108 −201 73 115
2L −265 1959 −428 −107 −327 909 −126 79 −154 −116 168 335

The isotropic bulk modulus (B) and shear modulus (G) were determined. Generally,
they cannot be calculated directly from Cij. Nevertheless, the values of the isotropic moduli
can be confined within limits assessed in previous studies. Reuss obtained the lower
bounds for all lattices, whereas Voigt obtained the upper bounds. Hill demonstrated that
the averages proposed by Voigt and Reuss were limited and suggested that the actual
effective moduli could be approximated to the arithmetic mean of the two bounds. We
also calculated the Young’s modulus (E) and Poisson’s ratio (v) of the materials. These
quantities are correlated with the bulk and shear moduli. Table 4 lists the calculated Voigt’s
bulk modulus (Bv), Reuss bulk modulus (BR), effective bulk modulus (B), Voigt’s shear
modulus (Gv), Reuss shear modulus (GR), effective shear modulus (G), Young’s modulus
(E), and Poisson’s ratio (v) of M3X (M = Fe, Cr; X = C, B).
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Table 4. Calculated Voigt’s bulk modulus (Bv), Reuss’s bulk modulus (BR), effective bulk modulus
(B), Voigt’s shear modulus (Gv), Reuss’s shear modulus (GR), effective shear modulus (G), Young’s
modulus (E in Gpa), Poisson’s ratio (v) and the universal anisotropic index (AU) a for cementite-type
M3X (M = Fe, Cr; X = C, B).

Phases
B (GPa) G (GPa)

E (GPa) ν (GPa) Hv (GPa) AU
Voigt Reuss Hill Voigt Reuss Hill

Fe3C 321.6 319.0 320.3 147.6 129.3 138.5 363.2 0.311 11.643 0.71
Fe3C a 237 74
Fe3C b 105 70
Fe3C c 217 69
Fe3C d 10.1
Fe3B 199.9 198.1 199.0 126.7 119.2 123.0 305.9 0.244 16.064 0.32

Fe3B e 16.2
Cr3B 261.9 259.3 260.6 149.4 149.4 145. 367.2 0.265 16.037 0.01
Cr3C 276.2 273.1 274.6 164.2 155.5 159.9 401.7 0.256 18.076 0.29

Cr3C f 291.8 145.6
Cr12CB3 263.4 260.3 261.9 155.7 147.7 151.7 381.5 0.257 17.321 0.28
Cr12C2B2 262.4 257.3 259.8 140.2 131.3 135.7 346.9 0.278 14.231 0.36
Cr12C3B 273.5 271.1 272.3 161.3 153.5 157.4 396.0 0.258 17.730 0.26
Fe4Cr8C4 302.8 301.3 302.0 155.5 150.6 153.1 392.9 0.283 14.970 0.16

Fe4Cr8C4
g 297.1 139.8

Fe6Cr6C4 292.1 288.3 290.2 152.7 152.7 146.2 375.6 0.284 14.397 0.03
Fe12CB3 299.9 298.0 299.0 146.8 138.6 142.7 369.6 0.294 13.310 0.30
Fe12C2B2 209.0 207.8 208.4 130.6 125.6 128.1 319.0 0.245 14.437 0.20
Fe12C3B 208.6 207.9 208.3 114.9 109.8 112.4 285.8 0.271 12.913 0.23

Fe3(C,B)-0.2B h 11.18 ± 0.9
Fe8Cr4B4 275.9 274.2 275.1 138.3 131.3 134.8 347.7 0.289 13.171 0.27
Fe6Cr6B4 280.2 278.1 279.1 146.8 134.1 140.5 361.0 0.284 13.980 0.48
Fe4Cr8B4 265.9 265.7 265.8 161.6 144.9 153.3 385.7 0.258 17.352 0.57
Fe8Cr4C4 375. 374.32 374.89 163.58 133.44 148.5 393.5 0.325 11.070 1.13

a Expt. at 298 K: [47]. b Expt. at 298 K: [48]. c Expt. at 298 K: [49]. d Expt. at 298 K: [50] e Cal. at 0 K: [51]. f Cal. at
0 K: [52]. g Expt. at 298 K: [53]. h Expt. at 298 K: [11].

The model required for the calculation was generated using the sublattice point
model. A finite number of constituent points were selected to construct the model, and the
parameters reflecting the mechanical properties of the material, such as elastic constant Cij,
bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio v, and hardness,
were computed for each of the constituent points. Finally, the variation in the mechanical
properties with the chemical composition was assessed across the entire compositional
range by fitting the interaction parameters (Figure 5).

Parameters such as B, G, E, and Poisson’s ratio are crucial indices for evaluating the
mechanical properties of the (Fe,Cr)3(C,B) phase in high boron anti-wear alloys. The bulk
modulus characterizes the capacity of a material to resist volume changes. It serves as
the evaluation standard for the average valence bond strength of the material. At the
macroscopic scale, bulk modulus reflects the external homogeneity of the compression
resistance against a hydrostatic pressure. The higher the resistance to deformation, the
stronger the material, and consequently, it is more challenging to compress. Fe3C exhibited
the largest B value of 320 GPa, while Fe3B has the smallest B value of 120 Gpa. The bulk
modulus decreased gradually with increasing concentrations of B and Cr. Therefore, the
capacity of the material to resist volumetric deformation decreased gradually with the
increase in the concentrations.
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The shear modulus is a measure of the ability of a material to resist shear stress. The
higher the shear modulus, the stronger the resistance against shear strain. Hence, the
modulus is closely related to hardness. The shear modulus G and hardness Hv increased
with increasing B and Cr concentrations. That is, the resistance to shear strain increased,
indicating that the plastic processing of the material became more difficult. Young’s
modulus (E) is expressed as the extent of linear compression of the (Fe,Cr)3(C,B) phase.
It reflects the ability of the material to resist positive strain. To a certain extent, it can
also reflect the stiffness of the material. The higher the E, the higher the stiffness of
the material. Cr3C exhibited the highest Young’s modulus and stiffness of 402 GPa and
18.1 Gpa, respectively (Table 4), indicating that Cr3C may be the stiffest material in the
(Fe,Cr)3(C,B) phase. Poisson’s ratio (ν) is an essential parameter in material engineering. It
is defined as the ratio of the strain perpendicular to the direction of the applied stress to
the strain in the direction of the stress, when a material is subjected to unidirectional stress.
Generally, Poisson’s ratio is a measure of both the elastic properties of a material and the
stability of the material under the shear stress. It typically ranges between −1 and 0.5. The
smaller the Poisson’s ratio, the higher the stability of the material.

The toughness and brittleness of a material can be assessed through the B/G ratio.
According to Pugh’s standard, a B/G ratio of 1.75 is the threshold between brittle and
ductile materials. A compound can be categorized as tough and brittle when B/G > 1.75
(ν > 0.26) and B/G < 1.75 (ν < 0.26), respectively. The calculated Poisson’s ratios of the
materials were below 0.26, except for Fe3B, Cr3C, Fe12C2B2, Cr12CB3, Cr12C3B, and Fe4Cr8B.
This indicates that the former materials are brittle and easily deformable under an external
force. By contrast, the remaining compounds demonstrate good plasticity.

The elastic anisotropy index (AU) indicates the extent of variations in the mechanical
properties of the material in different directions (Table 4). AU = 0 indicates that the material
is isotropic. The greater the deviation of AU from 0, the higher the degree of elastic
anisotropy in the material. As evident from Table 1, the total anisotropy index of Fe8Cr4C4
has the largest deviation from 0, whereas that of Fe3C has the second largest deviation
from 0. This indicates that the mechanical properties of the two compounds are highly
anisotropic. The anisotropy index of Cr3B (0.01) has the smallest deviation from zero,
indicating that its mechanical anisotropy is the weakest.

Tian et al. proposed a model to predict the hardness of polycrystalline materials and
bulk metallic glasses based on the Pugh’s modulus ratio and the shear modulus (G), where
Hv denotes the hardness. The results for compounds are presented in Table 4. Umemoto
et al. [54] reported that the hardness of cementite Fe3C of 10 GPa (~920 HV) is increased
with the addition of Cr to 13.5 GPa (20 atom% Cr) [11]. Lentz et al. provided a comparative
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and comprehensive study of the indentation hardness and indentation modulus of iron-
rich borides and carboborides of types Fe3(C,B). The Fe3(C,B) phase in the Fe-C-B system
increased from 11.18 (±0.9) Gpa to 15.94 (±0.72) Gpa. The theoretically predicted hardness
values of (Fe,Cr)3C phases are in agreement with the experimental measurements reported
in the literature.

Using the CALPHAD method, we meticulously studied the elastic constants and their
derived properties across the full compositional space. Figure 6 presents the distribution of
elastic constants across the entire composition space. The third-order interaction parame-
ters between the (Fe,Cr)3(C,B) compositions and elastic constants or elastic moduli were
obtained by fitting the composition–property relationship using CALPHAD. Subsequently,
we modeled the correlation between the elastic constants and elastic moduli of (Fe,Cr)3(C,B)
with Cr and B concentrations. This analysis generated a cloud diagram depicting the
variations in the mechanical properties of the (Fe,Cr)3(C,B) with respect to the components,
as shown in Figure 7. The shear modulus and Young’s modulus exhibited similar trends:
they decreased with increasing B content in the range of 30–50 at%. In general, the moduli
increased with increasing Cr content in the range of 70–80 at% and decreased in the Cr
content range of 80–90 at%. Hardness gradually increased with increasing B content with
the Cr content of 0.1–15% and 45–50 at%. The maximum hardness, shear modulus, and
Young’s modulus were obtained in the Cr content of 70–95 at% and B content of 0–40 at%.
The shear modulus and hardness Hv were significantly low at a B content of 90–100 at%
and a Cr content of zero. It can be inferred that the concentration of Cr predominantly
influences the mechanical properties of (Fe,Cr)3(C,B). The hardness of the (Fe,Cr)3(C,B)
phase increased at Cr contents exceeding 70 at% and B contents below 20 at%. Hence,
superior mechanical properties can be obtained.
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4. Conclusions

The highest hardness Hv, shear modulus, and Young’s modulus were achieved at Cr
and B contents in the range 70–95 at% and 40 at%, respectively. At these concentrations, the
material is difficult to compress, resulting in poor machinability. At B contents surpassing
90 at% and at a Cr content of zero, the material exhibited low shear modulus G and hardness,
resulting in poor resistance to deformation, reduced stiffness, and the ease of plastic
processing. In this study, we systematically investigated the phase formation and linear and
nonlinear elastic behaviors of M3X (M = Fe, Cr; X = C, B) across a multicomponent space. We
used a combination of first-principle calculations and CALPHAD models. A composition–
phase relationship model was constructed for the of the entire multicomponent space,
revealing the influence of the elements on the phase composition. Our theoretical study
combining the above models can facilitate accelerated alloy design and can be extended
to other multicomponent systems. We performed a high-throughput calculation for a
cementite-type (M = Fe, Cr; X = C, B) system, providing a set of practical guidelines to
facilitate the efficient designing of wear-resistant material compositions.
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